

## **Excellent Integrated System Limited**

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

[ON Semiconductor](#)  
[NID5004NT4G](#)

For any questions, you can email us directly:

[sales@integrated-circuit.com](mailto:sales@integrated-circuit.com)

## NID5004N

### Self-Protected FET with Temperature and Current Limit

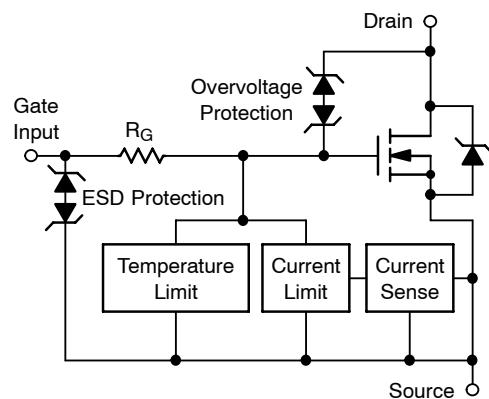
#### 40 V, 6.5 A, Single N-Channel, DPAK

Self-protected FETs are a series of power MOSFETs which utilize ON Semiconductor HDPlus™ technology. The self-protected MOSFET incorporates protection features such as integrated thermal and current limits. The self-protected MOSFETs include an integrated Drain-to-Gate Clamp that provides overvoltage protection from transients and avalanche. The device is protected from Electrostatic Discharge (ESD) by utilizing an integrated Gate-to-Source Clamp.

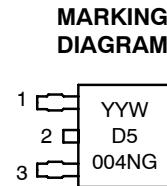
#### Features

- Short Circuit Protection
- In Rush Current Limit
- Thermal Shutdown with Automatic Restart
- Avalanche Rated
- Overvoltage Protection
- ESD Protection (4 kV HBM)
- Controlled Slew Rate for Low Noise Switching
- AEC Q101 Qualified
- This is a Pb-Free Device

#### Applications


- Solenoid Driver
- Relay Driver
- Small Motors
- Lighting
- Relay Replacement
- Load Switching




**ON Semiconductor®**

<http://onsemi.com>

| $V_{DSS}$<br>(Clamped) | $R_{DS(on)}$ Typ | $I_D$ Typ<br>(Limited) |
|------------------------|------------------|------------------------|
| 40 V                   | 110 mΩ @ 10 V    | 6.5 A                  |



DPAK  
CASE 369C  
STYLE 2



1 = Gate  
2 = Drain  
3 = Source

D5004N = Device Code  
Y = Year  
WW = Work Week  
G = Pb-Free Device

#### ORDERING INFORMATION

| Device      | Package           | Shipping <sup>†</sup> |
|-------------|-------------------|-----------------------|
| NID5004NT4G | DPAK<br>(Pb-Free) | 2500/Tape & Reel      |

<sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

## NID5004N

**MOSFET MAXIMUM RATINGS** ( $T_J = 25^\circ\text{C}$  unless otherwise noted)

| Rating                                                                                                                                             | Symbol                                                | Value              | Unit |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------|------|
| Drain-to-Source Voltage Internally Clamped                                                                                                         | $V_{DSS}$                                             | 44                 | Vdc  |
| Gate-to-Source Voltage                                                                                                                             | $V_{GS}$                                              | $\pm 14$           | Vdc  |
| Drain Current Continuous                                                                                                                           | $I_D$                                                 | Internally Limited |      |
| Total Power Dissipation<br>@ $T_A = 25^\circ\text{C}$ (Note 1)<br>@ $T_A = 25^\circ\text{C}$ (Note 2)                                              | $P_D$                                                 | 1.3<br>2.5         | W    |
| Thermal Resistance<br>Junction-to-Case<br>Junction-to-Ambient (Note 1)<br>Junction-to-Ambient (Note 2)                                             | $R_{\theta JC}$<br>$R_{\theta JA}$<br>$R_{\theta JA}$ | 3.0<br>95<br>50    | °C/W |
| Single Pulse Drain-to-Source Avalanche Energy<br>( $V_{DD} = 30$ Vdc, $V_{GS} = 5.0$ Vdc,<br>$I_L = 1.8$ Apk, $L = 160$ mH, $R_G = 25$ Ω) (Note 3) | $E_{AS}$                                              | 273                | mJ   |
| Operating and Storage Temperature Range (Note 4)                                                                                                   | $T_J, T_{stg}$                                        | -55 to 150         | °C   |

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Surface mounted onto minimum pad size (100 sq/mm) FR4 PCB, 1 oz cu.
2. Mounted onto 1" square pad size (700 sq/mm) FR4 PCB, 1 oz cu.
3. Not subject to Production Test
4. Normal pre-fault operating range. See thermal limit range conditions.

## NID5004N

### MOSFET ELECTRICAL CHARACTERISTICS ( $T_J = 25^\circ\text{C}$ unless otherwise noted)

| Characteristic | Symbol | Min | Typ | Max | Unit |
|----------------|--------|-----|-----|-----|------|
|----------------|--------|-----|-----|-----|------|

#### OFF CHARACTERISTICS

|                                                                                                |                             |    |    |     |               |
|------------------------------------------------------------------------------------------------|-----------------------------|----|----|-----|---------------|
| Drain-to-Source Clamped Breakdown Voltage<br>( $V_{GS} = 0 \text{ V}$ , $I_D = 2 \text{ mA}$ ) | $V_{(\text{BR})\text{DSS}}$ | 36 | 40 | 44  | V             |
| Zero Gate Voltage Drain Current<br>( $V_{DS} = 32 \text{ V}$ , $V_{GS} = 0 \text{ V}$ )        | $I_{DSS}$                   | –  | 27 | 100 | $\mu\text{A}$ |
| Gate Input Current<br>( $V_{GS} = 5.0 \text{ V}$ , $V_{DS} = 0 \text{ V}$ )                    | $I_{GSS}$                   | –  | 45 | 200 | $\mu\text{A}$ |

#### ON CHARACTERISTICS

|                                                                                                                                                                                                                      |                     |          |             |            |                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------|-------------|------------|----------------------------------|
| Gate Threshold Voltage<br>( $V_{DS} = V_{GS}$ , $I_D = 150 \mu\text{A}$ )<br>Threshold Temperature Coefficient                                                                                                       | $V_{GS(\text{th})}$ | 1.0<br>– | 1.85<br>5.0 | 2.2<br>–   | V<br>$-\text{mV}/^\circ\text{C}$ |
| Static Drain-to-Source On-Resistance (Note 5)<br>( $V_{GS} = 10 \text{ V}$ , $I_D = 2.0 \text{ A}$ , $T_J @ 25^\circ\text{C}$ )                                                                                      | $R_{DS(\text{on})}$ | –        | 110         | 130        | $\text{m}\Omega$                 |
| Static Drain-to-Source On-Resistance (Note 5)<br>( $V_{GS} = 5.0 \text{ V}$ , $I_D = 2.0 \text{ A}$ , $T_J @ 25^\circ\text{C}$ )<br>( $V_{GS} = 5.0 \text{ V}$ , $I_D = 2.0 \text{ A}$ , $T_J @ 150^\circ\text{C}$ ) | $R_{DS(\text{on})}$ | –<br>–   | 130<br>240  | 150<br>270 | $\text{m}\Omega$                 |
| Source-Drain Forward On Voltage<br>( $I_S = 7.0 \text{ A}$ , $V_{GS} = 0 \text{ V}$ )                                                                                                                                | $V_{SD}$            | –        | 0.9         | 1.1        | V                                |

#### SWITCHING CHARACTERISTICS (Note 6)

|                     |                                                                                                                                        |                     |   |     |      |                        |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------|---|-----|------|------------------------|
| Turn-on Delay Time  | $R_L = 6.6 \Omega$ , $V_{in} = 0$ to $10 \text{ V}$ ,<br>$V_{DD} = 13.8 \text{ V}$ , $I_D = 2.0 \text{ A}$ , 10% $V_{in}$ to 10% $I_D$ | $t_{d(\text{on})}$  | – | 97  | 115  | ns                     |
| Turn-on Rise Time   | $R_L = 6.6 \Omega$ , $V_{in} = 0$ to $10 \text{ V}$ ,<br>$V_{DD} = 13.8 \text{ V}$ , $I_D = 2.0 \text{ A}$ , 10% $I_D$ to 90% $I_D$    | $t_{rise}$          | – | 282 | 300  | ns                     |
| Turn-off Delay Time | $R_L = 6.6 \Omega$ , $V_{in} = 0$ to $10 \text{ V}$ ,<br>$V_{DD} = 13.8 \text{ V}$ , $I_D = 2.0 \text{ A}$ , 90% $V_{in}$ to 90% $I_D$ | $t_{d(\text{off})}$ | – | 930 | 1020 | ns                     |
| Turn-off Fall Time  | $R_L = 6.6 \Omega$ , $V_{in} = 0$ to $10 \text{ V}$ ,<br>$V_{DD} = 13.8 \text{ V}$ , $I_D = 2.0 \text{ A}$ , 90% $I_D$ to 10% $I_D$    | $t_{fall}$          | – | 690 | 750  | ns                     |
| Slew Rate ON        | $R_L = 6.6 \Omega$ , $V_{in} = 0$ to $10 \text{ V}$ ,<br>$V_{DD} = 13.8 \text{ V}$ , $I_D = 2.0 \text{ A}$ , 70% to 50% $V_{DD}$       | $dV_{DS}/dT_{on}$   | – | 64  | –    | $\text{V}/\mu\text{s}$ |
| Slew Rate OFF       | $R_L = 6.6 \Omega$ , $V_{in} = 0$ to $10 \text{ V}$ ,<br>$V_{DD} = 13.8 \text{ V}$ , $I_D = 2.0 \text{ A}$ , 50% to 70% $V_{DD}$       | $dV_{DS}/dT_{off}$  | – | 28  | –    | $\text{V}/\mu\text{s}$ |

#### SELF PROTECTION CHARACTERISTICS ( $T_J = 25^\circ\text{C}$ unless otherwise noted) (Note 7)

|                                    |                                                                                                                                                                                                                                                                                  |                             |                 |                   |               |                  |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------|-------------------|---------------|------------------|
| Current Limit                      | $V_{DS} = 10 \text{ V}$ , $V_{GS} = 5.0 \text{ V}$ , $T_J = 25^\circ\text{C}$ (Note 8)<br>$V_{DS} = 10 \text{ V}$ , $V_{GS} = 5.0 \text{ V}$ , $T_J = 100^\circ\text{C}$ (Note 6, 8)<br>$V_{DS} = 10 \text{ V}$ , $V_{GS} = 10 \text{ V}$ , $T_J = 25^\circ\text{C}$ (Note 6, 8) | $I_{LIM}$                   | 4.0<br>4.0<br>– | 6.5<br>5.5<br>7.9 | 11<br>11<br>– | A                |
| Temperature Limit (Turn-off)       | $V_{GS} = 5.0 \text{ V}$ (Note 6)                                                                                                                                                                                                                                                | $T_{LIM(\text{off})}$       | 150             | 180               | 200           | $^\circ\text{C}$ |
| Thermal Hysteresis                 | $V_{GS} = 5.0 \text{ V}$                                                                                                                                                                                                                                                         | $\Delta T_{LIM(\text{on})}$ | –               | 10                | –             | $^\circ\text{C}$ |
| Temperature Limit (Turn-off)       | $V_{GS} = 10 \text{ V}$ (Note 6)                                                                                                                                                                                                                                                 | $T_{LIM(\text{off})}$       | 150             | 180               | 200           | $^\circ\text{C}$ |
| Thermal Hysteresis                 | $V_{GS} = 10 \text{ V}$                                                                                                                                                                                                                                                          | $\Delta T_{LIM(\text{on})}$ | –               | 20                | –             | $^\circ\text{C}$ |
| Input Current during Thermal Fault | $V_{DS} = 0 \text{ V}$ , $V_{GS} = 5.0 \text{ V}$ , $T_J = T_J > T_{(\text{fault})}$ (Note 6)<br>$V_{DS} = 0 \text{ V}$ , $V_{GS} = 10 \text{ V}$ , $T_J = T_J > T_{(\text{fault})}$ (Note 6)                                                                                    | $I_{g(\text{fault})}$       | 5.5<br>12       | 5.2<br>11         | –             | mA               |

#### ESD ELECTRICAL CHARACTERISTICS ( $T_J = 25^\circ\text{C}$ unless otherwise noted)

|                                                                                             |     |             |   |   |   |
|---------------------------------------------------------------------------------------------|-----|-------------|---|---|---|
| Electrostatic Discharge Capability<br>Human Body Model (HBM)<br>Machine Model (MM) (Note 6) | ESD | 4000<br>400 | – | – | V |
|---------------------------------------------------------------------------------------------|-----|-------------|---|---|---|

5. Pulse Test: Pulse Width  $\leq 300 \mu\text{s}$ , Duty Cycle  $\leq 2\%$ .

6. Not subject to Production Test

7. Fault conditions are viewed as beyond the normal operating range of the part.

8. Current limit measured at  $380 \mu\text{s}$  after gate pulse.

## NID5004N

### TYPICAL PERFORMANCE CURVES

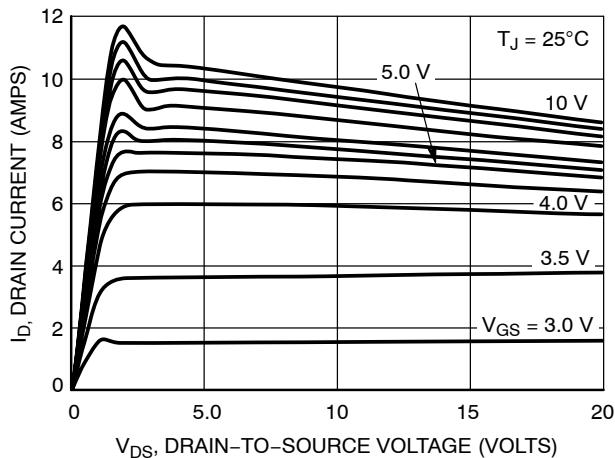



Figure 1. On-Region Characteristics



Figure 2. Transfer Characteristics

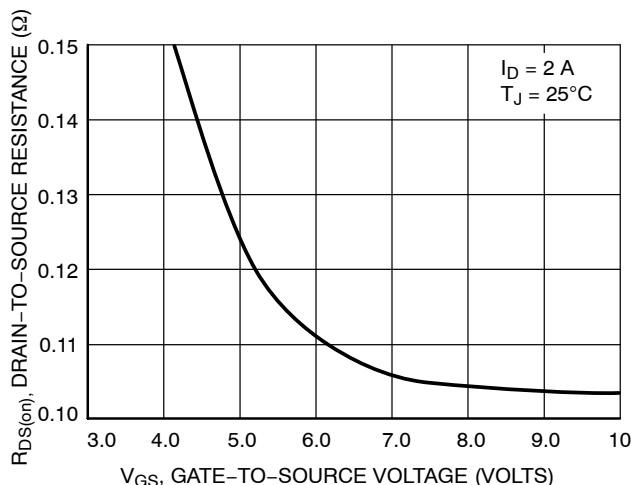



Figure 3. On-Resistance vs. Gate-to-Source Voltage

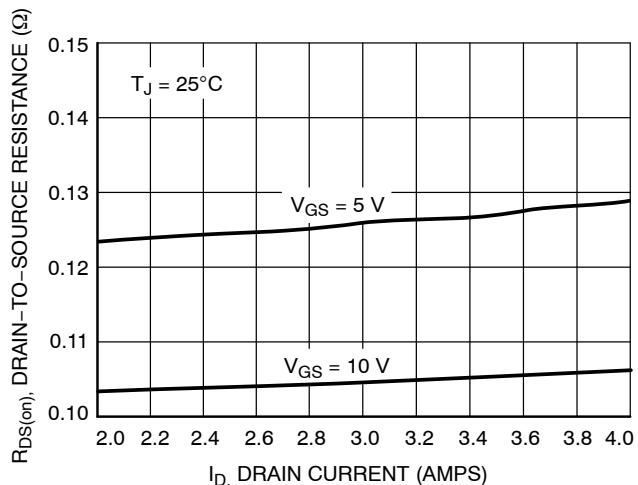



Figure 4. On-Resistance vs. Drain Current

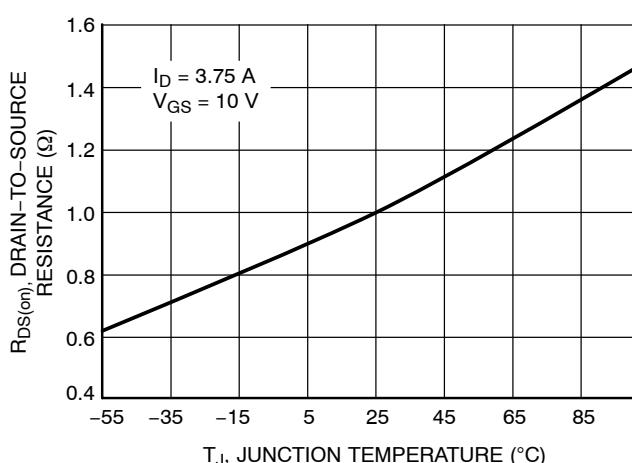



Figure 5. On-Resistance Variation with Temperature

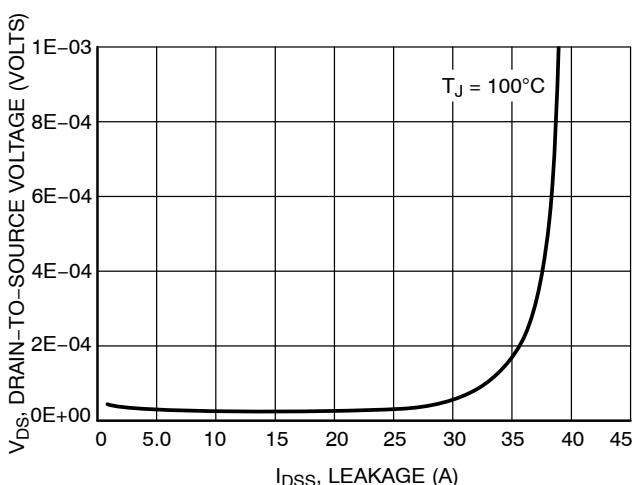



Figure 6. Drain-to-Source Leakage Current vs. Voltage

## NID5004N

### TYPICAL PERFORMANCE CURVES

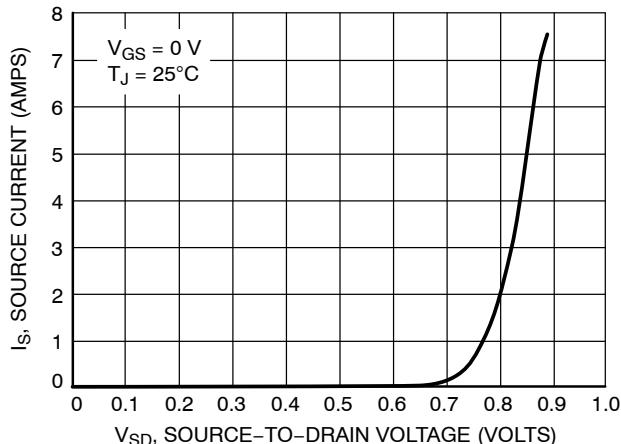



Figure 7. Diode Forward Voltage vs. Current

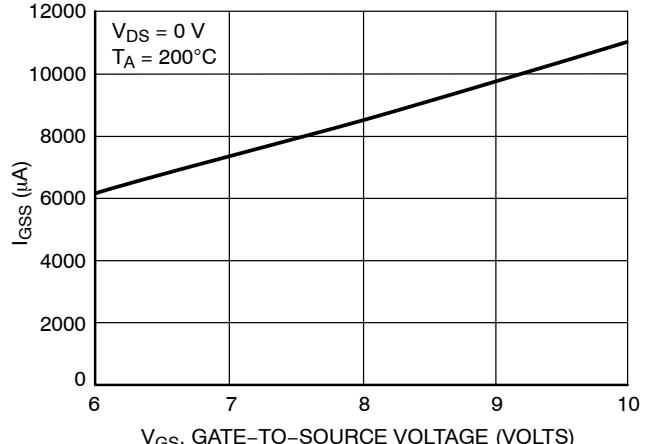
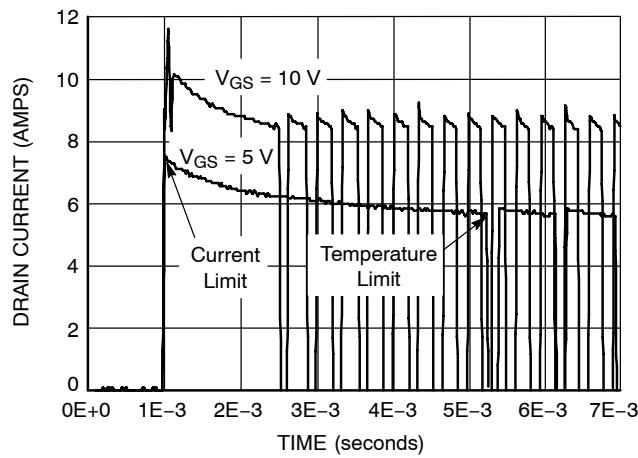
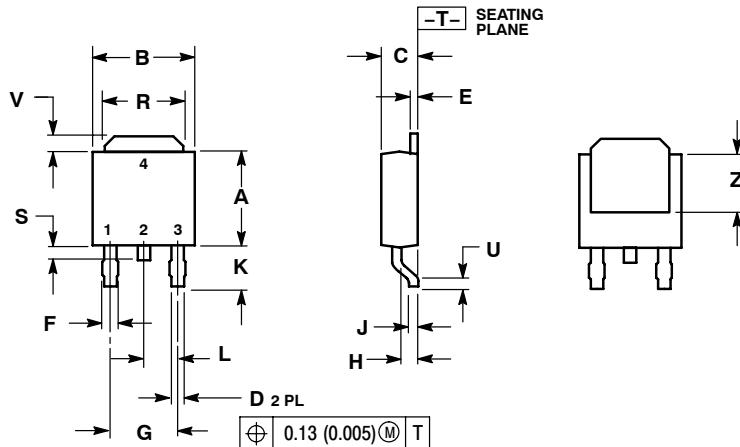



Figure 8. Input Current vs. Gate Voltage

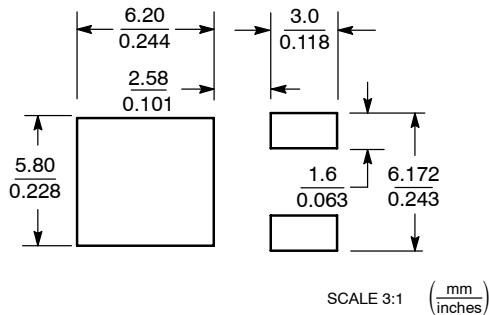




Figure 9. Short Circuit Response\*

\*(Actual thermal cycling response in short circuit dependent on device power level, thermal mounting, and ambient temperature conditions)

## NID5004N

### PACKAGE DIMENSIONS


**DPAK**  
CASE 369C-01  
ISSUE O



| DIM | INCHES |       | MILLIMETERS |      |
|-----|--------|-------|-------------|------|
|     | MIN    | MAX   | MIN         | MAX  |
| A   | 0.235  | 0.245 | 5.97        | 6.22 |
| B   | 0.250  | 0.265 | 6.35        | 6.73 |
| C   | 0.086  | 0.094 | 2.19        | 2.38 |
| D   | 0.027  | 0.035 | 0.69        | 0.88 |
| E   | 0.018  | 0.023 | 0.46        | 0.58 |
| F   | 0.037  | 0.045 | 0.94        | 1.14 |
| G   | 0.180  | BSC   | 4.58        | BSC  |
| H   | 0.034  | 0.040 | 0.87        | 1.01 |
| J   | 0.018  | 0.023 | 0.46        | 0.58 |
| K   | 0.102  | 0.114 | 2.60        | 2.89 |
| L   | 0.090  | BSC   | 2.29        | BSC  |
| R   | 0.180  | 0.215 | 4.57        | 5.45 |
| S   | 0.025  | 0.040 | 0.63        | 1.01 |
| U   | 0.020  | ---   | 0.51        | ---  |
| V   | 0.035  | 0.050 | 0.89        | 1.27 |
| Z   | 0.155  | ---   | 3.93        | ---  |

STYLE 2:  
PIN 1. GATE  
2. DRAIN  
3. SOURCE  
4. DRAIN

### SOLDERING FOOTPRINT\*



\*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

HDPlus is a trademark of Semiconductor Components Industries, LLC (SCILLC)

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor  
P.O. Box 61312, Phoenix, Arizona 85082-1312 USA  
Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada  
Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada  
Email: [orderlit@onsemi.com](mailto:orderlit@onsemi.com)

**N. American Technical Support:** 800-282-9855 Toll Free  
USA/Canada

**Japan:** ON Semiconductor, Japan Customer Focus Center  
2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051  
Phone: 81-3-5773-3850

**ON Semiconductor Website:** <http://onsemi.com>

**Order Literature:** <http://www.onsemi.com/litorder>

For additional information, please contact your local Sales Representative.