Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

ON Semiconductor BUL642D2G

For any questions, you can email us directly: sales@integrated-circuit.com

High Speed, High Gain Bipolar NPN Transistor with Integrated Collector-Emitter and Built-in Efficient Antisaturation Network

The BUL642D2 is a state-of-the-art High Speed High Gain Bipolar Transistor (H2BIP). Tight dynamic characteristics and lot to lot minimum spread (150 ns on storage time) make it ideally suitable for Light Ballast Application. A new development process brings avalanche energy capability, making the device extremely rugged.

Features

- Low Base Drive Requirement
- High Peak DC Current Gain (55 Typical) @ $I_C = 300 \text{ mA/5 V}$
- Extremely Low Storage Time Min/Max Guarantees Due to the H2BIP Structure which Minimizes the Spread
- Integrated Collector-Emitter Free Wheeling Diode
- Fully Characterized Dynamic V_{CEsat}
- "Six Sigma" Process Providing Tight and Reproducible Parameter Spreads
- Avalanche Energy 20 mJ Typical Capability
- Pb-Free Package is Available*

ON Semiconductor®

http://onsemi.com

3 AMPERES 825 VOLTS 75 WATTS POWER TRANSISTOR

MARKING DIAGRAM

BUL642D2 = Device Code

A = Assembly Location

Y = Year

WW = Work Week

G = Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping
BUL642D2	TO-220	50 Units/Rail
BUL642D2G	TO-220 (Pb-Free)	50 Units/Rail

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Distributor of ON Semiconductor: Excellent Integrated System Limited

Datasheet of BUL642D2G - TRANS NPN 440V 3A TO-220AB

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

BUL642D2

MAXIMUM RATINGS

	Rating		Symbol	Value	Unit
Collector-Emitter S	Collector–Emitter Sustaining Voltage		V_{CEO}	440	Vdc
Collector-Base Bro	eakdown Voltage		V _{CES}	825	Vdc
Emitter-Base Volta	ge		V _{EBO}	11	Vdc
Collector Current	ContinuousPeak (Note 1)		I _C I _{CM}	3.0 8.0	Adc
Base Current	- Continuous - Peak (Note 1)		I _B I _{BM}	2.0 4.0	Adc
*Total Device Dissi	pation @ T _C = 25°C *Derate above 25°C		P _D	75 0.6	W W/°C
Operating and Sto	age Temperature		T _J , T _{stq}	-65 to +150	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

TYPICAL GAIN

Rating		Value	Unit
Typical Gain @ $I_C = 1$ A, $V_{CE} = 2$ V Typical A, $V_{CE} = 1$ V	h _{FE} h _{FE}	45 50	<u> </u>

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	1.6	°C/W
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	62.5	°C/W
Maximum Lead Temperature for Soldering Purposes: 1/8 in. from Case for 5 seconds	TL	260	°C

^{1.} Pulse Test: Pulse Width = 5.0 ms, Duty Cycle = 10%

Distributor of ON Semiconductor: Excellent Integrated System Limited Datasheet of BUL642D2G - TRANS NPN 440V 3A TO-220AB

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

BUL642D2

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

Characteristic				Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTI	cs					•	•	
Collector–Emitter Sustaining Voltage $(I_{C} = 200 \text{ mA}, L = 25 \text{ mH})$				V _{CEO(sus)}	440	_	_	Vdc
Collector-Base Breakd	own Voltage		(I _{CBO} = 1 mA)	V_{CBO}	825	-	-	Vdc
Emitter-Base Breakdov	wn Voltage		$(I_{EBO} = 1 \text{ mA})$	V _{EBO}	11	-	-	Vdc
Collector Cutoff Current	t (V _{CE} = Rat	$red V_{CEO}, I_B = 0)$	@ T _C = 25°C @ T _C = 125°C	I _{CEO}	- -	_ _	200 1000	μAdc
Collector Cutoff Current	t (V _{CE} = Rated	$dV_{CES}, V_{EB} = 0$	@ T _C = 25°C @ T _C = 125°C	I _{CES}	<u> </u>	_ _	100 1000	μAdc
Emitter-Cutoff Current		(V _{EE}	$I_{c} = 10 \text{ Vdc}, I_{C} = 0$	I _{EBO}	-	-	100	μAdc
ON CHARACTERISTIC	s					•	•	
Base–Emitter Saturation Voltage $(IC = 0.5 \text{ Adc}, I_B = 100 \text{ mAdc} \\ (I_C = 1 \text{ Adc}, I_B = 0.2 \text{ Adc})$				V _{BE(sat)}	- -	- -	1.1 1.5	Vdc
Collector–Emitter Saturation Voltage $ (I_{C} = 0.5 \text{ Adc, } I_{B} = 50 \text{ mA} \\ (I_{C} = 2 \text{ Adc, } I_{B} = 0.2 \text{ Adc, } I_{C} = 0.5 \text{ Adc, } I_{C}$			dc, I _B = 50 mAdc) Adc, I _B = 0.2 Adc)	V _{CE(sat)}	- -	- -	0.5 1.5	Vdc
DC Current Gain			Adc, $V_{CE} = 1 \text{ Vdc}$) Adc, $V_{CE} = 3 \text{ Vdc}$)	h _{FE}	16 18	- -	- -	-
DYNAMIC SATURATIO	N VOLTAGE							
Dynamic Saturation	$I_{C} = 0.5 \text{ Adc}$ $I_{B1} = 50 \text{ mAdc}$ $V_{CC} = 125 \text{ Vdc}$ $I_{C} = 1 \text{ Adc}$ $I_{B1} = 100 \text{ mAdc}$ $V_{CC} = 300 \text{ Vdc}$	@ 1 μs	@ T _C = 25°C @ T _C = 125°C	V _{CE(dsat)}	<u>-</u>	2.0 5.0	_ _	V
		@ 3 μs	@ T _C = 25°C		- -	0.2 1.3	_ _	
		@ 1 μs	@ T _C = 25°C @ T _C = 125°C		- -	4.5 10	_ _	
		@ 3 μs	@ T _C = 25°C		-	1.0 3.0	_ _	
OYNAMIC CHARACTER	RISTICS							
Current Gain Bandwidth	n I _C = 0.5 Adc, V _C	_E = 10 Vdc, f = 1 f	ИНz	f _T	-	13	_	MHz
Output Capacitance @ V _{cb} = 10 V, I _E = 0, f = 1 MHz				C_{ob}	-	70	150	pF
Input Capacitance @ V _{EB} = 8 V, f = 1 MHz			C _{ib}	-	500	1000	pF	
DIODE CHARACTERIS	STICS							
Forward Diode Voltage (I _{EC} (I _{EC}			$(I_{EC} = 0.5 \text{ Adc})$ $(I_{EC} = 1.0 \text{ Adc})$	V _{EC}	-	0.8 1.0	1.5 2.0	V
SWITCHING CHARAC	TERISTICS: Res	istive Load (D.C.	≤ 10%, Pulse Widtl	n = 70 μs)				
Delay Time $I_C = 0.5 \text{ Adc}$			t _d	-	60	400	ns	
Rise Time			I _{B1} = 45 mA	t _r	_	160	1100	ns
Storage Time I _{B2} =			$I_{B2} = 500 \text{ mA}$	t _s	_	0.5	1400	μs
Fall Time V _{CC} = 125				t _f	_	0.4	600	ns

Figure 1. DC Current Gain

Figure 2. DC Current Gain

Figure 3. Collector Saturation Region

Figure 4. Collector-Emitter Saturation Voltage

Figure 5. Collector-Emitter Saturation Voltage

Figure 6. Collector-Emitter Saturation Voltage

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

Figure 7. Base-Emitter Saturation Voltage

Figure 8. Base-Emitter Saturation Voltage

Figure 9. Base-Emitter Saturation Voltage

Figure 10. Forward Diode Voltage

V_r, REVERSE VOLTAGE (V)

Figure 11. Capacitance

Figure 12. Resistive Switch Time, Storage Time T_{ON}

Distributor of ON Semiconductor: Excellent Integrated System Limited

Datasheet of BUL642D2G - TRANS NPN 440V 3A TO-220AB

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

BUL642D2

Figure 13. Resistive Switch Time, Storage Time

Figure 14. Resistive Switch Time, Fall Time

Figure 15.

Figure 16. Power Derating

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate I_C – V_{CE} limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 15 is based on T_C = 25°C; $T_{j(pk)}$ is variable depending on power level. Second breakdown pulse limits do not derate like

thermal limitations. Allowable current at the voltages shown on Figure 10 may be found at any case temperature by using the appropriate curve on Figure 16.

 $T_{j(pk)}$ may be calculated from the data in Figure 18. At any case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

NPD CHARACTERIZATION LAB

Figure 17. Typical Avalanche Energy Test/Waveforms

Figure 18. Thermal Response

Distributor of ON Semiconductor: Excellent Integrated System Limited

Datasheet of BUL642D2G - TRANS NPN 440V 3A TO-220AB

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

BUL642D2

PACKAGE DIMENSIONS

TO-220 CASE 221A-09 **ISSUE AA**

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: INCH.
- DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

	INC	HES	MILLIMETERS						
DIM	MIN	MAX	MIN	MAX					
Α	0.570	0.620	14.48	15.75					
В	0.380	0.405	9.66	10.28					
С	0.160	0.190	4.07	4.82					
D	0.025	0.035	0.64	0.88					
F	0.142	0.147	3.61	3.73					
G	0.095	0.105	2.42	2.66					
Н	0.110	0.155	2.80	3.93					
J	0.018	0.025	0.46	0.64					
K	0.500	0.562	12.70	14.27					
L	0.045	0.060	1.15	1.52					
N	0.190	0.210	4.83	5.33					
Q	0.100	0.120 2.54	0.120 2.54	2.54	2.54	2.54	0 2.54	0.120 2.54 3	3.04
R	0.080	0.110	2.04	2.79					
S	0.045	0.055	1.15	1.39					
Т	0.235	0.255	5.97	6.47					
U	0.000	0.050	0.00	1.27					
٧	0.045		1.15						
Z	0.080			2.04					

STYLE 1:

PIN 1. BASE

2. COLLECTOR

3 FMITTER COLLECTOR

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent recarding the design or manufacture of the part. SCILLC is an Egual associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 **Phone**: 81–3–5773–3850 ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative