Excellent Integrated System Limited Stocking Distributor Click to view price, real time Inventory, Delivery & Lifecycle Information: <u>Texas Instruments</u> <u>SN74AVCA406EZQSR</u> For any questions, you can email us directly: sales@integrated-circuit.com Datasheet of SN74AVCA406EZQSR - IC VOLT TRANSL SD MMC 24BGA Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com SN74AVCA406E www.ti.com SCES659E-OCTOBER 2007-REVISED JUNE 2009 ## MMC AND SD CARD VOLTAGE-TRANSLATION TRANSCEIVER #### **FEATURES** - Transceiver for Memory Card Interface [MultiMediaCard (MMC) and Secure Digital (SD) Compliant Products] - Configurable I/O Switching Levels With Dual-Supply Pins Operating Over Full 1.2-V to 3.6-V Power-Supply Range - Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II - ESD Protection - ±8-kV Contact Discharge - ±15-kV Air-Gap Discharge - EMI Filtering - Integrated Pullup and Pulldown Resistors on Card-Side I/Os per SD Specification - ZQS Package Has 100-kΩ Pullup Resistors Via WP and CD Pins #### **DESCRIPTION/ORDERING INFORMATION** The SN74AVCA406E is a transceiver for interfacing microprocessors with MultiMediaCards (MMCs) and secure digital (SD) cards. Two supply-voltage pins allow the A-port and B-port input switching thresholds to be configured separately. The A port is designed to track V_{CCA} , while the B port is designed to track V_{CCB} . V_{CCA} and V_{CCB} can accept any supply voltage from 1.2 V to 3.6 V. If either V_{CC} is switched off ($V_{CCA} = 0 \text{ V}$ and/or $V_{CCB} = 0 \text{ V}$), all outputs are placed in the high-impedance state to conserve power. The SN74AVCA406E enables system designers to easily interface low-voltage microprocessors to different memory cards operating at higher voltages. Memory card standards recommend high ESD protection for devices that connect directly to the external memory card. To meet this need, the SN74AVCA406E incorporates ±15-kV Air-Gap Discharge and ±8-kV Contact Discharge protection on the card side. The SN74AVCA406E is available in two 0.5-mm-pitch ball grid array (BGA) packages. The 20-ball package has dimensions of 3 mm × 2.5 mm, and the 24-ball package measures 3 mm × 3 mm. Memory cards are widely used in mobile phones, PDAs, digital cameras, personal media players, camcorders, set-top boxes, etc. Low static power consumption and small package size make the SN74AVCA406E an ideal choice for these applications. #### **ORDERING INFORMATION** | T _A | PACKAGE ⁽¹⁾⁽²⁾ | | ORDERABLE PART NUMBER | TOP-SIDE MARKING | |----------------|--|--------------|-----------------------|------------------| | | UFBGA – ZXY (Pb-Free) | Reel of 2500 | SN74AVCA406EZXYR | WM406E | | -40°C to 85°C | MicroStar Junior™ BGA – ZQS
(Pb-Free) | Reel of 2500 | SN74AVCA406EZQSR | WM406E | ⁽¹⁾ Package drawings, thermal data, and symbolization are available at www.ti.com/packaging. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. MicroStar Junior is a trademark of Texas Instruments. ⁽²⁾ For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com. Datasheet of SN74AVCA406EZQSR - IC VOLT TRANSL SD MMC 24BGA Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com #### SN74AVCA406E SCES659E-OCTOBER 2007-REVISED JUNE 2009 www.ti.com # TERMINAL ASSIGNMENTS (20-Ball ZXY Package) | | Α | В | С | D | |---|-----------|---------|------------|------------------| | 5 | V_{CCA} | CMD-dir | DAT0-dir | V _{CCB} | | 4 | DAT3A | DAT2A | DAT2B | DAT3B | | 3 | CLKA | GND | GND | CLKB | | 2 | DAT1A | DAT0A | CMDB | DAT0B | | 1 | CLK-f | CMDA | DAT123-dir | DAT1B | # TERMINAL ASSIGNMENTS (24-Ball ZQS Package) | | 1 | 2 | 3 | 4 | 5 | |---|-------|---------|------------|-----------|-------| | Α | DAT2A | CMD-dir | DAT0-dir | RSV | DAT2B | | В | DAT3A | | V_{CCA} | V_{CCB} | DAT3B | | С | CLKA | RSV | GND | GND | CLKB | | D | DAT0A | CMDA | CD | CMDB | DAT0B | | E | DAT1A | CLK-f | DAT123-dir | WP | DAT1B | #### REFERENCE DESIGN Figure 1. Interfacing With SD/SDIO Card Datasheet of SN74AVCA406EZQSR - IC VOLT TRANSL SD MMC 24BGA Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com #### SN74AVCA406E www.ti.com SCES659E-OCTOBER 2007-REVISED JUNE 2009 ### **PIN DESCRIPTION** | ZQS
BALL NO. | ZXY
BALL NO. | NAME | FUNCTION | TYPE | |-----------------|-----------------|------------------|---|--------| | A1 | B4 | DAT2A | Data bit 3 connected to host. Referenced to V _{CCA} . | I/O | | A2 | B5 | CMD-dir | Direction control for command bit (CMDA/CMDB) | Input | | A3 | C5 | DAT0-dir | Direction control for DAT0A/DAT0B | Input | | A4, C2 | - | RSV | Reserved (for possible future functionality). Leave unconnected. | | | A5 | C5 | DAT2B | Data bit 3 connected to memory card. Includes a 70-k Ω pullup resistor to V_{CCB} . | I/O | | B1 | A4 | DAT3A | Data bit 4 connected to host. Referenced to V _{CCA} . | I/O | | B2 | - | _ | Depopulated ball | | | В3 | A5 | V _{CCA} | A-port supply voltage. V _{CCA} powers all A-port I/Os and control inputs. | Power | | B4 | D5 | V _{CCB} | B-port supply voltage. V _{CCB} powers all B-port I/Os. | Power | | B5 | D4 | DAT3B | Data bit 4 connected to memory card. Includes a 470-k Ω pulldown resistor to V_{CCB} . | I/O | | C1 | A3 | CLKA | Clock signal connected to host. Referenced to V _{CCA} . | Input | | C3 | В3 | GND | Ground | | | C4 | C3 | GND | Ground | | | C5 | D3 | CLKB | Clock signal connected to memory card. Referenced to V _{CCB} . | Output | | D1 | B2 | DAT0A | Data bit 1 connected to host. Referenced to V _{CCA} . | I/O | | D2 | B1 | CMDA | Command bit connected to host. Referenced to V _{CCA} . | I/O | | D3 | _ | CD | Connected to card detect on the mechanical connector. CD has an internal 100-kΩ pullup resistor to V _{CCA} and this pin has ±10-kV Air-Gap Discharge and ±8-kV Contact Discharge ESD protection. | Output | | D4 | C2 | CMDB | Command bit connected to memory card. Includes a 15-k Ω pullup resistor to V_{CCB} . | I/O | | D5 | D2 | DAT0B | Data bit 1 connected to memory card. Includes a 70-kΩ pullup resistor to V _{CCB} . | I/O | | E1 | A2 | DAT1A | Data bit 2 connected to host. Referenced to V _{CCA} . | I/O | | E2 | A1 | CLK-f | Clock feedback to host for resynchronizing data. Used in OMAP processors. Leave unconnected if not used. | Output | | E3 | C1 | DAT123-dir | Direction control for DAT1A/B, DAT2A/B, and DAT3A/B | Input | | E4 | _ | WP | Connected to write protect on the mechanical connector. WP has an internal 100-k Ω pullup resistor to V _{CCA} and this pin has ±10-kV Air-Gap Discharge and ±8-kV Contact Discharge ESD protection. | Output | | E5 | D1 | DAT1B | Data bit 2 connected to memory card. Includes a 70-k Ω pullup resistor to V_{CCB} . | I/O | Datasheet of SN74AVCA406EZQSR - IC VOLT TRANSL SD MMC 24BGA Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com ## SN74AVCA406E SCES659E-OCTOBER 2007-REVISED JUNE 2009 www.ti.com #### **FUNCTION TABLES** | CONTROL INPUT | OUTPUT | OPERATION | | |---------------|---------|-----------|--------------| | CMD-dir | CMDA | CMDB | OPERATION | | High | Hi-Z | Enabled | CMDA to CMDB | | Low | Enabled | Hi-Z | CMDB to CMDA | | CONTROL INPUT | OUTPUT | FUNCTION | | |---------------|---------|----------|----------------| | DAT0-dir | DAT0A | DAT0B | FUNCTION | | High | Hi-Z | Enabled | DAT0A to DAT0B | | Low | Enabled | Hi-Z | DAT0B to DAT0A | | | OUTPUT | OUTPUT CIRCUITS | | | |-----------------------------|---------------------------|---------------------------|------------------------|--| | CONTROL INPUT
DAT123-dir | DAT1A,
DAT2A,
DAT3A | DAT1B,
DAT2B,
DAT3B | FUNCTION | | | | | DAT1A to DA | | | | High | Hi-Z | Enabled | Enabled DAT2A to DAT2B | | | | | | DAT3A to DAT3B | | | | | | DAT1B to DAT1A | | | Low | Enabled | Hi-Z DAT2B to DAT2A | | | | | | | DAT3B to DAT3A | | SN74AVCA406E www.ti.com SCES659E-OCTOBER 2007-REVISED JUNE 2009 #### **LOGIC DIAGRAM (POSITIVE LOGIC)** A. WP and CD pullup resistors are for the ZQS package only. Figure 2. Logic Diagram Datasheet of SN74AVCA406EZQSR - IC VOLT TRANSL SD MMC 24BGA Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com ## SN74AVCA406E SCES659E-OCTOBER 2007-REVISED JUNE 2009 www.ti.com #### **BLOCK DIAGRAM** Figure 3. ASIP Block Diagram | RESISTORS | | BIDIRECTIONAL | ZENER DIODES | |------------------------|--------|------------------|--------------| | R1, R2, R3, R4, R5, R6 | 40.0 | Vbr min. | 14 V at 1 mA | | K1, K2, K3, K4, K3, K0 | 40 Ω | Line capacitance | <20 pF | | Tolerance | ±20% | | | | R10, R11, R12 | 70 kΩ | | | | R9 | 15 kΩ | | | | R7 | 470 kΩ | | | | Tolerance | ±30% | | | | Resistors | | |------------------|--------| | R_{WP}, R_{CD} | 100 kΩ | | Tolerance | ±30% | Figure 4. WP, CD Pullup Resistors (for ZQS Package Only) Datasheet of SN74AVCA406EZQSR - IC VOLT TRANSL SD MMC 24BGA Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com SN74AVCA406E www.ti.com SCES659E-OCTOBER 2007-REVISED JUNE 2009 ## ABSOLUTE MAXIMUM RATINGS(1) over operating free-air temperature range (unless otherwise noted) | | | | MIN | MAX | UNIT | |------------------|---|--------------------|------|------------------------|------| | V _{CCA} | Supply voltage range | | -0.5 | 4.6 | V | | | | I/O ports (A port) | -0.5 | 4.6 | | | V_{I} | Input voltage range (2) Voltage range applied to any output in the high-impedance or power-off state (2) Voltage range applied to any output in the high or low state (2)(3) Input clamp current Output clamp current Continuous output current Continuous current through V _{CCA} , V _{CCB} , or GND | I/O ports (B port) | -0.5 | 4.6 | V | | | | Control inputs | -0.5 | 4.6 | | | V | Voltage range applied to any output | A port | -0.5 | 4.6 | V | | Vo | in the high-impedance or power-off state (2) | B port | -0.5 | 4.6 | V | | V | Voltage range continued to any output in the high or law state (2)(3) | A port | -0.5 | V _{CCA} + 0.5 | V | | Vo | voltage range applied to any output in the high or low state | B port | -0.5 | V _{CCB} + 0.5 | V | | I _{IK} | Input clamp current | V _I < 0 | | -50 | mA | | I _{OK} | Output clamp current | V _O < 0 | | -50 | mA | | Io | Continuous output current | | | ±50 | mA | | | Continuous current through V _{CCA} , V _{CCB} , or GND | | | ±100 | mA | | T _{stg} | Storage temperature range | | -65 | 150 | °C | ⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. #### PACKAGE THERMAL IMPEDANCE | | | | | UNIT | |-----|--|-------------|-------|--------| | 0 | θ_{JA} Package thermal impedance ⁽¹⁾ | ZQS package | 171.6 | °C /// | | θJA | | ZXY package | 193 | °C/W | (1) The package thermal impedance is calculated in accordance with JESD 51-7. The input voltage and output negative-voltage ratings may be exceeded if the input and output current ratings are observed. The output positive-voltage rating may be exceeded up to 4.6 V maximum if the output current rating is observed. Datasheet of SN74AVCA406EZQSR - IC VOLT TRANSL SD MMC 24BGA Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com ### SN74AVCA406E SCES659E-OCTOBER 2007-REVISED JUNE 2009 www.ti.com ## RECOMMENDED OPERATING CONDITIONS (1)(2)(3) | | | | V _{CCI} | V _{cco} | MIN | MAX | UNIT | |------------------|-------------------------------|---------------------------|------------------|------------------|-------------------------|-------------------------|------| | V_{CCA} | Supply voltage | | | | 1.2 | 3.6 | V | | V _{CCB} | Supply voltage | | | | 1.2 | 3.6 | V | | | | | 1.2 V to 1.95 V | | V _{CCI} x 0.65 | 3.6 | | | V_{IH} | High-level input voltage | All inputs ⁽⁴⁾ | 1.95 V to 2.7 V | | 1.7 | | V | | | | | 2.7 V to 3.6 V | | 2 | | | | | | | 1.2 V to 1.95 V | | | V _{CCI} x 0.35 | | | V_{IL} | Low-level input voltage | All inputs ⁽⁴⁾ | 1.95 V to 2.7 V | | | 0.7 | V | | | | | 2.7 V to 3.6 V | | | 0.8 | | | VI | Input voltage | Control inputs | | | 0 | 3.6 | V | | | | Active state | | | 0 | V _{cco} | | | $V_{I/O}$ | Input/output voltage | 3-state | | | 0 | | V | | | | | | 1.2 V | | -1 | | | | | | | 1.4 V to 1.6 V | | -1 | | | I _{OH} | High-level output current | (A port) | | 1.65 V to 1.95 V | | -2 | mA | | | | | | 2.3 V to 2.7 V | | -4 | | | | | | | 3 V to 3.6 V | | -8 | | | | | | | 1.2 V | | 1 | | | | | | | 1.4 V to 1.6 V | | 1 | | | I _{OL} | Low-level output current (| A port) | | 1.65 V to 1.95 V | | 2 | mA | | | | | | 2.3 V to 2.7 V | | 4 | | | | | | | 3 V to 3.6 V | | 8 | | | | | | | 1.2 V | | -1 | | | | | | | 1.4 V to 1.6 V | | -2 | | | I _{OH} | High-level output current | (B port) | | 1.65 V to 1.95 V | | -4 | mA | | | | | | 2.3 V to 2.7 V | | -8 | | | | | | | 3 V to 3.6 V | | -16 | | | | | | | 1.2 V | | 1 | | | | | | | 1.4 V to 1.6 V | | 2 | | | I _{OL} | Low-level output current (| B port) | | 1.65 V to 1.95 V | | 4 | mA | | | | | | 2.3 V to 2.7 V | | 8 | | | | | | | 3 V to 3.6 V | | 16 | | | Δt/Δν | Input transition rise or fall | rate | | | | 5 | ns/V | | T _A | Operating free-air temper | ature | | | -40 | 85 | °C | ⁽¹⁾ V_{CCI} is the V_{CC} associated with the input port. ⁽²⁾ V_{CCO} is the V_{CC} associated with the output port. ⁽³⁾ All unused data inputs of the device must be held at V_{CCI} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. ⁽⁴⁾ CMD-dir, DAT0-dir, and DAT123-dir are referenced to V_{CCA}. Datasheet of SN74AVCA406EZQSR - IC VOLT TRANSL SD MMC 24BGA Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com SN74AVCA406E www.ti.com SCES659E-OCTOBER 2007-REVISED JUNE 2009 ### **ELECTRICAL CHARACTERISTICS** over recommended operating free-air temperature range (unless otherwise noted) $^{(1)(2)}$ | PA | RAMETER | TEST CON | DITIONS | V _{CCA} | V _{CCB} | MIN | TYP ⁽³⁾ | MAX | UNIT | |--------------------------------|------------------|---|--|------------------|------------------|------------------------|--------------------|------|------| | | | $I_{OH} = -100 \mu A$ | | 1.2 V to 3.6 V | 1.2 V to 3.6 V | V _{CCO} - 0.2 | | | | | | | $I_{OH} = -1 \text{ mA}$ | | 1.2 V | 1.2 V | | 0.9 | | | | ., | At | $I_{OH} = -1 \text{ mA}$ | | 1.4 V | 1.4 V | 1.05 | | | | | V _{OH} | A port | $I_{OH} = -2 \text{ mA}$ | $V_I = V_{IH}$ | 1.65 V | 1.65 V | 1.2 | | | V | | | | $I_{OH} = -4 \text{ mA}$ | | 2.3 V | 2.3 V | 1.75 | | | | | | | $I_{OH} = -8 \text{ mA}$ | | 3 V | 3 V | 2.3 | | | | | | | I _{OL} = 100 μA | | 1.2 V to 3.6 V | 1.2 V to 3.6 V | | | 0.2 | | | | | I _{OL} = 1 mA | | 1.2 V | 1.2 V | | 0.1 | | | | . , | A | I _{OL} = 1 mA | ., ., | 1.4 V | 1.4 V | | | 0.35 | | | V_{OL} | A port | I _{OL} = 2 mA | $V_I = V_{IL}$ | 1.65 V | 1.65 V | | | 0.45 | V | | | | I _{OL} = 4 mA | | 2.3 V | 2.3 V | | | 0.55 | | | | | I _{OL} = 8 mA | | 3 V | 3 V | | | 0.7 | | | | | $I_{OH} = -100 \mu A$ | | 1.2 V to 3.6 V | 1.2 V to 3.6 V | V _{CCO} - 0.2 | | | | | | | $I_{OH} = -1 \text{ mA}$ | | 1.2 V | 1.2 V | | 1.1 | | | | | | $I_{OH} = -2 \text{ mA}$ | | 1.4 V | 1.4 V | 1.05 | | | | | Voн | B port | $I_{OH} = -4 \text{ mA}$ | $V_I = V_{IH}$ | 1.65 V | 1.65 V | 1.2 | | | V | | | | $I_{OH} = -8 \text{ mA}$ | | 2.3 V | 2.3 V | 1.75 | | | | | | | I _{OH} = -16 mA | | 3 V | 3 V | 2.1 | | | | | | | I _{OL} = 100 μA | | 1.2 V to 3.6 V | 1.2 V to 3.6 V | | | 0.2 | | | | | I _{OL} = 1 mA | | 1.2 V | 1.2 V | | 0.07 | | | | | | I _{OL} = 2 mA | | 1.4 V | 1.4 V | | | 0.35 | | | V _{OL} | B port | I _{OL} = 4 mA | $V_I = V_{IL}$ | 1.65 V | 1.65 V | | | 0.45 | V | | | | $I_{OL} = 8 \text{ mA}$ | | 2.3 V | 2.3 V | | | 0.55 | | | | | I _{OL} = 16 mA | | 3 V | 3 V | | | 0.79 | | | lı | Control inputs | V _I = V _{CCA} or GND | 1 | 1.2 V to 3.6 V | 1.2 V to 3.6 V | | | ±1 | μΑ | | I _{OZ} ⁽⁴⁾ | A or B port | $V_O = V_{CCO}$ or GND,
$V_I = V_{CCI}$ or GND | See function
table for input
states when
outputs are Hi Z | 3.6 V | 3.6 V | | | ±5 | μΑ | | | | | | 1.2 V to 3.6 V | 1.2 V to 3.6 V | | | 10 | | | CCA | | $V_I = V_{CCI}$ or GND, | $I_O = 0$ | 3.6 V | 0 V | | | 10 | μΑ | | | | | | 0 V | 3.6 V | | | -1 | | | | | | | 1.2 V to 3.6 V | 1.2 V to 3.6 V | | | 10 | | | ССВ | | $V_I = V_{CCI}$ or GND, | I _O = 0 | 3.6 V | 0 V | | | -1 | μΑ | | | | | | 0 V | 3.6 V | | | 10 | | | CCA + | I _{CCB} | $V_I = V_{CCI}$ or GND, | I _O = 0 | 1.2 V to 3.6 V | 1.2 V to 3.6 V | | | 15 | μΑ | | C _i | Control inputs | V _I = V _{CCA} or GND | | 1.8 V | 3 V | | 1.5 | 2 | pF | | ~ | Clock input | I - VOCA OF SIND | | 1.5 v | | | 1.5 | 2 | P' | | _ | A port | V _O = V _{CCA} or GND | | | _ | | 2.5 | 3.5 | | | C_{io} | B port | $V_O = V_{CCB}$ or GND | | 1.8 V | 3 V | | 12 | 14 | pF | ⁽²⁾ (3) (4) V_{CCO} is the V_{CC} associated with the output port. V_{CCI} is the V_{CC} associated with the data input port. All typical values are at T_A = 25°C. For I/O ports, the parameter I_{OZ} includes the input leakage current. Datasheet of SN74AVCA406EZQSR - IC VOLT TRANSL SD MMC 24BGA Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com #### SN74AVCA406E SCES659E-OCTOBER 2007-REVISED JUNE 2009 www.ti.com #### **OUTPUT SLEW RATES** over recommended operating free-air temperature range (unless otherwise noted)(1) | PARAMETER | FROM | то | $V_{CCA} = 1.8 \text{ V} \pm 0.15$
$V_{CCB} = 3 \text{ V} \pm 0.3 \text{ V}$ | V,
UNIT | |----------------|------|-----|---|------------| | | | | MIN M | ΑX | | t _r | 20% | 80% | 2.7 | (2) ns | | t _f | 80% | 20% | 2.5 | (2) ns | - (1) Values are characterized, but not production tested. - (2) Using $C_L = 30$ pF on the B side and $C_L = 7$ pF on the A side #### TYPICAL SWITCHING CHARACTERISTICS $T_A = 25$ °C, $V_{CCA} = 1.2$ V (see Figure 6) | PARAMETER | FROM | TO (OUTPUT) | V _{CCB} = 1.2 V | V _{CCB} = 1.5 V | V _{CCB} = 1.8 V | V _{CCB} = 2.5 V | V _{CCB} = 3 V | UNIT | |---------------------------------|---------|-------------|--------------------------|--------------------------|--------------------------|--------------------------|------------------------|------| | | (INPUT) | (OUTPUT) | TYP | TYP | TYP | TYP | TYP | | | | Α | В | 4.9 | 4 | 3.5 | 3.2 | 3.2 | | | | В | A | 5.3 | 4.3 | 4.1 | 3.9 | 3.9 | | | | OLIVA. | CLKB | 5.1 | 4 | 3.5 | 3.1 | 3.1 | 1 | | t _{pd} | CLKA | CLK-f | 10.3 | 8.9 | 7.7 | 7.7 | 7.7 | ns | | | CMDA | CMDB | 4.9 | 4 | 3.5 | 3.2 | 3.2 | | | | CMDB | CMDA | 4.8 | 4.4 | 4.2 | 4 | 4 | | | t _{en} ⁽¹⁾ | DIR | А | 5.3 | 5.4 | 5.2 | 6 | 5.9 | ns | | t _{dis} ⁽¹⁾ | DIR | А | 5.5 | 5.4 | 5.5 | 5.6 | 5.5 | ns | ⁽¹⁾ DIR refers to CMD-dir, DAT0-dir, and DAT123-dir. #### **SWITCHING CHARACTERISTICS** $V_{CCA} = 1.5 V \pm 0.1 V$ over recommended operating free-air temperature range (see Figure 6) | PARAMETER | FROM | TO
(OUTPUT) | (INPUT) (OUTPUT) | | | V _{CCB} = 1.8 V
± 0.15 V | | V _{CCB} = 2.5 V
± 0.2 V | | V _{CCB} = 3 V
± 0.3 V | | V _{CCB} = 3.3 V
± 0.3 V | | UNIT | |---------------------------------|---------|----------------|------------------|------|-----|--------------------------------------|------|-------------------------------------|------|-----------------------------------|------|-------------------------------------|-----|------| | | (INFUI) | (OUTPUT) | MIN | MAX | | | | | Α | В | 1.2 | 7.2 | 0.8 | 6.3 | 0.8 | 5.4 | 0.9 | 5.1 | 0.9 | 5.1 | | | | | В | Α | 1.1 | 6.2 | 1 | 7.2 | 0.93 | 6.6 | 0.45 | 7 | 0.45 | 7 | | | | + | CLKA | CLKB | 1.4 | 7.1 | 1.1 | 6.2 | 0.8 | 5.3 | 0.7 | 5.1 | 0.7 | 5.1 | ns | | | t _{pd} | CLINA | CLK-f | 1.1 | 12.7 | 1.3 | 13.3 | 1.3 | 10.6 | 1.9 | 10.9 | 1.9 | 10.9 | 115 | | | | CMDA | CMDB | 1.1 | 6 | 0.9 | 5.6 | 0.7 | 4.7 | 0.6 | 4.1 | 0.6 | 4.1 | | | | | CMDB | CMDA | 0.8 | 5.9 | 0.8 | 6.8 | 0.8 | 6.4 | 0.1 | 6.7 | 0.1 | 6.7 | | | | t _{en} ⁽¹⁾ | DIR | Α | 1.0 | 9.1 | 1.1 | 10.3 | 1.1 | 8.7 | 1.1 | 11 | 1.1 | 11 | ns | | | t _{dis} ⁽¹⁾ | DIR | А | 1.1 | 8.1 | 1.1 | 8.3 | 1.1 | 8.3 | 1.1 | 8.3 | 1.1 | 8.3 | ns | | (1) DIR refers to CMD-dir, DAT0-dir, and DAT123-dir. Datasheet of SN74AVCA406EZQSR - IC VOLT TRANSL SD MMC 24BGA Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com SN74AVCA406E www.ti.com SCES659E-OCTOBER 2007-REVISED JUNE 2009 ## **SWITCHING CHARACTERISTICS** $V_{CCA} = 1.8 V \pm 0.15 V$ over recommended operating free-air temperature range (see Figure 6) | PARAMETER | FROM
(INPUT) | TO
(OUTPUT) | V _{CCB} = ± 0.15 | | V _{CCB} = ± 0.2 | | V _{CCB} = ± 0.3 | | V _{CCB} = 3
± 0.3 | | UNIT | |---------------------------------|-----------------|----------------|---------------------------|-----|--------------------------|-----|--------------------------|-----|-------------------------------|-----|------| | | (INFUT) | (001F01) | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX | | | | Α | В | 0.7 | 5.8 | 0.6 | 4.9 | 0.5 | 4.7 | 0.5 | 4.7 | | | | В | Α | 0.7 | 4.9 | 0.7 | 4.5 | 0.2 | 5.2 | 0.2 | 5.2 | | | | CLKA | CLKB | 0.9 | 5.8 | 0.6 | 4.9 | 0.6 | 4.7 | 0.6 | 4.7 | 20 | | t _{pd} | CLNA | CLK-f | 0.9 | 11 | 0.9 | 9.2 | 0.8 | 8.8 | 0.8 | 8.8 | ns | | | CMDA | CMDB | 0.7 | 4.3 | 0.5 | 4.1 | 0.5 | 3.4 | 0.5 | 3.4 | | | | CMDB | CMDA | 0.7 | 4.6 | 0.8 | 4.2 | 0.1 | 5 | 0.1 | 5 | | | t _{en} ⁽¹⁾ | DIR | Α | 0.7 | 7.2 | 0.7 | 6.6 | 0.7 | 7.8 | 0.7 | 7.8 | ns | | t _{dis} ⁽¹⁾ | DIR | Α | 1.0 | 7.9 | 1 | 7.7 | 1 | 8.2 | 1 | 8.2 | ns | ⁽¹⁾ DIR refers to CMD-dir, DAT0-dir, and DAT123-dir. ## SWITCHING CHARACTERISTICS $V_{CCA} = 2.5 V \pm 0.2 V$ over recommended operating free-air temperature range(see Figure 6) | PARAMETER | FROM | TO (OUTPUT) | V _{CCB} = 2
± 0.2 | | V _{CCB} = ± 0.3 | | V _{CCB} = 3
± 0.3 | .3 V
V | UNIT | |--------------------------------|---------|-------------|-------------------------------|-----|--------------------------|-----|-------------------------------|-----------|------| | | (INPUT) | (OUTPUT) | MIN | MAX | MIN | MAX | MIN | MAX | | | | А | В | 0.5 | 4.3 | 0.4 | 4.1 | 0.4 | 4.1 | | | | В | Α | 0.5 | 3.5 | 0.2 | 3.7 | 0.2 | 3.7 | | | | OLIVA. | CLKB | 0.5 | 4.3 | 0.4 | 4.1 | 0.4 | 4.1 | | | t _{pd} | CLKA | CLK-f | 0.4 | 7.8 | 0.3 | 7.3 | 0.3 | 7.3 | ns | | | CMDA | CMDB | 0.3 | 3 | 0.3 | 2.7 | 0.3 | 2.7 | | | | CMDB | CMDA | 0.7 | 3 | 0.2 | 3.4 | 0.2 | 3.4 | | | t _{en} ⁽¹⁾ | DIR | А | 0.5 | 5.1 | 0.5 | 5.6 | 0.5 | 5.6 | ns | | t _{dis} (1) | DIR | Α | 0.7 | 5.7 | 0.7 | 6.7 | 0.7 | 6.7 | ns | ⁽¹⁾ DIR refers to CMD-dir, DAT0-dir, and DAT123-dir. ## **SWITCHING CHARACTERISTICS** $V_{CCA} = 3.3 V \pm 0.3 V$ over recommended operating free-air temperature range (see Figure 6) | PARAMETER | FROM | TO (OUTBUT) | V _{CCB} = 3
± 0.3 V | | V _{CCB} = 3.3
± 0 .3 V | s V | UNIT | |---------------------------------|---------|-------------|---------------------------------|-----|---|-----|------| | | (INPUT) | (OUTPUT) | MIN | MAX | MIN | MAX | | | | A | В | 0.3 | 3.8 | 0.3 | 3.8 | | | | В | Α | 0.3 | 3 | 0.3 | 3 | | | | CLKA | CLKB | 0.3 | 3.8 | 0.3 | 3.8 | | | t _{pd} | CLKA | CLK-f | 0.1 | 6.7 | 0.1 | 6.7 | ns | | | CMDA | CMDB | 0.2 | 2.5 | 0.2 | 2.5 | | | | CMDB | CMDA | 0.4 | 2.6 | 0.4 | 2.6 | | | t _{en} ⁽¹⁾ | DIR | Α | 0.3 | 4.5 | 0.3 | 4.5 | ns | | t _{dis} ⁽¹⁾ | DIR | А | 0.9 | 7.9 | 0.9 | 7.9 | ns | ⁽¹⁾ DIR refers to CMD-dir, DAT0-dir, and DAT123-dir. Datasheet of SN74AVCA406EZQSR - IC VOLT TRANSL SD MMC 24BGA Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com # SN74AVCA406E SCES659E-OCTOBER 2007-REVISED JUNE 2009 www.ti.com #### TYPICAL FREQUENCY AND OUTPUT SKEW $T_A = 25$ °C, $V_{CCA} = 1.2$ V (see Figure 6) | PAI | RAMETER | FROM
(INPUT | TO
(OUTPUT) | V _{CCB} = 1.2 V | V _{CCB} = 1.5
V | V _{CCB} = 1.8 V | V _{CCB} = 2.5
V | V _{CCB} = 3 V | V _{CCB} = 3.3 | UNIT | |--------------------|------------------------|----------------|----------------|--------------------------|-----------------------------|--------------------------|-----------------------------|------------------------|------------------------|-------| | | |) | (001701) | TYP | TYP | TYP | TYP | TYP | TYP | | | | Clock | CLKA | CLKB | 95 | 95 | 95 | 95 | 95 | 95 | | | | CIOCK | CLKA | CLK-f | 95 | 95 | 95 | 95 | 95 | 95 | MHz | | ^L max | Data | Α | В | 95 | 95 | 95 | 95 | 95 | 95 | IVITZ | | | Data | В | Α | 95 | 95 | 95 | 95 | 95 | 95 | | | t _{sk(o)} | Channel-to-
channel | А | В | 0.1 | 0.1 | 0.1 | 0.3 | 0.2 | | ns | ## **MAXIMUM FREQUENCY AND OUTPUT SKEW** $V_{CCA} = 1.5 V \pm 0.1 V$ over recommended operating free-air temperature range (see Figure 6) | PA | RAMETER | FROM | TO | V _{CCB} = ± 0.1 | | V _{CCB} = ± 0.1 | | V _{CCB} = ± 0.2 | | V _{CCB} = ± 0.3 | | V _{CCB} = ± 0.3 | | UNIT | |--------------------|------------------------|---------|----------|--------------------------|-----|--------------------------|-----|--------------------------|-----|--------------------------|-----|--------------------------|-----|-------| | | | (INPUT) | (OUTPUT) | MIN | MAX | | | | Clock | CLKA | CLKB | 95 | | 95 | | 95 | | 95 | | 95 | | | | £ | CIOCK | CLKA | CLK-f | 95 | | 95 | | 95 | | 95 | | 95 | | MHz | | Imax | Data | Α | В | 95 | | 95 | | 95 | | 95 | | 95 | | IVI⊓∠ | | | Dala | В | А | 95 | | 95 | | 95 | | 95 | | 95 | | | | t _{sk(o)} | Channel-to-
channel | Α | В | | 0.1 | | 0.1 | | 0.1 | | 0.1 | | | ns | ## MAXIMUM FREQUENCY AND OUTPUT SKEW $V_{CCA} = 1.8 \text{ V} \pm 0.15 \text{ V}$ over recommended operating free-air temperature range (see Figure 6) | PA | ARAMETER | FROM
(INPUT) | TO (OUTBUT) | V _{CCB} = 7
± 0.15 | 1.8 V
5 V | V _{CCB} = 2
± 0.2 | 2.5 V
V | V _{CCB} = ± 0.3 | 3 V
V | V _{CCB} = 3
± 0.3 | 3.3 V
V | UNIT | |--------------------|------------------------|-----------------|-------------|--------------------------------|--------------|-------------------------------|------------|--------------------------|----------|-------------------------------|------------|--------| | | | (INFOT) | (OUTPUT) | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX | | | | Clock | CLIVA | CLKB | 95 | | 95 | | 95 | | 95 | | | | | Clock | CLKA | CLK-f | 95 | | 95 | | 95 | | 95 | | NAL 1- | | t _{max} | D-4- | А | В | 95 | | 95 | | 95 | | 95 | | MHz | | | Data | В | Α | 95 | | 95 | | 95 | | 95 | | | | t _{sk(o)} | Channel-to-
channel | А | В | | 0.1 | | 0.2 | | 0.2 | | | ns | Product Folder Link(s): SN74AVCA406E Submit Documentation Feedback Copyright © 2007-2009, Texas Instruments Incorporated 12 www.ti.com ## **Distributor of Texas Instruments: Excellent Integrated System Limited** Datasheet of SN74AVCA406EZQSR - IC VOLT TRANSL SD MMC 24BGA Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com SN74AVCA406E SCES659E-OCTOBER 2007-REVISED JUNE 2009 # MAXIMUM FREQUENCY AND OUTPUT SKEW $V_{\text{CCA}} = 2.5 \text{ V} \pm 0.2 \text{ V}$ over recommended operating free-air temperature range (see Figure 6) | ı | PARAMETER | FROM | TO (OUTBUT) | V _{CCB} = 2.
± 0.2 \ | 5 V
/ | V _{CCB} = ± 0.3 | 3 V
V | V _{CCB} = 3
± 0.3 \ | .3 V
/ | UNIT | |--------------------|------------------------|---------|-------------|----------------------------------|----------|--------------------------|----------|---------------------------------|-----------|-------| | | | (INPUT) | (OUTPUT) | MIN | MAX | MIN | MAX | MIN | MAX | | | | Clask | CLKA | CLKB | 95 | | 95 | | 95 | | | | | Clock | CLKA | CLK-f | 95 | | 95 | | 95 | | MHz | | t _{max} | Data | Α | В | 95 | | 95 | | 95 | | IVI□Z | | | Data | В | А | 95 | | 95 | | 95 | | | | t _{sk(o)} | Channel-to-
channel | А | В | | 0.1 | | 0.3 | | 0.3 | ns | # MAXIMUM FREQUENCY AND OUTPUT SKEW $V_{\text{CCA}} = 3.3 \text{ V} \pm 0.3 \text{ V}$ over recommended operating free-air temperature range (see Figure 6) | ı | PARAMETER | FROM | TO (OUTPUT) | V _{CCB} = 3 \
± 0.3 V | / | V _{CCB} = 3.3
± 0.3 V | 3 V | UNIT | |--------------------|------------------------|---------|-------------|-----------------------------------|-----|-----------------------------------|-----|------| | | | (INPUT) | (OUTPUT) | MIN | MAX | MIN | MAX | | | | Clock | CLIVA | CLKB | 95 | | 95 | | | | | CIOCK | CLKA | CLK-f | 95 | | 95 | | MII- | | t _{max} | Data | Α | В | 95 | | 95 | | MHz | | | Data | В | А | 95 | | 95 | | | | t _{sk(o)} | Channel-to-
channel | А | В | | 0.3 | | | ns | ### **OPERATING CHARACTERISTICS** $T_A = 25^{\circ}C$ | PARAMETER | | TEST
CONDITIONS | V _{CCA} = V _{CCB} = 1.2 V | V _{CCA} = V _{CCB} = 1.5 V | V _{CCA} = V _{CCB} = 1.8 V | $V_{CCA} = V_{CCB} = 2.5 V$ | $V_{CCA} = V_{CCB} = 3 V$ | V _{CCA} = V _{CCB} = 3.3 V | UNIT | |---------------------------------|--------------------------------------|--|---|---|---|-----------------------------|---------------------------|---|----------------| | C _{pdA} ⁽¹⁾ | A-port
input,
B-port
output | C _L = 0,
f = 10 MHz, | 4.5 | 4.7 | 4.9 | 5.5 | 6 | 6.4 | pF | | | B-port
input,
A-port
output | $t_r = t_f = 1 \text{ ns}$ | 8 | 8.3 | 8.5 | 9.1 | 9.5 | 9.7 | P ₁ | | G (1) | A-port
input,
B-port
output | $C_L = 0$, | 27.9 | 27.8 | 27.7 | 27.6 | 27.6 | 27.5 | , F | | C _{pdB} ⁽¹⁾ | B-port
input,
A-port
output | $f = 10 \text{ MHz},$ $t_r = t_f = 1 \text{ ns}$ | 2.6 | 2.5 | 2.4 | 2.3 | 1.8 | 1.8 | pF | (1) Power dissipation capacitance per transceiver Datasheet of SN74AVCA406EZQSR - IC VOLT TRANSL SD MMC 24BGA Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com ### SN74AVCA406E SCES659E-OCTOBER 2007-REVISED JUNE 2009 www.ti.com Figure 5. Typical ASIP EMI Filter Frequency Response 14 Product Folder Link(s): SN74AVCA406E Datasheet of SN74AVCA406EZQSR - IC VOLT TRANSL SD MMC 24BGA Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com SN74AVCA406E www.ti.com SCES659E-OCTOBER 2007-REVISED JUNE 2009 #### PARAMETER MEASUREMENT INFORMATION | TEST | S1 | |------------------------------------|--------------------| | t _{pd} | Open | | t _{PLZ} /t _{PZL} | $2 \times V_{CCO}$ | | t _{PHZ} /t _{PZH} | GND | | V _{CCO} | CL | R _L | V _{TP} | |--------------------|-------|----------------|-----------------| | 1.5 V ± 0.1 V | 15 pF | 2 k Ω | 0.1 V | | 1.8 V \pm 0.15 V | 15 pF | 2 k Ω | 0.15 V | | 2.5 V \pm 0.2 V | 15 pF | 2 k Ω | 0.15 V | | 3.3 V \pm 0.3 V | 15 pF | 2 k Ω | 0.3 V | NOTES: A. C_L includes probe and jig capacitance. - B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $dv/dt \geq 1 V/ns$. - D. The outputs are measured one at a time, with one transition per measurement. - E. t_{PLZ} and t_{PHZ} are the same as t_{dis} . - F. t_{PZL} and t_{PZH} are the same as t_{en} . - G. t_{PLH} and t_{PHL} are the same as t_{pd} . - H. V_{CCI} is the V_{CC} associated with the input port. - I. V_{CCO} is the V_{CC} associated with the output port. Figure 6. Load Circuit and Voltage Waveforms Datasheet of SN74AVCA406EZQSR - IC VOLT TRANSL SD MMC 24BGA Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com PACKAGE OPTION ADDENDUM 20-May-2013 #### PACKAGING INFORMATION | Orderable Device | Status | Package Type | Package
Drawing | Pins | - | | Lead/Ball Finish | MSL Peak Temp | Op Temp (°C) | Device Marking | Samples | |------------------|--------|----------------------------|--------------------|------|------|----------------------------|------------------|--------------------|--------------|----------------|---------| | | (1) | | Drawing | | Qty | (2) | | (3) | | (4/5) | | | SN74AVCA406EZQSR | ACTIVE | BGA
MICROSTAR
JUNIOR | ZQS | 24 | 2500 | Green (RoHS
& no Sb/Br) | SNAGCU | Level-1-260C-UNLIM | -40 to 85 | WM406E | Samples | | SN74AVCA406EZXYR | ACTIVE | BGA
MICROSTAR
JUNIOR | ZXY | 20 | 2500 | Green (RoHS
& no Sb/Br) | SNAGCU | Level-1-260C-UNLIM | -40 to 85 | WM406E | Samples | ⁽¹⁾ The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. **TBD:** The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): Tl's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis Addendum-Page 1 Datasheet of SN74AVCA406EZQSR - IC VOLT TRANSL SD MMC 24BGA Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com PACKAGE OPTION ADDENDUM 20-May-2013 Addendum-Page 2 Datasheet of SN74AVCA406EZQSR - IC VOLT TRANSL SD MMC 24BGA Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com ## PACKAGE MATERIALS INFORMATION www.ti.com 5-Feb-2013 #### TAPE AND REEL INFORMATION | | | | | component width | |--|--|--|--|-----------------| | | | | | | B0 Dimension designed to accommodate the component length #### **QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE** #### *All dimensions are nominal | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |------------------|----------------------------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | SN74AVCA406EZQSR | BGA MI
CROSTA
R JUNI
OR | ZQS | 24 | 2500 | 330.0 | 12.4 | 3.3 | 3.3 | 1.6 | 8.0 | 12.0 | Q1 | | SN74AVCA406EZXYR | BGA MI
CROSTA
R JUNI
OR | ZXY | 20 | 2500 | 330.0 | 12.4 | 2.8 | 3.3 | 1.0 | 4.0 | 12.0 | Q2 | K0 Dimension designed to accommodate the component thickness W Overall width of the carrier tape P1 Pitch between successive cavity centers Datasheet of SN74AVCA406EZQSR - IC VOLT TRANSL SD MMC 24BGA Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com ## **PACKAGE MATERIALS INFORMATION** www.ti.com 5-Feb-2013 #### *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |------------------|-------------------------|-----------------|------|------|-------------|------------|-------------| | SN74AVCA406EZQSR | BGA MICROSTAR
JUNIOR | ZQS | 24 | 2500 | 338.1 | 338.1 | 20.6 | | SN74AVCA406EZXYR | BGA MICROSTAR
JUNIOR | ZXY | 20 | 2500 | 338.1 | 338.1 | 20.6 | ## **MECHANICAL DATA** # ZQS (S-PBGA-N24) ## PLASTIC BALL GRID ARRAY NOTES: - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Falls within JEDEC MO-225 - D. This package is lead-free. ## **MECHANICAL DATA** # ZXY (S-PBGA-N20) ## PLASTIC BALL GRID ARRAY NOTES: - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. This package is a lead-free solder ball design. # **Distributor of Texas Instruments: Excellent Integrated System Limited**Datasheet of SN74AVCA406EZQSR - IC VOLT TRANSL SD MMC 24BGA Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com #### **IMPORTANT NOTICE** Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications www.ti.com/audio Audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Computers and Peripherals **Data Converters** dataconverter.ti.com www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy www.ti.com/clocks Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt Space, Avionics and Defense <u>www.ti.com/space-avionics-defense</u> Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID <u>www.ti-rfid.com</u> OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated