

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

STMicroelectronics STCF01PMR

For any questions, you can email us directly: <u>sales@integrated-circuit.com</u>

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

STCF01

Step-up converter for cell phone camera flash LEDs

General features

- Supply voltage range: 2.6V to 5.5V
- 17V Maximum output voltage
- Two current levels up to 300mA set with external resistors
- Dedicated pin to select the required level of current
- Operating frequency: 1.5MHz: PWM Controller
- Torch mode supported
- Shutdown pin with true load disconnection
- Efficiency: 90% at 100mA; 80% at 300mA
- DFN10L (3mm x 3mm) Package

Description

The STCF01 is a dedicated IC designed to drive two, three, or four white, cell phone camera hash LEDs with constant current. The step-up (boost) converter input is connected directly to the battery, and its converter output voltage is automatically determined using current for dback-based duty cycle control.

The STCF01 has a opdicated pin for two levels of LED current splaction. An external roststor is used

to set the required current for each level. Compared to the linear current control technique, this method allows designers to achieve the best and most atticient performance possible with the selected current, there by avoiding linear element tosses.

The Shutdown (SHDN) pin saves power when the camera flock is not used by consuming less than 0.1 (a) of current. When the SHDN pin is high (logic 1'), the device is turned OFF and there is no DC current path from the supply to the white LEDs (Load Disconnect). If it is held to GND, the output current continuously flows through the LEDs (Torch mode). The SHDN pin, when it is set to low (logic '0'), is also used to set the flash function time duration.

Order code

Part number	Package	Packaging	
STCF01PMR	DFN10L (3mm x 3mm)	4500 parts per reel	

Contents	STCF01

Contents

1	Diagram
2	Pin configuration
3	Application information
4	Maximum ratings 6
5	Electrical characteristics7
6	Detailed description
7	Typical operating characteristics
8	Package mechanical data
9 0050 0055	Revision history

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

STCF01

Diagram

1 Diagram

Figure 1. Block diagram

Pin configuration

STCF01

Pin configuration 2

Table 1. **Pin description**

Pln N°	Symbol	C Note
1	PWRGND	This is the application power signal role ence. Connect the input and output capacitors to this pin.
2	OVP	This pin senses step-up output voltage, which provides overvoltage protection in the event that the output voltage exceeds the OVP threshold
3	VI	This pin supplies the input voltage for the step-up stage as well as the supply voltage for the overall device.
4	HC	This pin sets the high level current for the white LEDs with a resistor that is connected between this pin and V_I .
5	LC	$T_{\rm r}$ is pin sets the low level current for the white LEDs with a resistor that is connected between this pin and V_I.
6	SGILGIND	This pin is the logic signal reference for the IC.
7	ГВ	This pin senses the current flowing through the white LEDs and uses this feedback to provide current regulation.
5	SEL	This pin is used to select the signal level of the white LEDs; a low level signal sets the low level LED current, while the high level signal sets the high level LED current.
9	SHDN	This pin enables or disables the Shutdown mode. A high level signal enables device Shutdown mode, where most of the device internal logic is turned OFF. If this pin is held to GND, the output current flows through the LEDs continuously (Torch mode).
10	SW	This is the switch node pin, which is connected to the internal N-channel MOSFET drain.
5		·

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

STCF01

Application information

3 Application information

Figure 3. Application circuit

Maximum ratings

STCF01

Maximum ratings 4

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
VI	DC Input Voltage to SGLGND	-0.3 to 6	V
V _{SW}	Switch Voltage	-0.3 to 20	V
FB, SEL, SHDN, LC, HC	Voltage Range	-0.3 to V _I + 0.3	V
OVP	Over Voltage Protection	-0.3 to 20	V
ESD	Human Body Model	±2	kV
P _{TOT}	Continuous Power Dissipation (at $T_A = 70^{\circ}C$)	500	νW
T _{OP}	Operating Junction Temperature Range	-40 to 85	0.0
TJ	Junction Temperature	-40 to 125	°C
T _{STG}	Storage Temperature Range	-65 to 150	°C

Note: Absolute Maximum Ratings are those values beyond which damage ic the device may occur. Functional Operation under these conditions is not implied.

Table 3. Thermal data

Table 3.	Thermal data	AUL	
Symbol	Parameter	Value	Unit
R _{thJA}	Thermal Resistance Junction-Ambient	30.9	°C/W
R _{thJC}	Thermal Resistance Junction-Case	2.96	°C/W
0,0501 0,0501	ate Product(S) - Obsole		

STCF01

Electrical characteristics

5 Electrical characteristics

Table 4. DC Electrical characteristics

 $(T_J$ = -40°C to 85°C, V_I = 3.6V, C_I = 2.2µF, C_O = 4.7µF, L = 10µH, R_{LC} = 12k Ω R_{HC} = 4k Ω V_{OVP} = 8V, Typ. values @ 25°C, unless otherwise specified)

	Unit
$\begin{tabular}{ c c c c c } \hline V_I & Max Operation Supply Voltage & & & & & 5.5 \\ \hline V_{UVLO} & Under Voltage lockout threshold & V_{SEL}=0V, V_{SHDN}=0V, & & 2.3 & 2.45 & 2.6 \\ \hline I_Q & Quiescent Current & V_{SEL}=0V & & & 2.3 & 3 \\ \hline Shutdown Mode & & 0.1 & 0.5 \\ \hline f_{SW} & Switching Frequency & V_{SEL}=0V, V_{SHDN}=0V & 1.2 & 1.5 & 1.8 \\ \hline V_{OVP} & Over Voltage Threshold & No Load & 17 & 18 & 19 \\ \hline I_{PKMax} & Maximum Inductor Current & V_{SHDN}=0V & 1.2 & 1.2 & 1.2 \\ \hline Current control & & & & & & & & & & & & & & & & & & &$	
$\begin{tabular}{ c c c c c } \hline V_{UVLO} & Under Voltage lockout threshold & V_{SEL}=0V, V_{SHDN}=0V, \\ \hline Min. duty cycle & 2.3 & 2.45 & 2.6 \\ \hline Min. duty cycle & 0.1 & 0.5 \\ \hline Min. duty cycle & 0.1 & 0.5 \\ \hline Switching Frequency & V_{SEL}=0V, V_{SHDN}=0V & 1.2 & 1.5 & 1.8 \\ \hline V_{OVP} & Over Voltage Threshold & No Load & 17 & 18 & 19 \\ \hline I_{PKMax} & Maximum Inductor Current & V_{SHDN}=0V & 1.2 & 1.2 \\ \hline Current control & V_{SEL}=3V, V_{SHDN}=0V & 1.2 & 0.5 \\ \hline V_{LC} & LC Pin Voltage & V_{SEL}=3V, V_{SHDN}=0V & V_{I}-0.65 & V_{I}-0.6 & V_{I}-0.55 \\ \hline I_{LED}/I_{HC} & High Level Current Multiplier & V_{SEL}=3V, V_{SHDN}=0V & V_{I}-0.65 & V_{I}-0.6 & V_{I}-0.55 \\ \hline I_{LED}/I_{LC} & Low Level Current Multiplier & V_{SEL}=0V, V_{SHDN}=0V & 2200 & 2400 & 2600 \\ \hline R_{ON}FB & Resistance ON Feedback & I_{FB}=100mA & 1.2 \\ \hline I_{FB(LEAK)} & Current Feedback Leakage & V_{SHDN}=3V, V_{FB}=V_{I} & 0.1 & 1 \\ \hline Switch section & V_{SHDN}=0V & V_{I}=0.5 \\ \hline \end{tabular}$	V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	v
Image: Second control Shutdown Mode 0.1 0.5 f_{SW} Switching Frequency $V_{SEL} = 0V, V_{SHDN} = 0V$ 1.2 1.5 1.8 V_{OVP} Over Voltage Threshold No Load 1,7 18 19 I_{PKMax} Maximum Inductor Current $V_{SHDN} = 0V$ 1.2 1.2 1.2 Current control V_{SHDN} = 0V 1.2 1.2 1.2 1.2 V_{HC} HC Pin Voltage $V_{SEL} = 3V, V_{SHDN} = 0V$ $V_{I} = 0.65$ $V_{I} = 0.65$ $V_{I} = 0.55$ V_{LC} LC Pin Voltage $V_{SEL} = 3V, V_{SHDN} = 0V$ $V_{I} = 0.65$ $V_{I} = 0.65$ $V_{I} = 0.65$ V_{LC} LC Pin Voltage $V_{SEL} = 3V, V_{SHDN} = 0V$ $V_{I} = 0.65$ $V_{I} = 0.65$ V_{LC} LC Pin Voltage $V_{SEL} = 3V, V_{SHDN} = 0V$ 25° C) 1900 2100 2300 I_{LED}/I_{LC} Low Level Current Multiplier $V_{SEL} = (V, V_{SHDN} = 0V$ 2200 2400 2600 $R_{ON}FB$ Resistance ON Feedback $I_{FB} = i00mA$ 1.2 1.2 1 IFB(LEAK) Current Feedback Leakage <td>mA</td>	mA
f_{SW}Switching Frequency $V_{SEL} = 0V, V_{SHDN} = 0V$ 1.21.51.8 V_{OVP} Over Voltage ThresholdNo Load1,1819 I_{PKMax} Maximum Inductor Current $V_{SHDN} = 0V$ 1.21.2Current controlV _{HC} HC Pin Voltage $V_{SEL} = 3V, V_{SHDN} = 0V$ V_{I} -0.65 V_{I} -0.6 V_{I} -0.55 V_{LC} LC Pin Voltage $V_{SEL} = 0V, V_{SHDN} = 0V$ V_{I} -0.65 V_{I} -0.6 V_{I} -0.55 I_{LED}/I_{HC} High Level Current Multiplier $V_{SEL} = 3V, V_{SHDN} = 0V$ V_{I} -0.65 V_{I} -0.6 V_{I} -0.55 I_{LED}/I_{LC} Low Level Current Multiplier $V_{SEL} = 3V, V_{SHDN} = 0V$ $(25^{\circ}C)$ 190021002300 I_{LED}/I_{LC} Low Level Current Multiplier $V_{SEL} = (V, V_{SHDN}) = 0V$ $(25^{\circ}C)$ 220024002600 $R_{ON}FB$ Resistance ON Feedback $I_{FB} = i00mA$ 1.211Switch section	μA
VOVPOver Voltage ThresholdNo Load171819 I_{PKMax} Maximum Inductor Current $V_{SHDN} = 0V$ 1.21.2Current controlVHCHC Pin Voltage $V_{SEL} = 3V, V_{SHDN} = 0V$ V_{I} -0.65 V_{I} -0.6 V_{I} -0.55 V_{LC} LC Pin Voltage $V_{SEL} = 0V, V_{SHDN} = 0V$ V_{I} -0.65 V_{I} -0.6 V_{I} -0.55 I_{LED}/I_{HC} High Level Current Multiplier $V_{SEL} = 3V, V_{S}$ + 10.1 – 0V (25°C)190021002300 I_{LED}/I_{LC} Low Level Current Multiplier $V_{SEL} = CV, V_{SHDN} = 0V$ (25°C)220024002600RonFBResistance ON Feedback $I_{FB} = i00mA$ 1.211Switch section	MHz
IPKMax Maximum Inductor Current $V_{SHDN} = 0V$ 1.2 Current control V HC Pin Voltage $V_{SEL} = 3V, V_{SHDN} = 0V$ $V_{I} - 0.65$ $V_{I} - 0.6$ $V_{I} - 0.55$ V_{LC} LC Pin Voltage $V_{SEL} = 0V, V_{SHDN} = 0V$ $V_{I} - 0.65$ $V_{I} - 0.6$ $V_{I} - 0.55$ I_{LED}/I_{HC} High Level Current Multiplier $V_{SEL} = 3V, V_{S + 1D + 1} - 0V$ $(25^{\circ}C)$ 1900 2100 2300 I_{LED}/I_{LC} Low Level Current Multiplier $V_{SEL} = CV, V_{S + 1D + 1} - 0V$ $(25^{\circ}C)$ 2200 2400 2600 $R_{ON}FB$ Resistance ON Feedback $I_{FB} = 100mA$ 1.2 1.2 $I_{FB}(LEAK)$ Current Feedback Leakage $V_{S + 1DN} = 3V, V_{FB} = V_1$ 0.1 1	v
VHC HC Pin Voltage $V_{SEL} = 3V, V_{SHDN} = 0V$ V_{I} -0.65 V_{I} -0.6 V_{I} -0.55 V_{LC} LC Pin Voltage $V_{SEL} = 0V, V_{SHDN} = 0V$ V_{I} -0.65 V_{I} -0.6 V_{I} -0.55 I_{LED}/I_{HC} High Level Current Multiplier $V_{SEL} = 3V, V_{S-1D,1} = 0V$ (25°C) 1900 2100 2300 I_{LED}/I_{LC} Low Level Current Multiplier $V_{SEL} = CV, V_{3HDN} = 0V$ (25°C) 2200 2400 2600 $R_{ON}FB$ Resistance ON Feedback $I_{FB} = 100mA$ 1.2 1 $I_{FB(LEAK)}$ Current Feedback Leakage $V_{S-1DN} = 3V, V_{FB} = V_1$ 0.1 1	Α
V_{HC} HC Pin Voltage $V_{SEL} = 3V$, $V_{SHDN} = 0V$ V_{I} -0.65 V_{I} -0.6 V_{I} -0.55 V_{LC} LC Pin Voltage $V_{SEL} = 0V$, $V_{SHDN} = 0V$ V_{I} -0.65 V_{I} -0.6 V_{I} -0.55 I_{LED}/I_{HC} High Level Current Multiplier $V_{SEL} = 3V$, $V_{S-1D,I} = 0V$ (25°C) 1900 2100 2300 I_{LED}/I_{LC} Low Level Current Multiplier $V_{SEL} = CV$, $V_{SHDN} = 0V$ (25°C) 2200 2400 2600 $R_{ON}FB$ Resistance ON Feedback $I_{FB} = 100$ mA 1.2 1200 1200 1200 11 1200	
V_{LC} LC Pin Voltage $V_{SEL} = 0V, V_{SHDI, -} V$ V_{I} -0.65 V_{I} -0.6 V_{I} -0.55 I_{LED}/I_{HC} High Level Current Multiplier $V_{SEL} = 3V, V_{SADI, -} 0V (25^{\circ}C)$ 190021002300 I_{LED}/I_{LC} Low Level Current Multiplier $V_{SEL} = CV, V_{SHDI, -} 0V (25^{\circ}C)$ 220024002600 $R_{ON}FB$ Resistance ON Feedback $I_{FB} = 100mA$ 1.2 $I_{FB(LEAK)}$ Current Feedback Leakage $V_{SADI, -} 3V, V_{FB} = V_{I}$ 0.11Switch section	V
I_{LED}/I_{HC}High Level Current Multiplier $V_{SEL} = 3V, V_{S,1D,1} = 0V (25^{\circ}C)$ 190021002300I_{LED}/I_{LC}Low Level Current Multiplier $V_{SEL} = CV, V_{S,1DN} = 0V (25^{\circ}C)$ 220024002600R_{ON}FBResistance ON Feedback $I_{FB} = 100mA$ 1.21.2I_{FB(LEAK)}Current Feedback Leakage $V_{S,1DN} = 3V, V_{FB} = V_1$ 0.11	V
I_{LED}/I_{LC} Low Level Current Multiplier $V_{SEL} = CV, V_{SHDN} = 0V (25^{\circ}C)$ 220024002600 $R_{ON}FB$ Resistance ON Feedback $I_{FB} = i00mA$ 1.21.2 $I_{FB(LEAK)}$ Current Feedback Leakage $V_{S + DN} = 3V, V_{FB} = V_1$ 0.11Switch section	A/A
R _{ON} FB Resistance ON Feedback I _{FB} = 100mA 1.2 I _{FB(LEAK)} Current Feedback Leakage V _{S 1DN} = 3V, V _{FB} = V ₁ 0.1 1	A/A
$I_{FB(LEAK)}$ Current Feedback Leakage $V_{S +DN} = 3V, V_{FB} = V_1$ 0.1 1	Ω
Switch section	μA
Switch Section	
R _{ON} Internal Switch ON-Resistance I _{SW} = 1A <i>Note: 1</i> 0.3	Ω
I _{SW(LEAK)} Internal Switch איז	μA
D _{MAX} Maximum בעיץ כין cle I _{FB} = 0mA 90	%
D _{MIN} Minimum Duty Cycle I _{FB} = 200mA; V _{SEL} = 0V Pulse Skipping 0	%
Control Injuge section	
V ₁ =2.6V 1.2	
$V_{I(c EL)}$ SEL and SHDN input High Threshold $V_I = 3.6V$ 1.4	V
$V_{\rm H}({\rm SHDN})$ The should $V_{\rm I} = 5.5V$ 1.6	
V VI = 2.6V 0.4	
$V_{L(SEL)}$ [SEL and SHDN Input Low $V_{l} = 3.6V$ 0.5	V
$V_{\rm L(SHDN)}$ $V_{\rm I} = 5.5V$ 0.6	
Thermal shutdown	
T _{SD} Thermal Shutdown 145	°C
T _{HS} Thermal Shutdown Hysteresis 15	°C

Note: 1 Typical value, not production tested

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

Detailed description

STCF01

6 Detailed description

The STCF01 white Led boost converter drives from two up to four white LEDs with a constant current. It needs few external components: two ceramic capacitors ($C_I=2.2\mu$ F $C_O=4.7\mu$ F), one inductor L=10µH and one schottky diode. The device works with a minimum V_I=2.6V, and it has an Over Voltage Protection on the output guaranteed at minimum value equal to 17V. This value ensures proper operation with a maximum of four White LEDs in series. In the worst case of V_I=2.6V at V_{OVP}=8V (typical value of two LEDs) it is possible to obtain I_O=270mA, while at V_{OVP}=11V (typical value of three LEDs) it is possible obtain I_O=180mA (*Figure 4*). The maximum IO current is limited by inductor peak current internally set at Typ 1.2A. This feature allows for a longer battery life as it reduces intensive use of the flash. The SEL pin allows selection of high and low current values flowing on the White LEDs.

The two current values are set through external resistors R_{HC} and R_{LC} according to the following formula:

 $I_{LED(FLASH)} = 2100 * (V_{I} - V_{HC}) / R_{HC}$

 $I_{LED(TORCH)} = 2400 * (V_{I} - V_{LC}) / R_{LC}$

A High logic level on SHDN pin puts the device in strut down mode; if it is held at LOW the flash or torch mode is activated. When the SHDN rin is LOW the device provides the requested current in less than 200µs (see TURN O N Ti VE plot). This fast turn-on time makes the device suitable for single shoot and multiple shoot operation modes.

STCF01

Typical operating characteristics

7 Typical operating characteristics

 $(T_J = -40^{\circ}C \text{ to } 85^{\circ}C, V_I = 3.6V, C_I = 2.2\mu\text{F}, C_O = 4.7\mu\text{F}, L = 10\mu\text{H}, R_{LC} = 12k\Omega R_{HC} = 4k\Omega V_{OVP} = 8V$, Typ. values @ 25°C, unless otherwise specified).

Figure 4. Maximum output current vs input Figure 5. Maximum output current vs input voltage

51

Efficiency vs temperature

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

Typical operating characteristics

STCF01

5/

Figure 10. Feedback voltage vs temperature

Figure 12. V_I-V_{LC} vs temperature

Figure 11. Current feedback leakage vs temperature

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

STCF01

Typical operating characteristics

2.0ms/pt

Ch1 200mV Ch3 3.0V

V_{SEL}=GND, V_{SHDN}=GND

M 100ms 500S/s A Ch4 / 720mV

M 200ns 250MS/s A Ch2 / 292mA

Ch2 50.0mA Ω Ch4 1.0Y

V_{SEL}=GND, V_{SHDN}=pulse

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

Package mechanical data

STCF01

8 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK[®] packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s)

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

DFN10 (3x3) MECHANICAL DATA

STCF01

Package mechanical data

		mm.			mils		
DIWI.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.	
А	0.80	0.90	1.00	31.5	35.4	39.4	
A1		0.02	0.05		0.8	2.0	
A2		0.70			25.6		
A3		0.20			7.9	15	
b	0.18	0.23	0.30	7.1	9.1	11.8	
D		3.00			181		
D2	2.21	2.26	2.31	87.0	89.0	91.0	
Е		3.00		10to	118.1		
E2	1.29	1.34	1.39	50.8	52.8	54.8	
е		0.50	06.		19.7		
L	0.45	0.55	0.65	17.7	21.7	25.6	

Package mechanical data

STCF01

Tape & Reel QFNxx/DFNxx (3x3) MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.
А			330			12.992
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
Ν	60			2.362		
Т			18.4			C 794
Ao		3.3			0.130	C
Во		3.3			0.130	
Ко		1.1			0.043	
Po		4		×C	0.157	
Р		8		100	0.315	

STCF01

Revision history

9 Revision history

Table 5. Revision history

	Date	Revision	Changes
	10-Oct-2005	1	First release.
	28-Apr-2006	2	Maturity code has been changed.
	27-Jul-2006	3	Change value in table 2 P _{TOT} .
	18-Oct-2006	4	Text updates.
C	osolete bsolete	Prodi	Jot(s) - Obsolete Product(s) Jot(s) - Obsolete Product(s)

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

STCF01

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (SI") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property 'ign's's granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a way only covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein or considered as a way only covering the use in any manner whatsoever of such third party products or services or any intellectual property contained the service of the service of services or services or any intellectual property contained the service of the service of service of services or services or any intellectual property contained the service of service of services or services or any intellectual property contained the service of service of services or services or any intellectual property contained the service of service of service or service of service of service or service of service or services or any intellectual property contained the service of service or service or service or service of service or service or service or service of service of service or service of service or serv

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN VM: ING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WAN: ANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCT: OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROFER TO CRENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE VISED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warran'y granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2006 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

