Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Texas Instruments
TLC277CPS

For any questions, you can email us directly: sales@integrated-circuit.com

Datasheet of TLC277CPS - IC OPAMP GP 2.2MHZ 8SO

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

TLC272, TLC272A, TLC272B, TLC272Y, TLC277 LinCMOS™ PRECISION DUAL OPERATIONAL AMPLIFIERS

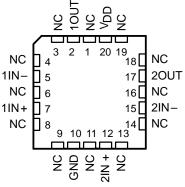
10UT

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

Trimmed Offset Voltage:

TLC277 . . . 500 μ V Max at 25°C,

- Input Offset Voltage Drift . . . Typically 0.1 μV/Month, Including the First 30 Days
- Wide Range of Supply Voltages Over **Specified Temperature Range:**


 0° C to 70° C . . . 3 V to 16 V -40°C to 85°C . . . 4 V to 16 V -55°C to 125°C . . . 4 V to 16 V

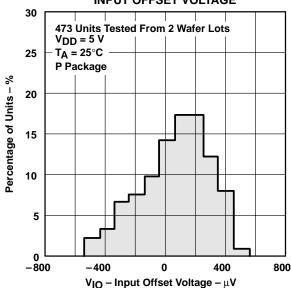
- **Single-Supply Operation**
- Common-Mode Input Voltage Range Extends Below the Negative Rail (C-Suffix, I-Suffix types)
- Low Noise . . . Typically 25 nV/√Hz at f = 1 kHz
- **Output Voltage Range Includes Negative**
- High Input impedance . . . $10^{12} \Omega$ Typ
- **ESD-Protection Circuitry**
- **Small-Outline Package Option Also** Available in Tape and Reel
- **Designed-In Latch-Up Immunity**

8 DVDD 1IN- [7 1 20UT 2 1IN+ [6 **∏** 2IN− 3 GND 5 1 2IN+ **FK PACKAGE** (TOP VIEW)

D, JG, P, OR PW PACKAGE

(TOP VIEW)

NC - No internal connection


description

The TLC272 and TLC277 precision dual operational amplifiers combine a wide range of input offset voltage grades with low offset voltage drift, high input impedance, low noise, and speeds approaching those of general-purpose BiFET devices.

These devices use Texas Instruments silicongate LinCMOS™ technology, which provides offset voltage stability far exceeding the stability available with conventional metal-gate processes.

The extremely high input impedance, low bias currents, and high slew rates make these costeffective devices ideal for applications previously reserved for BiFET and NFET products. Four offset voltage grades are available (C-suffix and I-suffix types), ranging from the low-cost TLC272 (10 mV) to the high-precision TLC277 (500 μ V). These advantages, in combination with good common-mode rejection and supply voltage rejection, make these devices a good choice for new state-of-the-art designs as well as for upgrading existing designs.

DISTRIBUTION OF TLC277 INPUT OFFSET VOLTAGE

LinCMOS is a trademark of Texas Instruments.

NSTRUMENTS

Datasheet of TLC277CPS - IC OPAMP GP 2.2MHZ 8SO

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

TLC272, TLC272A, TLC272B, TLC272Y, TLC277 LinCMOS™ PRECISION DUAL OPERATIONAL AMPLIFIERS

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

description (continued)

AVAILABLE OPTIONS

			PAC	KAGED DEVI	CES		CUID
TA	V _{IO} max AT 25°C	SMALL OUTLINE (D)	CHIP CARRIER (FK)	CERAMIC DIP (JG)	PLASTIC DIP (P)	TSSOP (PW)	CHIP FORM (Y)
0°C to 70°c	500 μV 2 mV 5 mV	TLC277CD TLC272BCD TLC272ACD	_ _ _	_ _ _	TLC277CP TLC272BCP TLC272ACP	_ _ _	_ _ _
	10mV	TLC272CD	_	_	TLC272CP	TLC272CPW	TLC272Y
-40°C to 85°C	500 μV 2 mV	TLC277ID TLC272BID		_	TLC277IP TLC272BIP		_
-40°C 10 85°C	5 mV 10 mV	TLC272AID TLC272ID	_ _	_ _	TLC272AIP TLC272IP		_ _

The D package is available taped and reeled. Add R suffix to the device type (e.g., TLC277CDR).

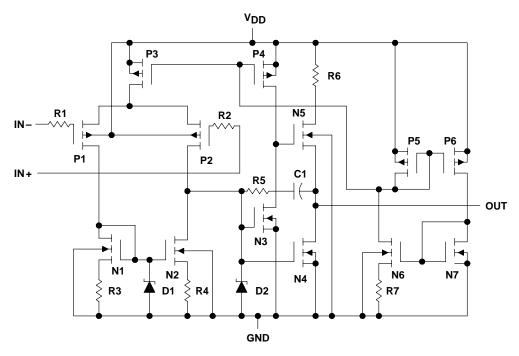
In general, many features associated with bipolar technology are available on LinCMOS™ operational amplifiers without the power penalties of bipolar technology. General applications such as transducer interfacing, analog calculations, amplifier blocks, active filters, and signal buffering are easily designed with the TLC272 and TLC277. The devices also exhibit low voltage single-supply operation, making them ideally suited for remote and inaccessible battery-powered applications. The common-mode input voltage range includes the negative rail.

A wide range of packaging options is available, including small-outline and chip carrier versions for high-density system applications.

The device inputs and outputs are designed to withstand -100-mA surge currents without sustaining latch-up.

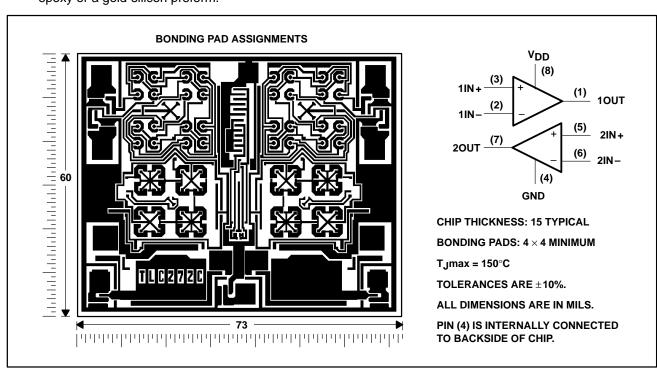
The TLC272 and TLC277 incorporate internal ESD-protection circuits that prevent functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2; however, care should be exercised in handling these devices as exposure to ESD may result in the degradation of the device parametric performance.

The C-suffix devices are characterized for operation from 0° C to 70° C. The I-suffix devices are characterized for operation from -40° C to 85° C. The M-suffix devices are characterized for operation over the full military temperature range of -55° C to 125° C.


Datasheet of TLC277CPS - IC OPAMP GP 2.2MHZ 8SO

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

TLC272, TLC272A, TLC272B, TLC272Y, TLC277 LinCMOS™ PRECISION DUAL OPERATIONAL AMPLIFIERS


SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

equivalent schematic (each amplifier)

TLC272Y chip information

This chip, when properly assembled, displays characteristics similar to the TLC272C. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform.

Datasheet of TLC277CPS - IC OPAMP GP 2.2MHZ 8SO

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

TLC272, TLC272A, TLC272B, TLC272Y, TLC277 LinCMOS™ PRECISION DUAL OPERATIONAL AMPLIFIERS

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage, V _{DD} (see Note 1)	18 V
Differential input voltage, V _{ID} (see Note 2)	
Input voltage range, V _I (any input)	
Input current, I _I	±5 mA
output current, I _O (each output)	±30 mA
Total current into V _{DD}	
Total current out of GND	
Duration of short-circuit current at (or below) 25°C (see Note 3)	unlimited
Continuous total dissipation	See Dissipation Rating Table
Operating free-air temperature, T _A : C suffix	0°C to 70°C
I suffix	40°C to 85°C
M suffix	
Storage temperature range	65°C to 150°C
Case temperature for 60 seconds: FK package	
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, P, or PW p	
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values, except differential voltages, are with respect to network ground.
 - 2. Differential voltages are at IN+ with respect to IN-.
 - 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded (see application section).

DISSIPATION RATING TABLE

PACKAGE	$T_{\mbox{A}} \le 25^{\circ}\mbox{C}$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
D	725 mW	5.8 mW/°C	464 mW	377 mW	N/A
FK	1375 mW	11 mW/°C	880 mW	715 mW	275 mW
JG	1050 mW	8.4 mW/°C	672 mW	546 mW	210 mW
Р	1000 mW	8.0 mW/°C	640 mW	520 mW	N/A
PW	525 mW	4.2 mW/°C	336 mW	N/A	N/A

recommended operating conditions

		C SU	FFIX	I SUF	FIX	M SU	FFIX	LINUT
		MIN	MAX	MIN	MAX	MIN	MAX	UNIT
Supply voltage, V _{DD}		3	16	4	16	4	16	V
Q	V _{DD} = 5 V	-0.2	3.5	-0.2	3.5	0	3.5	V
Common-mode input voltage, V _{IC}	V _{DD} = 10 V	-0.2	8.5	-0.2	8.5	0	8.5	V
Operating free-air temperature, TA		0	70	-40	85	-55	125	°C

Datasheet of TLC277CPS - IC OPAMP GP 2.2MHZ 8SO

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

TLC272, TLC272A, TLC272B, TLC272Y, TLC277 LinCMOS™ PRECISION DUAL OPERATIONAL AMPLIFIERS

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

electrical characteristics at specified free-air temperature, V_{DD} = 5 V (unless otherwise noted)

	PARAMETER		TEST CONDI	TIONS	T _A †	TLC272 TLC272	C, TLC2 BC, TL0		UNIT
						MIN	TYP	MAX	
		TLC272C	V _O = 1.4 V,	$V_{IC} = 0$,	25°C		1.1	10	
		TLC272C	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			12	\ /
		TI 007040	V _O = 1.4 V,	V _{IC} = 0,	25°C		0.9	5	mV
\/	Innuit offeet valte as	TLC272AC	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			6.5	
VIO	Input offset voltage	TLC272BC	V _O = 1.4 V,	$V_{IC} = 0$,	25°C		230	2000	
		TLC2/2BC	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			3000	
		TI 00770	V _O = 1.4 V,	V _{IC} = 0,	25°C		200	500	μV
		TLC277C	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			1500	
α_{VIO}	Temperature coefficient of input	offset voltage			25°C to 70°C		1.8		μV/°C
1.0	Input offset surrent (see Note 4)				25°C		0.1	60	5 A
lio	Input offset current (see Note 4)		V - 05V	V - 05V	70°C		7	300	pΑ
	lancet bing assessed (and Note 4)		$V_{O} = 2.5 \text{ V},$	$V_{IC} = 2.5 V$	25°C		0.6	60	- 0
lΒ	Input bias current (see Note 4)				70°C		40	600	pΑ
						-0.2	-0.3		
					25°C	to 4	to 4.2		V
VICR	Common-mode input voltage rar (see Note 5)	nge				-0.2	4.2		
	(See Note 3)				Full range	-0.2 to			V
						3.5			
					25°C	3.2	3.8		
∨он	High-level output voltage		$V_{ID} = 100 \text{ mV},$	$R_L = 10 \text{ k}\Omega$	0°C	3	3.8		V
					70°C	3	3.8		
					25°C		0	50	
VOL	Low-level output voltage		$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$	0°C		0	50	mV
					70°C		0	50	
					25°C	5	23		
A _{VD}	Large-signal differential voltage	amplification	$V_0 = 0.25 \text{ V to 2 V},$	$R_L = 10 \text{ k}\Omega$	0°C	4	27		V/mV
					70°C	4	20		
					25°C	65	80		
CMRR	Common-mode rejection ratio		V _{IC} = V _{ICR} min		0°C	60	84		dB
					70°C	60	85		
					25°C	65	95		
ksvr	Supply-voltage rejection ratio (ΔV _{DD} /ΔV _{IO})		$V_{DD} = 5 \text{ V to } 10 \text{ V},$	V _O = 1.4 V	0°C	60	94		dB
	(A) (D) (A) (D)				70°C	60	96		
				.,	25°C		1.4	3.2	
I_{DD}	Supply current (two amplifiers)		V _O = 2.5 V, No load	$V_{IC} = 2.5 V,$	0°C		1.6	3.6	mA
			110 1000		70°C		1.2	2.6	

[†] Full range is 0°C to 70°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

^{5.} This range also applies to each input individually.

Datasheet of TLC277CPS - IC OPAMP GP 2.2MHZ 8SO

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

TLC272, TLC272A, TLC272B, TLC272Y, TLC277 LinCMOS™ PRECISION DUAL OPERATIONAL AMPLIFIERS

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

electrical characteristics at specified free-air temperature, V_{DD} = 10 V (unless otherwise noted)

	PARAMETER		TEST CONDI	TIONS	T _A †	TLC272 TLC272			UNIT
						MIN	TYP	MAX	
		TLC272C	$V_0 = 1.4 V$,	$V_{IC} = 0$,	25°C		1.1	10	
		TLUZIZU	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			12	mV
		TLC272AC	$V_0 = 1.4 V$	$V_{IC} = 0$,	25°C		0.9	5	IIIV
Vio	Input offset voltage	TLUZTZAC	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			6.5	
V _{IO}	input onset voltage	TLC272BC	$V_0 = 1.4 V$,	$V_{IC} = 0$,	25°C		290	2000	
		TLUZIZBU	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			3000	μV
		TLC277C	$V_0 = 1.4 V$,	$V_{IC} = 0$,	25°C		250	800	μν
		TLOZITO	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			1900	
α_{VIO}	Temperature coefficient of input of	offset voltage			25°C to 70°C		2		μV/°C
lı a	Input offset ourrent (see Note 4)				25°C		0.1	60	5.4
IO	Input offset current (see Note 4)			V - 5V	70°C		7	300	pΑ
	Input high ourrent (and Note 4)		$V_{O} = 5 V$,	$V_{IC} = 5 V$	25°C		0.7	60	- A
ΙΒ	Input bias current (see Note 4)				70°C		50	600	pΑ
						-0.2	-0.3		
					25°C	to 9	to 9.2		V
VICR	Common-mode input voltage ran (see Note 5)	ge					9.2		
	(See Note 5)				Full range	-0.2 to			V
					- un runge	8.5			-
					25°C	8	8.5		
Vон	High-level output voltage		V _{ID} = 100 mV,	$R_L = 10 \text{ k}\Omega$	0°C	7.8	8.5		V
					70°C	7.8	8.4		
					25°C		0	50	
VOL	Low-level output voltage		$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$	0°C		0	50	mV
					70°C		0	50	
					25°C	10	36		
AVD	Large-signal differential voltage a	amplification	$V_0 = 1 \text{ V to 6 V},$	$R_L = 10 \text{ k}\Omega$	0°C	7.5	42		V/mV
					70°C	7.5	32		
					25°C	65	85		
CMRR	Common-mode rejection ratio		V _{IC} = V _{ICR} min		0°C	60	88		dB
					70°C	60	88		
	_				25°C	65	95		
ksvr	Supply-voltage rejection ratio (ΔV _{DD} /ΔV _{IO})		$V_{DD} = 5 \text{ V to } 10 \text{ V},$	V _O = 1.4 V	0°C	60	94		dB
	(\(\tau\O\)\(\tau\O\)			-	70°C	60	96		
					25°C		1.9	4	
I_{DD}	Supply current (two amplifiers)		$V_O = 5 V$, V_{IC} No load	$V_{IC} = 5 V$,	0°C		2.3	4.4	mA
			140 loau		70°C		1.6	3.4	

[†] Full range is 0°C to 70°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

Datasheet of TLC277CPS - IC OPAMP GP 2.2MHZ 8SO

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

TLC272, TLC272A, TLC272B, TLC272Y, TLC277 LinCMOS™ PRECISION DUAL OPERATIONAL AMPLIFIERS

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

electrical characteristics at specified free-air temperature, V_{DD} = 5 V (unless otherwise noted)

No = 1.4 V, No = 1.4 V, No = 0, R, = 10 kΩ		PARAMETER		TEST COND	ITIONS	T _A †		2I, TLC2 2BI, TLC		UNIT
No N							MIN	TYP	MAX	
No N			TI 00701	V _O = 1.4 V,	V _{IC} = 0,	25°C		1.1	10	
No N			1LC2721			Full range			13	
No N			TI 007041	V _O = 1.4 V,	V _{IC} = 0,	25°C		0.9	5	m۷
TLC272Bl NG = 1.4 V, NG = 0, RL = 10 kΩ Full range 3500 Full range 3500 Full range 3500 5	,,	Lead officer allows	TLC2/2AI			Full range			7	
NS = 50 Ω NL = 10 kB Full range 3500 10 10 10 10 10 10 10	۷IO	input offset voltage	TI 0070DI	V _O = 1.4 V,	V _{IC} = 0,	25°C		230	2000	
TLC2771 NO = 1.4 V, RS = 50 Ω RL = 10 kΩ Full range 25°C 200 800 Temperature coefficient of input offset voltage 25°C 85°C 1.8 μV/°C Input offset current (see Note 4) VO = 2.5 V, VIC = 2.5 V VIC = 2.5 V Input bias current (see Note 4) VO = 2.5 V, VIC = 2.5 V VIC = 2.5 V VICR Common-mode input voltage range (see Note 5) VID = 100 mV, RL = 10 kΩ 10 L = 0 VID = 100 mV, RL = 10 kΩ 10 L =			TLC2/2BI	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			3500	
No No No No No No No No			TI 00771	V _O = 1.4 V,	V _{IC} = 0,	25°C		200	500	μν
Input offset current (see Note 4) Input offset current (see Note 4) Input offset current (see Note 4) VO = 2.5 V, VIC = 2.5 V			TLC2//I	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			2000	
Input offset current (see Note 4) V _O = 2.5 V, V _{IC} = 2.5 V S6°C 24 15 pA	α_{VIO}	Temperature coefficient of input	offset voltage					1.8		μV/°C
No = 2.5 V, Vic = 2.5 V Vic	1.0	Input offeet ourrent (see Note 4)				25°C		0.1	60	5 A
Input bias current (see Note 4) 25°C 200 35 pA	IO	input offset current (see Note 4)		V - 05 V	V - 0.5.V	85°C		24	15	рА
Vicra Common-mode input voltage range (see Note 5) ViD High-level output voltage ViD = 100 mV, RL = 10 kΩ ViD = -100 mV, RL =		land him amount (and Nate 4)		VO = 2.5 V,	AIC = 5.2 A	25°C		0.6	60	- 0
$V_{ICR} = \begin{array}{c} Common-mode input voltage range \\ (see Note 5) \end{array} \\ \begin{array}{c} V_{ICR} = \begin{array}{c} Common-mode input voltage range \\ (see Note 5) \end{array} \\ \begin{array}{c} V_{ICR} = \begin{array}{c} Common-mode input voltage \\ (see Note 5) \end{array} \\ \end{array} \\ \begin{array}{c} V_{ICR} = \begin{array}{c} Common-mode input voltage \\ V_{ID} = 100 \text{mV}, \end{array} \\ \begin{array}{c} V_{ID} = 100 \text{mV}, \end{array}$	ЧВ	input bias current (see Note 4)				85°C		200	35	рА
Vocation							-0.2	-0.3		
Vocation						25°C				V
$V_{OH} \text{High-level output voltage} \qquad \qquad V_{ID} = 100 \text{mV}, \qquad R_L = 10 \text{k}\Omega \qquad \qquad 25^\circ\text{C} \qquad 3.2 3.8 \qquad \qquad V_{OH} \qquad \qquad 3.5 \qquad \qquad V_{OH} \qquad \qquad V_{ID} = 100 \text{mV}, \qquad R_L = 10 \text{k}\Omega \qquad \qquad$	VICR		nge					4.2		
$V_{OH} \text{High-level output voltage} \qquad V_{ID} = 100 \text{mV}, R_L = 10 \text{k}\Omega \qquad \begin{array}{c} 3.5 \\ 25^{\circ}\text{C} & 3.2 & 3.8 \\ 85^{\circ}\text{C} & 3 & 3.8 \\ 85^{\circ}\text{C} & 3 & 3.8 \\ \end{array} \qquad V$ $V_{OL} \text{Low-level output voltage} \qquad V_{ID} = -100 \text{mV}, I_{OL} = 0 \qquad \begin{array}{c} 25^{\circ}\text{C} & 0 & 50 \\ 85^{\circ}\text{C} & 0 & 50 \\ \hline 85^{\circ}\text{C} & 5 & 23 \\ \hline 85^{\circ}\text{C} & 3.5 & 32 \\ \hline 85^{\circ}\text{C} & 0 & 50 \\ \hline 85^{\circ}\text{C} & 3.5 & 32 \\ \hline 85^{\circ}\text{C} & 65 & 80 \\ \hline -40^{\circ}\text{C} & 60 & 81 \\ \hline 85^{\circ}\text{C} & 60 & 86 \\ \hline \end{array} \qquad V_{ID} = 5 \text{V to 10 V}, V_{O} = 1.4 \text{V} \qquad \begin{array}{c} 25^{\circ}\text{C} & 65 95 \\ \hline 85^{\circ}\text{C} & 60 96 \\ \hline 85^{\circ}\text{C} & 60 96 \\ \hline \end{array} \qquad \qquad \begin{array}{c} 40^{\circ}\text{C} & 60 92 \\ \hline 85^{\circ}\text{C} & 60 96 \\ \hline \end{array} \qquad \qquad \begin{array}{c} 40^{\circ}\text{C} & 60 96 \\ \hline \end{array} \qquad \qquad \begin{array}{c} 40^{\circ}\text{C} & 60 96 \\ \hline \end{array} \qquad \qquad \begin{array}{c} 40^{\circ}\text{C} & 60 96 \\ \hline \end{array} \qquad \qquad \begin{array}{c} 40^{\circ}\text{C} & 60 96 \\ \hline \end{array} \qquad \qquad \begin{array}{c} 40^{\circ}\text{C} & 60 96 \\ \hline \end{array} \qquad \qquad \begin{array}{c} 40^{\circ}\text{C} & 60 96 \\ \hline \end{array} \qquad \qquad \begin{array}{c} 40^{\circ}\text{C} & 60 96 \\ \hline \end{array} \qquad \qquad \begin{array}{c} 40^{\circ}\text{C} & 60 96 \\ \hline \end{array} \qquad \qquad \begin{array}{c} 40^{\circ}\text{C} & 60 96 \\ \hline \end{array} \qquad \qquad \begin{array}{c} 40^{\circ}\text{C} & 60 96 \\ \hline \end{array} \qquad \qquad \begin{array}{c} 40^{\circ}\text{C} & 60 96 \\ \hline \end{array} \qquad \qquad \begin{array}{c} 40^{\circ}\text{C} & 60 96 \\ \hline \end{array} \qquad \qquad \begin{array}{c} 40^{\circ}\text{C} & 60 96 \\ \hline \end{array} \qquad \qquad \begin{array}{c} 40^{\circ}\text{C} & 60 96 \\ \hline \end{array} \qquad \qquad \begin{array}{c} 40^{\circ}\text{C} & 60 96 \\ \hline \end{array} \qquad \qquad \begin{array}{c} 40^{\circ}\text{C} & 60 96 \\ \hline \end{array} \qquad \qquad \begin{array}{c} 40^{\circ}\text{C} & 60 96 \\ \hline \end{array} \qquad \qquad \begin{array}{c} 40^{\circ}\text{C} & 60 96 \\ \hline \end{array} \qquad \qquad \begin{array}{c} 40^{\circ}\text{C} & 60 96 \\ \hline \end{array} \qquad \qquad \begin{array}{c} 40^{\circ}\text{C} & 60 96 \\ \hline \end{array} \qquad \qquad \begin{array}{c} 40^{\circ}\text{C} & 60 96 \\ \hline \end{array} \qquad \qquad \begin{array}{c} 40^{\circ}\text{C} & 60 96 \\ \hline \end{array} \qquad \qquad \begin{array}{c} 40^{\circ}\text{C} & 60 96 \\ \hline \end{array} \qquad \qquad \begin{array}{c} 40^{\circ}\text{C} & 60 96 \\ \hline \end{array} \qquad \qquad \begin{array}{c} 40^{\circ}\text{C} & 60 96 \\ \hline \end{array} \qquad \qquad \begin{array}{c} 40^{\circ}\text{C} & 60 96 \\ \hline \end{array} \qquad \qquad \begin{array}{c} 40^{\circ}\text{C} & 60 96 \\ \hline \end{array} \qquad \qquad \begin{array}{c} 40^{\circ}\text{C} & 60 96 \\ \hline \end{array} \qquad \qquad \begin{array}{c} 40^{\circ}\text{C} & 60 96 \\ \hline \end{array} \qquad \qquad \begin{array}{c} 40^{\circ}\text{C} & 60 96 \\ \hline \end{array} \qquad \qquad \begin{array}{c} 40^{\circ}\text{C} & 60 96 \\ \hline \end{array} \qquad \qquad \begin{array}{c} 40$		(see Note 3)				Full range				V
$\begin{array}{c} V_{OH} \mbox{High-level output voltage} \\ V_{ID} = 100 \ \mbox{mV}, \qquad R_L = 10 \ \mbox{k}\Omega \\ \hline \\ V_{OL} \mbox{Low-level output voltage} \\ \hline \\ V_{OL} \mbox{Low-level output voltage} \\ \hline \\ V_{ID} = -100 \ \mbox{mV}, \qquad I_{OL} = 0 \\ \hline \\ V_{ID} = -100 \ \mbox{mV}, \qquad I_{OL} = 0 \\ \hline \\ \mbox{RS}^{\circ}C \qquad 0 \qquad 50 \\ \hline \\ \mbox{RS}^{\circ}C \qquad 0 \qquad 50 \\ \hline \\ \mbox{RS}^{\circ}C \qquad 0 \qquad 50 \\ \hline \\ \mbox{MV} \\ \hline \\ \mbox{RS}^{\circ}C \qquad 0 \qquad 50 \\ \hline \\ \mbox{RS}^{\circ}C \qquad 3.5 \qquad 32 \\ \hline \\ \mbox{RS}^{\circ}C \qquad 3.5 \qquad 3.5 \qquad 19 \\ \hline \\ \mbox{RS}^{\circ}C \qquad 60 \qquad 86 \\ \hline \\ \mbox{RS}^{\circ}C \qquad 60 \qquad 86 \\ \hline \\ \mbox{RS}^{\circ}C \qquad 60 \qquad 92 \\ \hline \\ \mbox{RS}^{\circ}C \qquad 60 \qquad 96 \\ \hline \\ \mbox{RS}^{\circ}C$						l an range				•
$V_{OL} \text{Low-level output voltage} \qquad V_{ID} = -100 \text{mV}, I_{OL} = 0 \qquad \frac{25^{\circ}\text{C}}{40^{\circ}\text{C}} \qquad 0 50 \\ \hline -40^{\circ}\text{C} \qquad 0 50 \\ \hline 85^{\circ}\text{C} \qquad 0 50 \\ \hline \hline 85^{\circ}\text{C} \qquad 5 23 \\ \hline \hline 85^{\circ}\text{C} \qquad 3.5 32 \\ \hline \hline 85^{\circ}\text{C} \qquad 3.5 32 \\ \hline \hline 85^{\circ}\text{C} \qquad 65 80 \\ \hline \hline 85^{\circ}\text{C} \qquad 66 86 \\ \hline \hline 85^{\circ}\text{C} \qquad 60 86 \\ \hline \hline 85^{\circ}\text{C} \qquad 60 96 \\ \hline \hline \hline 85^{\circ}\text{C} \qquad 60 96 \\ \hline \hline \hline \hline 10D \qquad \text{Supply-voltage rejection ratio} \qquad V_{O} = 2.5 \text{V}, \qquad V_{IC} = 2.5 \text{V}, \qquad$						25°C	3.2	3.8		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	∨он	High-level output voltage		V _{ID} = 100 mV,	$R_L = 10 \text{ k}\Omega$	-40°C	3	3.8		V
$\begin{array}{c} \text{VoL} & \text{Low-level output voltage} \\ \text{Vol} & \text{Large-signal differential voltage amplification} \\ \text{AVD} & \text{Large-signal differential voltage amplification} \\ \text{CMRR} & \text{Common-mode rejection ratio} \\ \text{Vol} & \text{Vol}$					_	85°C	3	3.8		
$AVD \qquad \text{Large-signal differential voltage amplification} \\ AVD \qquad \text{Large-signal differential voltage amplification} \\ VO = 1 \ V \ to 6 \ V, \qquad R_L = 10 \ k\Omega \qquad \frac{25^{\circ}C}{85^{\circ}C} \qquad \frac{5}{3.5} \qquad \frac{32}{32} \qquad V/mV \\ \hline \\ RE \qquad \qquad & 25^{\circ}C \qquad 65 \qquad 80 \qquad V/mV \\ \hline \\ CMRR \qquad Common-mode rejection ratio \qquad VIC = VICRmin \qquad \qquad & 25^{\circ}C \qquad 65 \qquad 80 \qquad V/mV \\ \hline \\ RE \qquad \qquad & 25^{\circ}C \qquad 65 \qquad 80 \qquad V/mV \\ \hline \\ RE \qquad \qquad & 25^{\circ}C \qquad 65 \qquad 80 \qquad V/mV \\ \hline \\ RE \qquad \qquad & 25^{\circ}C \qquad 65 \qquad 80 \qquad V/mV \\ \hline \\ RE \qquad \qquad & 25^{\circ}C \qquad 60 \qquad 86 \qquad V/mV \\ \hline \\ RE \qquad \qquad & 25^{\circ}C \qquad 60 \qquad 95 \qquad V/mV \\ \hline \\ RE \qquad \qquad & 25^{\circ}C \qquad 60 \qquad 92 \qquad V/mV \\ \hline \\ RE \qquad \qquad & 25^{\circ}C \qquad 60 \qquad 92 \qquad V/mV \\ \hline \\ RE \qquad \qquad & 25^{\circ}C \qquad 60 \qquad 92 \qquad V/mV \\ \hline \\ RE \qquad \qquad & 25^{\circ}C \qquad 60 \qquad 92 \qquad V/mV \\ \hline \\ RE \qquad \qquad & 25^{\circ}C \qquad 60 \qquad 92 \qquad V/mV \\ \hline \\ RE \qquad \qquad & 25^{\circ}C \qquad 60 \qquad 92 \qquad V/mV \\ \hline \\ RE \qquad \qquad & 25^{\circ}C \qquad 60 \qquad 92 \qquad V/mV \\ \hline \\ RE \qquad \qquad & 25^{\circ}C \qquad 60 \qquad 92 \qquad V/mV \\ \hline \\ RE \qquad \qquad & 25^{\circ}C \qquad 60 \qquad 92 \qquad V/mV \\ \hline \\ RE \qquad \qquad & 25^{\circ}C \qquad 60 \qquad 92 \qquad V/mV \\ \hline \\ RE \qquad \qquad & 25^{\circ}C \qquad 60 \qquad 94 \qquad V/mV \\ \hline \\ RE \qquad \qquad & 25^{\circ}C \qquad 60 \qquad 94 \qquad V/mV \\ \hline \\ RE \qquad \qquad & 25^{\circ}C \qquad 60 \qquad 94 \qquad V/mV \\ \hline \\ RE \qquad \qquad & 25^{\circ}C \qquad 1.4 \qquad 3.2 \qquad V/mV \\ \hline \\ RE \qquad \qquad & 25^{\circ}C \qquad 1.4 \qquad 3.2 \qquad V/mV \\ \hline \\ RE \qquad \qquad & 25^{\circ}C \qquad 1.4 \qquad 3.2 \qquad V/mV \\ \hline \\ RE \qquad \qquad & 25^{\circ}C \qquad 1.4 \qquad 3.2 \qquad V/mV \\ \hline \\ RE \qquad \qquad & 25^{\circ}C \qquad 1.4 \qquad 3.2 \qquad V/mV \\ \hline \\ RE \qquad \qquad & 25^{\circ}C \qquad 1.4 \qquad 3.2 \qquad V/mV \\ \hline \\ RE \qquad \qquad & 25^{\circ}C \qquad 1.4 \qquad 3.2 \qquad V/mV \\ \hline \\ RE \qquad \qquad & 25^{\circ}C \qquad 1.4 \qquad 3.2 \qquad V/mV \\ \hline \\ RE \qquad \qquad & 25^{\circ}C \qquad 1.4 \qquad 3.2 \qquad V/mV \\ \hline \\ RE \qquad \qquad & 25^{\circ}C \qquad 1.4 \qquad 3.2 \qquad V/mV \\ \hline \\ RE \qquad \qquad & 25^{\circ}C \qquad 1.4 \qquad 3.2 \qquad V/mV \\ \hline \\ RE \qquad \qquad \qquad & 25^{\circ}C \qquad 1.4 \qquad 3.2 \qquad V/mV \\ \hline \\ RE \qquad \qquad \qquad & 25^{\circ}C \qquad 1.4 \qquad 3.2 \qquad V/mV \\ \hline \\ RE \qquad $						25°C		0	50	
$A_{VD} = 1 \ V \ to \ 6 \ V, \qquad R_L = 10 \ k\Omega $ Large-signal differential voltage amplification $V_O = 1 \ V \ to \ 6 \ V, \qquad R_L = 10 \ k\Omega $ $= 10 \ k\Omega $ $R_L = 10 \ k\Omega $ $R_L = 10 \ k\Omega $ $= 10 \ k\Omega $ $R_L = 1$	VOL	Low-level output voltage		$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$	-40°C		0	50	mV
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					-	85°C		0	50	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						25°C	5	23		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	AVD	Large-signal differential voltage	amplification	$V_0 = 1 \text{ V to 6 V},$	$R_L = 10 \text{ k}\Omega$	-40°C	3.5	32		V/mV
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						85°C	3.5	19		
$k_{SVR} \begin{array}{c} \text{Supply-voltage rejection ratio} \\ (\Delta V_{DD}/\Delta V_{IO}) \end{array} \qquad \begin{array}{c} 85^{\circ}\text{C} & 60 & 86 \\ \hline \\ V_{DD} = 5 \text{ V to 10 V}, & V_{O} = 1.4 \text{ V} \\ \hline \\ 85^{\circ}\text{C} & 60 & 92 \\ \hline \\ 85^{\circ}\text{C} & 60 & 96 \\ \hline \\ 85^{\circ}\text{C} & 60 & 96 \\ \hline \\ \hline \\ V_{O} = 2.5 \text{ V}, & V_{IC} = 2.5 \text{ V}, \\ No \ load \end{array} \qquad \begin{array}{c} 25^{\circ}\text{C} & 1.4 & 3.2 \\ \hline \\ -40^{\circ}\text{C} & 1.9 & 4.4 \\ \hline \\ -40^{\circ}\text{C} & 1.9 & 4.4 \\ \hline \end{array} \qquad \text{mA}$						25°C	65	80		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CMRR	Common-mode rejection ratio		V _{IC} = V _{ICR} min		−40°C	60	81		dB
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						85°C	60	86		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						25°C	65	95		
Supply current (two amplifiers) VO = 2.5 V, No load VIC = 2.5 V, No load VIC = 2.5 V, No load No	ksvr			$V_{DD} = 5 \text{ V to } 10 \text{ V},$	V _O = 1.4 V	-40°C	60	92		dB
$V_O = 2.5 \text{ V},$ $V_{IC} = 2.5 \text{ V},$ $V_{IC} = 2.5 \text{ V},$ No load $V_{IC} = 2.5 \text{ V},$ $V_{IC} = 2.5 $						85°C	60	96		
No load					.,	25°C		1.4	3.2	
85°C 1.1 2.4	I_{DD}	Supply current (two amplifiers)			$V_{IC} = 2.5 \text{ V},$	-40°C		1.9	4.4	mA
				140 luau		85°C		1.1	2.4	

[†] Full range is -40°C to 85°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

Datasheet of TLC277CPS - IC OPAMP GP 2.2MHZ 8SO

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

TLC272, TLC272A, TLC272B, TLC272Y, TLC277 LinCMOS™ PRECISION DUAL OPERATIONAL AMPLIFIERS

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

electrical characteristics at specified free-air temperature, V_{DD} = 10 V (unless otherwise noted)

	PARAMETER		TEST CONDI	TIONS	τ _Α †		2I, TLC2 2BI, TL0		UNIT
						MIN	TYP	MAX	
		TI 00701	V _O = 1.4 V,	V _{IC} = 0,	25°C		1.1	10	
		TLC272I	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			13	
		TI 007041	V _O = 1.4 V,	V _{IC} = 0,	25°C		0.9	5	mV
V -	land the effect wellenge	TLC272AI	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			7	
VIO	Input offset voltage	TI COZODI	V _O = 1.4 V,	V _{IC} = 0,	25°C		290	2000	
		TLC272BI	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			3500	
		TLC2771	$V_0 = 1.4 V$,	$V_{IC} = 0$,	25°C		250	800	μV
		TLGZIII	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			2900	
α_{VIO}	Temperature coefficient of input	offset voltage			25°C to 85°C		2		μV/°C
l. a	Input offset ourrent (see Note 4)				25°C		0.1	60	5 A
lio	Input offset current (see Note 4)		Vo – F V	V:0 - 5 V	85°C		26	1000	pA
1.=	Input bigg gurrent (ogg Note 4)		$V_{O} = 5 V$,	$V_{IC} = 5 V$	25°C		0.7	60	5 A
lΒ	Input bias current (see Note 4)				85°C		220	2000	pΑ
						-0.2	-0.3		
					25°C	to 9	to 9.2		V
VICR		mmon-mode input voltage range e Note 5)				9.2			
	(See Note 3)				Full range	-0.2 to			V
						8.5			-
					25°C	8	8.5		
Vон	High-level output voltage		V _{ID} = 100 mV,	$R_L = 10 \text{ k}\Omega$	−40°C	7.8	8.5		V
					85°C	7.8	8.5		
					25°C		0	50	
V_{OL}	Low-level output voltage		$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$	-40°C		0	50	mV
					85°C		0	50	
					25°C	10	36		
A_{VD}	Large-signal differential voltage	amplification	$V_0 = 1 V to 6 V$,	$R_L = 10 \text{ k}\Omega$	-40°C	7	46		V/mV
					85°C	7	31		
					25°C	65	85		
CMRR	Common-mode rejection ratio		V _{IC} = V _{ICR} min		−40°C	60	87		dB
					85°C	60	88		
	Cumply voltage sais sties and				25°C	65	95		
ksvr	Supply-voltage rejection ratio (ΔV _{DD} /ΔV _{IO})		$V_{DD} = 5 V \text{ to } 10 V,$	$V_0 = 1.4 \text{ V}$	−40°C	60	92		dB
	(- · UU/ - · IU/				85°C	60	96		
			V 5 V	V 5 V	25°C		1.4	4	
I_{DD}	Supply current (two amplifiers)		V _O = 5 V, No load	$V_{IC} = 5 V$,	−40°C		2.8	5	mA
					85°C		1.5	3.2	

[†] Full range is –40°C to 85°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

Datasheet of TLC277CPS - IC OPAMP GP 2.2MHZ 8SO

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

TLC272, TLC272A, TLC272B, TLC272Y, TLC277 LinCMOS™ PRECISION DUAL OPERATIONAL AMPLIFIERS

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

electrical characteristics at specified free-air temperature, V_{DD} = 5 V (unless otherwise noted)

	PARAMETER		TEST COND	ITIONS	T _A †	TLC27	2M, TLC	277M	UNIT
	PARAMETER		TEST COND	ITIONS	'A'	MIN	TYP	MAX	UNII
		TI 0070M	$V_0 = 1.4 V$,	$V_{IC} = 0$,	25°C		1.1	10	\/
	land affect values	TLC272M	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			12	mV
VIO	Input offset voltage	TI 007714	V _O = 1.4 V,	V _{IC} = 0,	25°C		200	500	
		TLC277M	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			3750	μV
W/IO	Temperature coefficient of input of	ffset			25°C to		2.1		μV/°C
αVIO	voltage				125°C				
I _{IO}	Input offset current (see Note 4)				25°C		0.1	60	pА
10	input offset current (see Note 4)		V _O = 2.5 V	V _{IC} = 2.5 V	125°C		1.4	15	nA
lin	Input bias current (see Note 4)		VO = 2.5 V	VIC - 2.5 V	25°C		0.6	60	pA
IB	input bias current (see Note 4)				125°C		9	35	nA
						0	-0.3		
					25°C	to 4	to 4.2		V
VICR	Common-mode input voltage ran (see Note 5)	ge					4.2		
	(see Note 3)				Full range	0 to			V
					i un rango	3.5			·
					25°C	3.2	3.8		
Voн	High-level output voltage		V _{ID} = 100 mV,	R _L = 10 kΩ	−55°C	3	3.8		V
011				_	125°C	3	3.8		
					25°C		0	50	
VOL	Low-level output voltage		$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$	−55°C		0	50	mV
			"	OL.	125°C		0	50	
					25°C	5	23		
AVD	Large-signal differential voltage a	mplification	V _O = 0.25 V to 2 V	$R_I = 10 \text{ k}\Omega$	−55°C	3.5	35		V/mV
,,,		•		_	125°C	3.5	16		
					25°C	65	80		
CMRR	Common-mode rejection ratio		V _{IC} = V _{ICR} min		−55°C	60	81		dB
	,				125°C	60	84		
					25°C	65	95		
ksvr	Supply-voltage rejection ratio		V _{DD} = 5 V to 10 V,	VO = 1.4 V	−55°C	60	90		dB
0	$(\Delta V_{DD}/\Delta V_{IO})$			J	125°C	60	97		
					25°C		1.4	3.2	
I _{DD}	Supply current (two amplifiers)		$V_0 = 2.5 \text{ V},$	$V_{IC} = 2.5 V$,	-55°C		2	5	mA
	,		No load		125°C		1	2.2	

† Full range is –55°C to 125°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

Datasheet of TLC277CPS - IC OPAMP GP 2.2MHZ 8SO

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

TLC272, TLC272A, TLC272B, TLC272Y, TLC277 LinCMOS™ PRECISION DUAL OPERATIONAL AMPLIFIERS

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

electrical characteristics at specified free-air temperature, V_{DD} = 10 V (unless otherwise noted)

	DADAMETED		TEST COME	UTIONS	- +	TLC27	2M, TLC	277M	
	PARAMETER		TEST COND	OITIONS	T _A †	MIN	TYP	MAX	UNIT
		TI 0070M	$V_0 = 1.4 V,$	$V_{IC} = 0$,	25°C		1.1	10	
\ \ \ .	land official control of	TLC272M	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			12	mV
VIO	Input offset voltage	TI 007714	V _O = 1.4 V,	V _{IC} = 0,	25°C		250	800	
		TLC277M	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			4300	μV
ανιο	Temperature coefficient of input voltage	offset			25°C to 125°C		2.2		μV/°C
	Lead officer and the Netter A				25°C		0.1	60	pА
liO	Input offset current (see Note 4)				125°C		1.8	15	nA
			$V_0 = 5 V$,	AIC = 2 A	25°C		0.7	60	pА
IВ	Input bias current (see Note 4)				125°C		10	35	nA
W.	Common-mode input voltage rai	nge			25°C	0 to 9	-0.3 to 9.2		٧
VICR	(see Note 5)				Full range	0 to 8.5			V
					25°C	8	8.5		
∨он	High-level output voltage		$V_{ID} = 100 \text{ mV},$	$R_L = 10 \text{ k}\Omega$	−55°C	7.8	8.5		V
					125°C	7.8	8.4		
					25°C		0	50	
VOL	Low-level output voltage		$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$	−55°C		0	50	mV
					125°C		0	50	
	The second secon				25°C	10	36		
A_{VD}	Large-signal differential voltage amplification		$V_0 = 1 V to 6 V$,	$R_L = 10 \text{ k}\Omega$	−55°C	7	50		V/mV
	apoauo				125°C	7	27		
					25°C	65	85		
CMRR	Common-mode rejection ratio		V _{IC} = V _{ICR} min		−55°C	60	87		dB
					125°C	60	86		
					25°C	65	95		
ksvr	Supply-voltage rejection ratio (ΔVDD/ΔVIO)		$V_{DD} = 5 \text{ V to } 10 \text{ V},$	V _O = 1.4 V	−55°C	60	90		dB
	(4 · UU/4 · IU/				125°C	60	97		
		-		1/ =1/	25°C		1.9	4	
IDD	Supply current (two amplifiers)		V _O = 5 V, No load	$V_{IC} = 5 V$,	−55°C		3	6	mA
			1.3.000		125°C		1.3	2.8	

† Full range is –55°C to 125°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

Datasheet of TLC277CPS - IC OPAMP GP 2.2MHZ 8SO

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

TLC272, TLC272A, TLC272B, TLC272Y, TLC277 LinCMOS™ PRECISION DUAL OPERATIONAL AMPLIFIERS

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

electrical characteristics, $V_{DD} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (unless otherwise noted)

	DADAMETED	TEST CONF	DITIONS	Т	LC272Y		
	PARAMETER	TEST CONI	DITIONS	MIN	TYP	MAX	UNIT
V _{IO}	Input offset voltage	$V_{O} = 1.4 \text{ V},$ $R_{S} = 50 \Omega,$	$V_{IC} = 0$, $R_L = 10 \text{ k}\Omega$		1.1	10	mV
α_{VIO}	Temperature coefficient of input offset voltage				1.8		μV/°C
IIO	Input offset current (see Note 4)	V- 05V	V - 05V		0.1		pA
I _{IB}	Input bias current (see Note 4)	$V_O = 2.5 \text{ V},$	$V_{IC} = 2.5 V$		0.6		pA
VICR	Common-mode input voltage range (see Note 5)			-0.2 to 4	-0.3 to 4.2		٧
Vон	High-level output voltage	V _{ID} = 100 mV,	R _L = 10 kΩ	3.2	3.8		V
VOL	Low-level output voltage	$V_{ID} = -100 \text{ mV},$	I _{OL} = 0		0	50	mV
AVD	Large-signal differential voltage amplification	V _O = 0.25 V to 2 V	$R_L = 10 \text{ k}\Omega$	5	23		V/mV
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}min$		65	80		dB
ksvr	Supply-voltage rejection ratio (ΔV _{DD} /ΔV _{IO})	$V_{DD} = 5 \text{ V to } 10 \text{ V},$	V _O = 1.4 V	65	95		dB
I _{DD}	Supply current (two amplifiers)	V _O = 2.5 V, No load	V _{IC} = 2.5 V,		1.4	3.2	mA

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

5. This range also applies to each input individually.

electrical characteristics, V_{DD} = 10 V, T_A = 25°C (unless otherwise noted)

	DADAMETED	TEST COM	DITIONS	Т	LC272Y		
	PARAMETER	TEST CON	DITIONS	MIN	TYP	MAX	UNIT
V _{IO}	Input offset voltage	$V_{O} = 1.4 \text{ V},$ $R_{S} = 50 \Omega,$	V _{IC} = 0, R _L = 10 kΩ		1.1	10	mV
α_{VIO}	Temperature coefficient of input offset voltage				1.8		μV/°C
ΙΙΟ	Input offset current (see Note 4)	V 5V			0.1		pА
I _{IB}	Input bias current (see Note 4)	$V_O = 5 V$,	$V_{IC} = 5 V$		0.7		pA
VICR	Common-mode input voltage range (see Note 5)			-0.2 to 9	-0.3 to 9.2		V
Vон	High-level output voltage	$V_{ID} = 100 \text{ mV},$	$R_L = 10 \text{ k}\Omega$	8	8.5		V
V_{OL}	Low-level output voltage	$V_{ID} = -100 \text{ mV},$	I _{OL} = 0		0	50	mV
AVD	Large-signal differential voltage amplification	$V_0 = 1 V to 6 V$,	R _L = 10 kΩ	10	36		V/mV
CMRR	Common-mode rejection ratio	V _{IC} = V _{ICR} min		65	85		dB
ksvr	Supply-voltage rejection ratio (ΔV _{DD} /ΔV _{IO})	$V_{DD} = 5 \text{ V to } 10 \text{ V},$	V _O = 1.4 V	65	95		dB
I _{DD}	Supply current (two amplifiers)	V _O = 5 V, No load	V _{IC} = 5 V,		1.9	4	mA

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

Datasheet of TLC277CPS - IC OPAMP GP 2.2MHZ 8SO

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

TLC272, TLC272A, TLC272B, TLC272Y, TLC277 LinCMOS™ PRECISION DUAL OPERATIONAL AMPLIFIERS

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

operating characteristics at specified free-air temperature, $V_{DD} = 5 V$

	PARAMETER	TEST CO	NDITIONS	TA	TLC272C, TLC272AC, TLC272BC, TLC277C			UNIT				
				,,	MIN	TYP	MAX					
				25°C		3.6						
		V _{IPP} = 1 V		0°C		4						
0.5	Observation of the section	$R_L = 10 \text{ k}\Omega$		70°C		3		\// ·				
SR	Slew rate at unity gain	C _L = 20 pF, See Figure 1		25°C		2.9		V/μs				
		gara r	V _{IPP} = 2.5 V	0°C		3.1						
				70°C		2.5						
V _n	Equivalent input noise voltage	f = 1 kHz, See Figure 2	$R_S = 20 \Omega$,	25°C		25		nV/√ Hz				
				25°C		320						
ВОМ	Maximum output-swing bandwidth	$V_O = V_{OH}$, $R_I = 10 \text{ k}\Omega$,		0°C		340		kHz				
		$K_{\perp} = 10 \text{ Ksz},$	See Figure 1	70°C		260						
				25°C		1.7						
B ₁	Unity-gain bandwidth	$V_I = 10 \text{ mV}, \qquad C_L = 20 \text{ pF},$ See Figure 3		0°C		2		MHz				
				70°C		1.3						
		.,		25°C		46°						
φm	Phase margin	$V_{I} = 10 \text{ mV},$ $C_{L} = 20 \text{ pF},$	$V_{I} = 10 \text{ mV},$	$V_{l} = 10 \text{ mV},$	$V_{I} = 10 \text{ mV},$	$V_{ } = 10 \text{ mV},$	$V_{l} = 10 \text{ mV},$	f = B ₁ , See Figure 3	0°C		47°	
			See rigule 3	70°C		43°						

operating characteristics at specified free-air temperature, V_{DD} = 10 V

	PARAMETER	TEST CO	TEST CONDITIONS		TLC272 TLC272			UNIT					
				TA	MIN	5.3 5.9 4.3 4.6 5.1 3.8							
				25°C		5.3							
			V _{IPP} = 1 V	0°C		5.9							
OD.		$R_L = 10 \text{ k}\Omega$		70°C		4.3		\// ·					
SR	Slew rate at unity gain	C _L = 20 pF, See Figure 1		25°C		4.6		V/μs					
		guro i	V _{IPP} = 5.5 V	0°C		5.1							
				70°C		3.8							
V _n	Equivalent input noise voltage	f = 1 kHz, See Figure 2	$R_S = 20 \Omega$,	25°C		25		nV/√ Hz					
				25°C		200							
ВОМ	Maximum output-swing bandwidth	$V_O = V_{OH}$, $R_I = 10 \text{ k}\Omega$,		0°C		220		kHz					
			See rigure r	70°C		140							
				25°C		2.2							
В1	Unity-gain bandwidth	V _I = 10 mV, See Figure 3	$C_L = 20 pF$,	0°C		2.5		MHz					
		See Figure 3		70°C		1.8							
				25°C		49°							
φm	Phase margin	$V_{I} = 10 \text{ mV},$	$V_{I} = 10 \text{ mV},$	$V_{ } = 10 \text{ mV},$	$V_{l} = 10 \text{ mV},$	$V_{I} = 10 \text{ mV},$	$V_{\parallel} = 10 \text{ mV},$	f = B ₁ ,	0°C		50°		
		ο _L – 20 μι,	See rigule 3	C _L = 20 pF, See Figure 3			46°						

Datasheet of TLC277CPS - IC OPAMP GP 2.2MHZ 8SO

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

TLC272, TLC272A, TLC272B, TLC272Y, TLC277 LinCMOS™ PRECISION DUAL OPERATIONAL AMPLIFIERS

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

operating characteristics at specified free-air temperature, $V_{DD} = 5 \text{ V}$

	PARAMETER	PARAMETER TEST CONDITIONS T _A				TLC272I, TLC272AI, TLC272BI, TLC277I								
				MIN	TYP	MAX								
				25°C		3.6								
			V _{IPP} = 1 V	-40°C		4.5								
0.0	Observation of the section	$R_L = 10 \text{ k}\Omega$		85°C		2.8		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						
SR	Slew rate at unity gain	C _L = 20 pF, See Figure 1		25°C		2.9		V/μs						
		gara r	V _{IPP} = 2.5 V	−40°C		3.5								
				85°C		2.3								
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 2	$R_S = 20 \Omega$,	25°C		25		nV/√ Hz						
				25°C		320								
ВОМ	Maximum output-swing bandwidth	$V_O = V_{OH}$, $R_I = 10 \text{ k}\Omega$,		−40°C		380		kHz						
			See rigure r	85°C		250								
				25°C		1.7								
B ₁	Unity-gain bandwidth	V _I = 10 mV, See Figure 3	$C_L = 20 pF$,	−40°C		2.6		MHz						
		See rigule 3		85°C		1.2								
			. 5	25°C		46°								
φm	Phase margin	$V_{l} = 10 \text{ mV},$	$V_{I} = 10 \text{ mV},$	$V_{\parallel} = 10 \text{ mV},$	$V_{\parallel} = 10 \text{ mV},$	$V_{\parallel} = 10 \text{ mV},$	$V_{\parallel} = 10 \text{ mV},$	$V_I = 10 \text{ mV}, \qquad f = B_1,$ $C_L = 20 \text{ pF}, \qquad \text{See Fig}$	$ V = 10 \text{ mV}, f = B_1,$ $ C_1 = 20 \text{ pF} \text{See Figure 3}$	−40°C		49°		
		OL - 20 pr ,	C _L = 20 pF, See Figure 3	85°C		43°								

operating characteristics at specified free-air temperature, V_{DD} = 10 V

	PARAMETER		NDITIONS	TA	TLC272I, TLC272AI, TLC272BI, TLC277I			UNIT											
					MIN	TYP	MAX												
				25°C		5.3													
			V _{IPP} = 1 V	−40°C		6.8													
OD.	Class and and smith and in	$R_L = 10 \text{ k}\Omega$		85°C		4		Mhia											
SR	Slew rate at unity gain	C _L = 20 pF, See Figure 1		25°C		4.6		V/μs											
		gui s	V _{IPP} = 5.5 V	−40°C		5.8													
					85°C		3.5												
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 2	$R_S = 20 \Omega$,	25°C		25		nV/√ Hz											
				25°C		200													
ВОМ	Maximum output-swing bandwidth	$V_O = V_{OH}$, $R_L = 10 \text{ k}\Omega$,	VO = VOH,	VO = VOH,	VO = VOH,	VO = VOH,	VO = VOH,	VO = VOH,	VO = VOH,	VO = VOH,	VO = VOH,	VO = VOH,	VO = VOH,	C _L = 20 pF,	−40°C		260		kHz
			occ rigure r	85°C		130													
				25°C		2.2													
B ₁	Unity-gain bandwidth	V _I = 10 mV, See Figure 3	$C_L = 20 pF$,	−40°C	3.1	MHz													
		occ rigure s		85°C		1.7													
			, 5	25°C		49°													
φm	Phase margin		$V_{I} = 10 \text{ mV},$	$V_{l} = 10 \text{ mV},$	$V_{I} = 10 \text{ mV},$	f = B ₁ , See Figure 3	−40°C		52°										
	-		See Figure 3	85°C		46°													

Datasheet of TLC277CPS - IC OPAMP GP 2.2MHZ 8SO

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

TLC272, TLC272A, TLC272B, TLC272Y, TLC277 LinCMOS™ PRECISION DUAL OPERATIONAL AMPLIFIERS

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

operating characteristics at specified free-air temperature, $V_{DD} = 5 \text{ V}$

	DADAMETER	TEOT 00	NDITIONS	-	TLC27	2M, TLC	277M												
	PARAMETER	IESI CO	NDITIONS	TA	MIN	TYP	MAX	UNIT											
				25°C		3.6													
			V _{IPP} = 1 V	−55°C		4.7													
OD.	Claus and advanta and	$R_L = 10 \text{ k}\Omega$		125°C		2.3		Miss											
SR	Slew rate at unity gain	C _L = 20 pF, See Figure 1		25°C		2.9		V/μs											
		ecc rigare r	V _{IPP} = 2.5 V	−55°C		3.7													
								125°C		2									
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 2	$R_S = 20 \Omega$,	25°C		25		nV/√ Hz											
				25°C		320													
ВОМ	Maximum output-swing bandwidth	$V_O = V_{OH}$, $C_L = 20 \text{ pF}$, $R_L = 10 \text{ k}\Omega$, See Figure 1													−55°C		400		kHz
			125°C		230														
				25°C		1.7													
В1	Unity-gain bandwidth	V _I = 10 mV, See Figure 3	$C_L = 20 pF$,	−55°C		2.9		MHz											
		See rigule 3		125°C		1.1													
			, _	25°C		46°													
φm	Phase margin	$V_I = 10 \text{ mV}, $ f $C_L = 20 \text{ pF}, $ S	$V_{I} = 10 \text{ mV},$	$V_{I} = 10 \text{ mV},$	$V_{l} = 10 \text{ mV},$	$V_{\parallel} = 10 \text{ mV},$	$V_1 = 10 \text{ mV},$	f = B ₁ , See Figure 3	−55°C		49°								
			See Figure 3	125°C		41°													

operating characteristics at specified free-air temperature, $V_{DD} = 10 \text{ V}$

	PARAMETER		TEST CONDITIONS		TLC272M, TLC277M												
	PARAMETER	TEST CONDITIONS		TA	MIN	TYP	MAX	UNIT									
				25°C		5.3											
			V _{IPP} = 1 V	−55°C		7.1											
SR	Clause and a set south a major	$R_L = 10 \text{ k}\Omega$		125°C		3.1		11/									
	Slew rate at unity gain	C _L = 20 pF, See Figure 1		25°C		4.6		V/μs									
		gui i igui i	V _{IPP} = 5.5 V	−55°C		6.1											
					125°C		2.7										
V _n	Equivalent input noise voltage	f = 1 kHz, See Figure 2	$R_S = 20 \Omega$,	25°C		25		nV/√ Hz									
				25°C		200											
ВОМ	Maximum output-swing bandwidth									VO = VOH,	VO = VOH, $R_1 = 10 \text{ k}\Omega$,		−55°C		280		kHz
	KL = 10 ksz, See Figure 1	oce rigure r	125°C		110												
				25°C		2.2											
B ₁	Unity-gain bandwidth	V _I = 10 mV, See Figure 3	$C_L = 20 pF$,	−55°C		3.4		MHz									
		See Figure 3	oce rigule o		125°C		1.6										
				25°C		49°											
φm	Phase margin	$V_{I} = 10 \text{ mV},$ $C_{L} = 20 \text{ pF},$	$V_{I} = 10 \text{ mV},$	$V_{I} = 10 \text{ mV},$	$V_{l} = 10 \text{ mV},$	f = B ₁ , See Figure 3	−55°C		52°								
	-		See Figure 3	125°C		44°											

Datasheet of TLC277CPS - IC OPAMP GP 2.2MHZ 8SO

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

TLC272, TLC272A, TLC272B, TLC272Y, TLC277 LinCMOS™ PRECISION DUAL OPERATIONAL AMPLIFIERS

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

operating characteristics, V_{DD} = 5 V, T_A = 25°C

	PARAMETER	_	TEST CONDITIONS			TLC272Y		
	PARAMETER	11	EST CONDITIO	NS	MIN	TYP	MAX	UNIT
OD.	Classicate at write as in	$R_L = 10 \text{ k}\Omega$,	C _L = 20 pF,	V _{IPP} = 1 V		3.6		V// .
SR	Slew rate at unity gain	See Figure 1		V _{IPP} = 2.5 V		2.9		V/μs
Vn	Equivalent input noise voltage	f = 1 kHz,	$R_S = 20 \Omega$,	See Figure 2		25		nV/√ Hz
ВОМ	Maximum output-swing bandwidth	V _O = V _{OH} , See Figure 1	C _L = 20 pF,	R _L = 10 kΩ,		320		kHz
B ₁	Unity-gain bandwidth	V _I = 10 mV,	$C_L = 20 pF$,	See Figure 3		1.7		MHz
φm	Phase margin	V _I = 10 mV, See Figure 3	f = B ₁ ,	C _L = 20 pF,		46°		

operating characteristics, V_{DD} = 10 V, T_A = 25°C

	PARAMETER	_	TEST CONDITIONS			TLC272Y		
	FARAMETER		TEST CONDITIONS			TYP	MAX	UNIT
SR	Clause to at units anim	$R_L = 10 \text{ k}\Omega$,	C _L = 20 pF,	V _{IPP} = 1 V		5.3		Miss
SK	Slew rate at unity gain	See Figure 1		$V_{IPP} = 5.5 V$		4.6		V/μs
Vn	Equivalent input noise voltage	f = 1 kHz,	$R_S = 20 \Omega$,	See Figure 2		25		nV/√ Hz
ВОМ	Maximum output-swing bandwidth	V _O = V _{OH} , See Figure 1	$C_L = 20 pF$,	$R_L = 10 \text{ k}\Omega$,		200		kHz
В1	Unity-gain bandwidth	V _I = 10 mV,	C _L = 20 pF,	See Figure 3		2.2		MHz
φm	Phase margin	V _I = 10 mV, See Figure 3	f = B ₁ ,	C _L = 20 pF,		49°		

Datasheet of TLC277CPS - IC OPAMP GP 2.2MHZ 8SO

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

TLC272, TLC272A, TLC272B, TLC272Y, TLC277 LinCMOS™ PRECISION DUAL OPERATIONAL AMPLIFIERS

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

PARAMETER MEASUREMENT INFORMATION

single-supply versus split-supply test circuits

Because the TLC272 and TLC277 are optimized for single-supply operation, circuit configurations used for the various tests often present some inconvenience since the input signal, in many cases, must be offset from ground. This inconvenience can be avoided by testing the device with split supplies and the output load tied to the negative rail. A comparison of single-supply versus split-supply test circuits is shown below. The use of either circuit gives the same result.

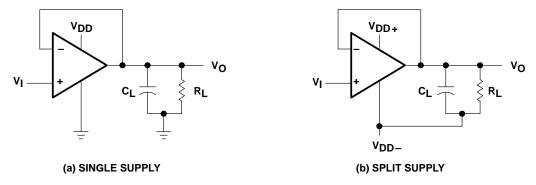


Figure 1. Unity-Gain Amplifier

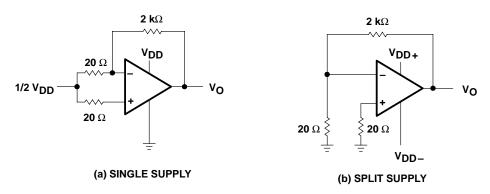


Figure 2. Noise-Test Circuit

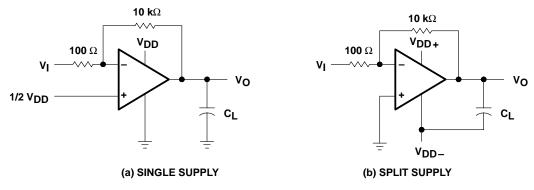


Figure 3. Gain-of-100 Inverting Amplifier

Datasheet of TLC277CPS - IC OPAMP GP 2.2MHZ 8SO

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

TLC272, TLC272A, TLC272B, TLC272Y, TLC277 LinCMOS™ PRECISION DUAL OPERATIONAL AMPLIFIERS

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

PARAMETER MEASUREMENT INFORMATION

input bias current

Because of the high input impedance of the TLC272 and TLC277 operational amplifiers, attempts to measure the input bias current can result in erroneous readings. The bias current at normal room ambient temperature is typically less than 1 pA, a value that is easily exceeded by leakages on the test socket. Two suggestions are offered to avoid erroneous measurements:

- 1. Isolate the device from other potential leakage sources. Use a grounded shield around and between the device inputs (see Figure 4). Leakages that would otherwise flow to the inputs are shunted away.
- Compensate for the leakage of the test socket by actually performing an input bias current test (using a picoammeter) with no device in the test socket. The actual input bias current can then be calculated by subtracting the open-socket leakage readings from the readings obtained with a device in the test socket.

One word of caution: many automatic testers as well as some bench-top operational amplifier testers use the servo-loop technique with a resistor in series with the device input to measure the input bias current (the voltage drop across the series resistor is measured and the bias current is calculated). This method requires that a device be inserted into the test socket to obtain a correct reading; therefore, an open-socket reading is not feasible using this method.

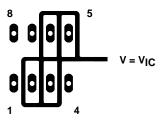


Figure 4. Isolation Metal Around Device Inputs (JG and P packages)

low-level output voltage

To obtain low-supply-voltage operation, some compromise was necessary in the input stage. This compromise results in the device low-level output being dependent on the common-mode input voltage level as well as the differential input voltage level. When attempting to correlate low-level output readings with those quoted in the electrical specifications, these two conditions should be observed. If conditions other than these are to be used, please refer to Figures 14 through 19 in the Typical Characteristics of this data sheet.

input offset voltage temperature coefficient

Erroneous readings often result from attempts to measure temperature coefficient of input offset voltage. This parameter is actually a calculation using input offset voltage measurements obtained at two different temperatures. When one (or both) of the temperatures is below freezing, moisture can collect on both the device and the test socket. This moisture results in leakage and contact resistance, which can cause erroneous input offset voltage readings. The isolation techniques previously mentioned have no effect on the leakage since the moisture also covers the isolation metal itself, thereby rendering it useless. It is suggested that these measurements be performed at temperatures above freezing to minimize error.

Datasheet of TLC277CPS - IC OPAMP GP 2.2MHZ 8SO

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

TLC272, TLC272A, TLC272B, TLC272Y, TLC277 LinCMOS™ PRECISION DUAL OPERATIONAL AMPLIFIERS

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

PARAMETER MEASUREMENT INFORMATION

full-power response

Full-power response, the frequency above which the operational amplifier slew rate limits the output voltage swing, is often specified two ways: full-linear response and full-peak response. The full-linear response is generally measured by monitoring the distortion level of the output while increasing the frequency of a sinusoidal input signal until the maximum frequency is found above which the output contains significant distortion. The full-peak response is defined as the maximum output frequency, without regard to distortion, above which full peak-to-peak output swing cannot be maintained.

Because there is no industry-wide accepted value for significant distortion, the full-peak response is specified in this data sheet and is measured using the circuit of Figure 1. The initial setup involves the use of a sinusoidal input to determine the maximum peak-to-peak output of the device (the amplitude of the sinusoidal wave is increased until clipping occurs). The sinusoidal wave is then replaced with a square wave of the same amplitude. The frequency is then increased until the maximum peak-to-peak output can no longer be maintained (Figure 5). A square wave is used to allow a more accurate determination of the point at which the maximum peak-to-peak output is reached.

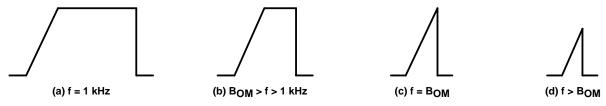


Figure 5. Full-Power-Response Output Signal

test time

Inadequate test time is a frequent problem, especially when testing CMOS devices in a high-volume, short-test-time environment. Internal capacitances are inherently higher in CMOS than in bipolar and BiFET devices and require longer test times than their bipolar and BiFET counterparts. The problem becomes more pronounced with reduced supply levels and lower temperatures.

Datasheet of TLC277CPS - IC OPAMP GP 2.2MHZ 8SO

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

TLC272, TLC272A, TLC272B, TLC272Y, TLC277 LinCMOS™ PRECISION DUAL OPERATIONAL AMPLIFIERS

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

TYPICAL CHARACTERISTICS

Table of Graphs

			FIGURE
V _{IO}	Input offset voltage	Distribution	6, 7
ανιο	Temperature coefficient of input offset voltage	Distribution	8, 9
Vон	High-level output voltage	vs High-level output current vs Supply voltage vs Free-air temperature	10, 11 12 13
V _{OL}	Low-level output voltage	vs Common-mode input voltage vs Differential input voltage vs Free-air temperature vs Low-level output current	14, 15 16 17 18, 19
A_{VD}	Large-signal differential voltage amplification	vs Supply voltage vs Free-air temperature vs Frequency	20 21 32, 33
l _{IB}	Input bias current	vs Free-air temperature	22
lιο	Input offset current	vs Free-air temperature	22
VIC	Common-mode input voltage	vs Supply voltage	23
I _{DD}	Supply current	vs Supply voltage vs Free-air temperature	24 25
SR	Slew rate	vs Supply voltage vs Free-air temperature	26 27
	Normalized slew rate	vs Free-air temperature	28
VO(PP)	Maximum peak-to-peak output voltage	vs Frequency	29
B ₁	Unity-gain bandwidth	vs Free-air temperature vs Supply voltage	30 31
φm	Phase margin	vs Supply voltage vs Free-air temperature vs Load capacitance	34 35 36
Vn	Equivalent input noise voltage	vs Frequency	37
	Phase shift	vs Frequency	32, 33

TLC272, TLC272A, TLC272B, TLC272Y, TLC277 LINCMOS™ PRECISION DUAL OPERATIONAL AMPLIFIERS

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

TYPICAL CHARACTERISTICS

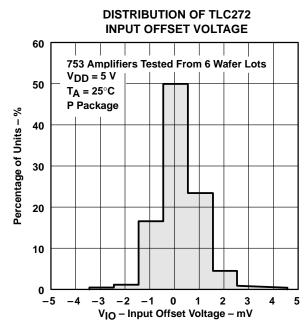


Figure 6

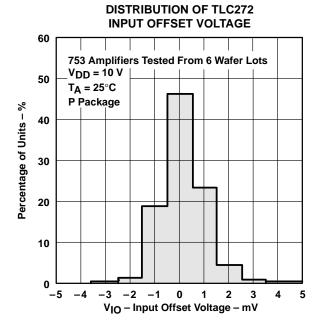


Figure 7

DISTRIBUTION OF TLC272 AND TLC277 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT

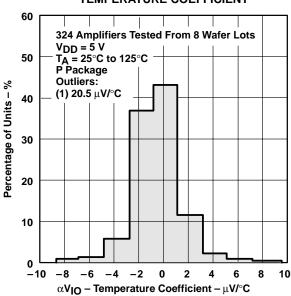
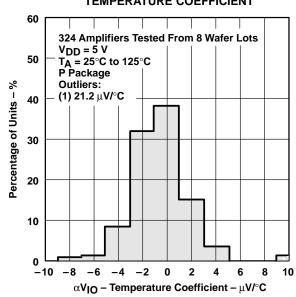
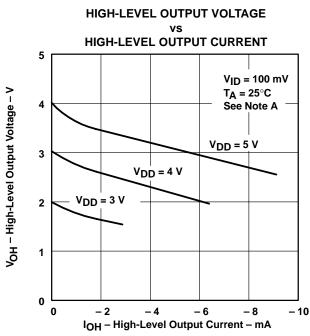


Figure 8

DISTRIBUTION OF TLC272 AND TLC277 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT




Figure 9

TLC272, TLC272A, TLC272B, TLC272Y, TLC277 LinCMOS™ PRECISION DUAL OPERATIONAL AMPLIFIERS

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

TYPICAL CHARACTERISTICS[†]

NOTE A: The 3-V curve only applies to the C version.

Figure 10

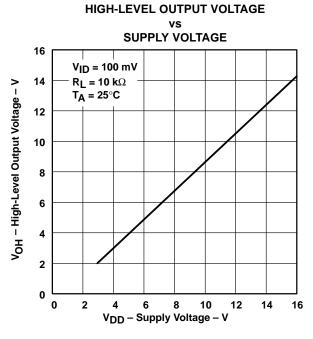


Figure 12

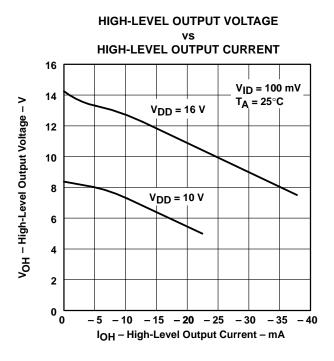
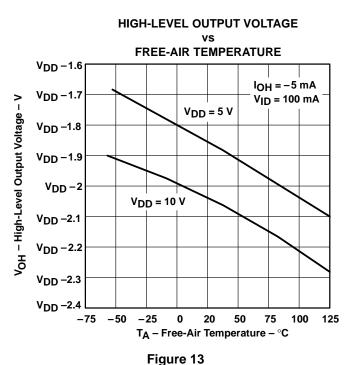



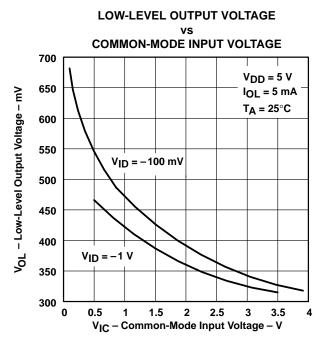
Figure 11

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

500

250

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com



Datasheet of TLC277CPS - IC OPAMP GP 2.2MHZ 8SO

TLC272, TLC272A, TLC272B, TLC272Y, TLC277 LINCMOS™ PRECISION DUAL OPERATIONAL AMPLIFIERS

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

TYPICAL CHARACTERISTICS[†]

V_{DD} = 10 V $I_{OL} = 5 \text{ mA}$ VoL - Low-Level Output Voltage - mV T_A = 25°C 450 400 $V_{ID} = -100 \text{ mV}$ $V_{ID} = -1 V$ 350 $V_{ID} = -2.5 V$ 300

3

LOW-LEVEL OUTPUT VOLTAGE

COMMON-MODE INPUT VOLTAGE

Figure 14

Figure 15

5

V_{IC} - Common-Mode Input Voltage - V

6

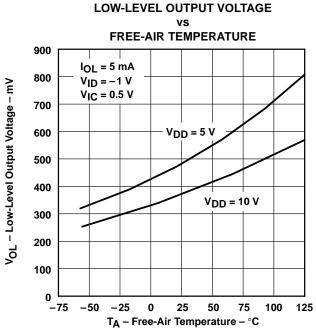
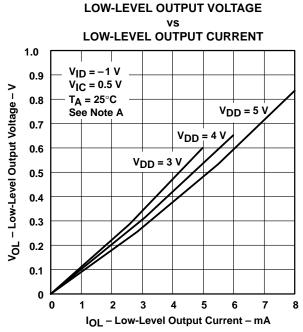
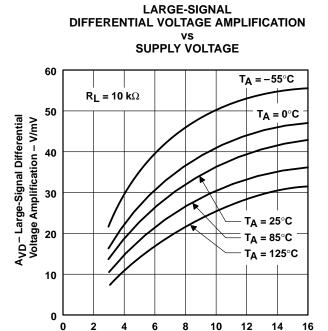


Figure 17


† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TLC272, TLC272A, TLC272B, TLC272Y, TLC277 LinCMOS™ PRECISION DUAL OPERATIONAL AMPLIFIERS


SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

TYPICAL CHARACTERISTICS[†]

NOTE A: The 3-V curve only applies to the C version.

Figure 18

V_{DD} – Supply Voltage – V

Figure 20

LOW-LEVEL OUTPUT VOLTAGE LOW-LEVEL OUTPUT CURRENT

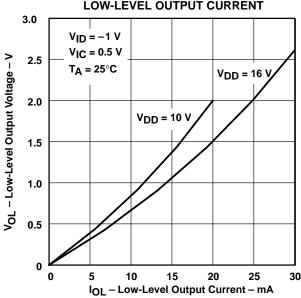


Figure 19

LARGE-SIGNAL **DIFFERENTIAL VOLTAGE AMPLIFICATION** vs

FREE-AIR TEMPERATURE

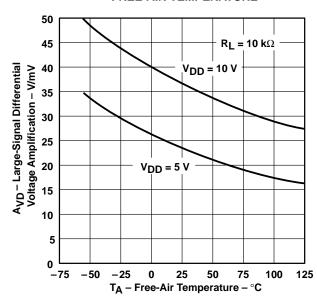
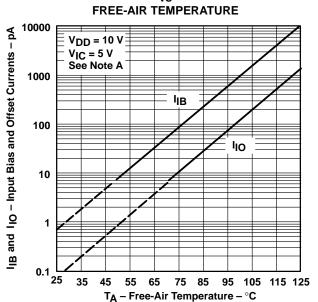


Figure 21

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.



TLC272, TLC272A, TLC272B, TLC272Y, TLC277 LinCMOS™ PRECISION DUAL OPERATIONAL AMPLIFIERS

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

TYPICAL CHARACTERISTICS[†]

INPUT BIAS CURRENT AND INPUT OFFSET CURRENT

NOTE A: The typical values of input bias current and input offset current below 5 pA were determined mathematically.

Figure 22

COMMON-MODE INPUT VOLTAGE POSITIVE LIMIT vs

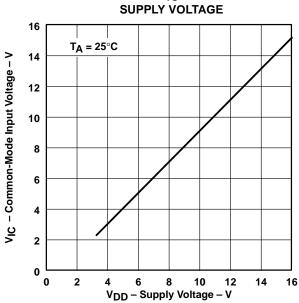


Figure 23

SUPPLY CURRENT vs FREE-AIR TEMPERATURE

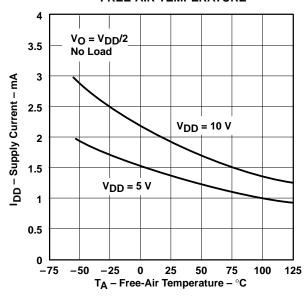


Figure 25

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TLC272, TLC272A, TLC272B, TLC272Y, TLC277 LinCMOS™ PRECISION DUAL OPERATIONAL AMPLIFIERS

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

TYPICAL CHARACTERISTICS[†]

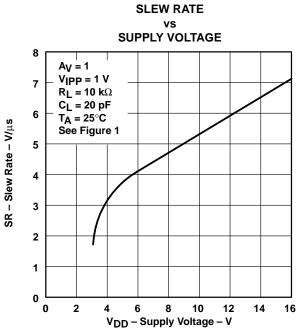
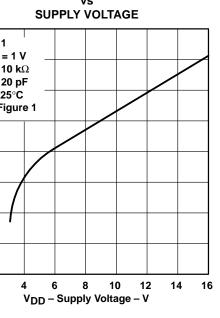



Figure 26

NORMALIZED SLEW RATE

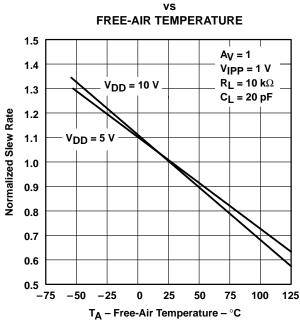


Figure 28

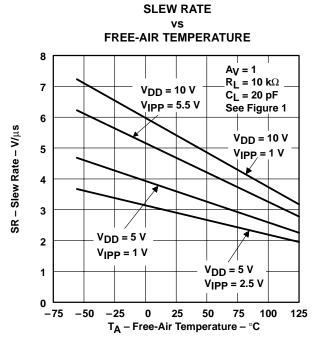
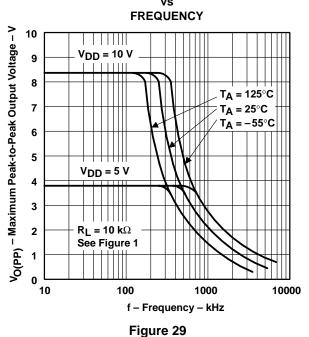
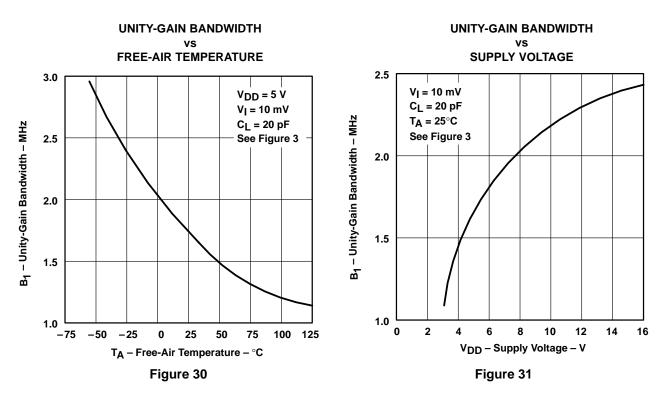



Figure 27

MAXIMUM PEAK OUTPUT VOLTAGE


[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TLC272, TLC272A, TLC272B, TLC272Y, TLC277 LINCMOS™ PRECISION DUAL OPERATIONAL AMPLIFIERS

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

TYPICAL CHARACTERISTICS[†]

LARGE-SIGNAL DIFFERENTIAL VOLTAGE **AMPLIFICATION AND PHASE SHIFT**

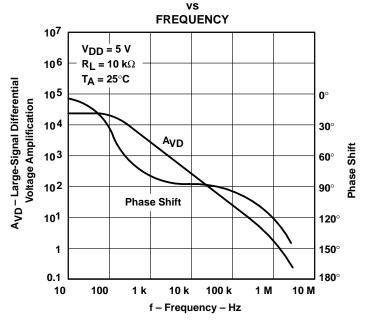


Figure 32

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TLC272, TLC272A, TLC272B, TLC272Y, TLC277 LinCMOS™ PRECISION DUAL OPERATIONAL AMPLIFIERS

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

TYPICAL CHARACTERISTICS[†]

LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT

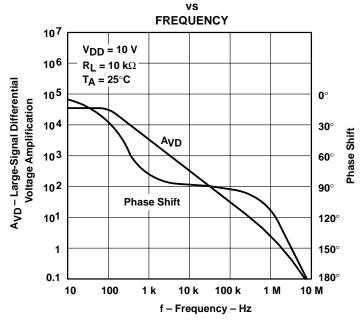
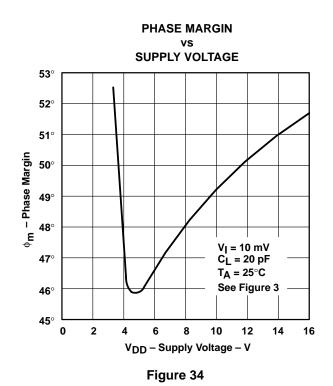
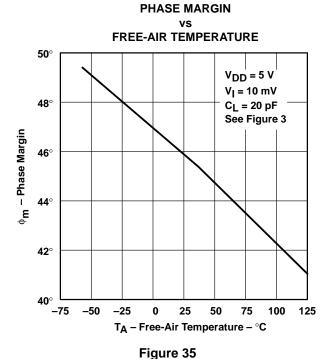
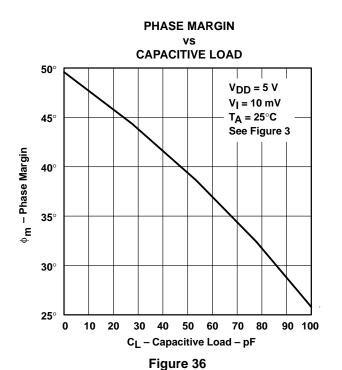




Figure 33


† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TLC272, TLC272A, TLC272B, TLC272Y, TLC277 LinCMOS™ PRECISION DUAL OPERATIONAL AMPLIFIERS

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

TYPICAL CHARACTERISTICS

EQUIVALENT INPUT NOISE VOLTAGE vs **FREQUENCY** 400 V_n – Equivalent Input Noise Voltage – nV/ $\sqrt{\text{Hz}}$ $V_{DD} = 5 V$ $R_S = 20 \Omega$ TA = 25°C 300 See Figure 2 200 100 0 10 100 1000

Figure 37

f – Frequency – Hz

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

TLC272, TLC272A, TLC272B, TLC272Y, TLC277

LinCMOS™ PRECISION DUAL OPERATIONAL AMPLIFIERS

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

APPLICATION INFORMATION

single-supply operation

While the TLC272 and TLC277 perform well using dual power supplies (also called balanced or split supplies), the design is optimized for single-supply operation. This design includes an input common-mode voltage range that encompasses ground as well as an output voltage range that pulls down to ground. The supply voltage range extends down to 3 V (C-suffix types), thus allowing operation with supply levels commonly available for TTL and HCMOS; however, for maximum dynamic range, 16-V single-supply operation is recommended.

Many single-supply applications require that a voltage be applied to one input to establish a reference level that is above ground. A resistive voltage divider is usually sufficient to establish this reference level (see Figure 38). The low input bias current of the TLC272 and TLC277 permits the use of very large resistive values to implement the voltage divider, thus minimizing power consumption.

The TLC272 and TLC277 work well in conjunction with digital logic; however, when powering both linear devices and digital logic from the same power supply, the following precautions are recommended:

- 1. Power the linear devices from separate bypassed supply lines (see Figure 39); otherwise, the linear device supply rails can fluctuate due to voltage drops caused by high switching currents in the digital logic.
- 2. Use proper bypass techniques to reduce the probability of noise-induced errors. Single capacitive decoupling is often adequate; however, high-frequency applications may require RC decoupling.

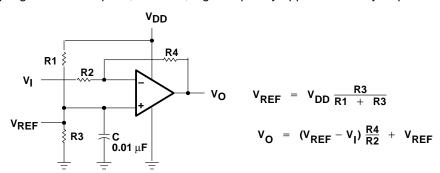
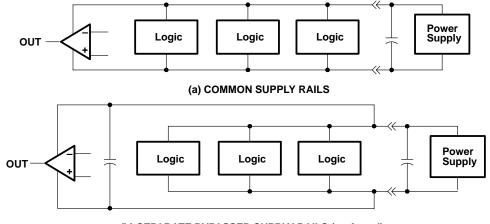



Figure 38. Inverting Amplifier With Voltage Reference

(b) SEPARATE BYPASSED SUPPLY RAILS (preferred)

Figure 39. Common vs Separate Supply Rails

Datasheet of TLC277CPS - IC OPAMP GP 2.2MHZ 8SO

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

TLC272, TLC272A, TLC272B, TLC272Y, TLC277 LinCMOS™ PRECISION DUAL OPERATIONAL AMPLIFIERS

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

APPLICATION INFORMATION

input characteristics

The TLC272 and TLC277 are specified with a minimum and a maximum input voltage that, if exceeded at either input, could cause the device to malfunction. Exceeding this specified range is a common problem, especially in single-supply operation. Note that the lower range limit includes the negative rail, while the upper range limit is specified at $V_{DD} - 1 V$ at $T_A = 25^{\circ}C$ and at $V_{DD} - 1.5 V$ at all other temperatures.

The use of the polysilicon-gate process and the careful input circuit design gives the TLC272 and TLC277 very good input offset voltage drift characteristics relative to conventional metal-gate processes. Offset voltage drift in CMOS devices is highly influenced by threshold voltage shifts caused by polarization of the phosphorus dopant implanted in the oxide. Placing the phosphorus dopant in a conductor (such as a polysilicon gate) alleviates the polarization problem, thus reducing threshold voltage shifts by more than an order of magnitude. The offset voltage drift with time has been calculated to be typically 0.1 μ V/month, including the first month of operation.

Because of the extremely high input impedance and resulting low bias current requirements, the TLC272 and TLC277 are well suited for low-level signal processing; however, leakage currents on printed-circuit boards and sockets can easily exceed bias current requirements and cause a degradation in device performance. It is good practice to include guard rings around inputs (similar to those of Figure 4 in the Parameter Measurement Information section). These guards should be driven from a low-impedance source at the same voltage level as the common-mode input (see Figure 40).

Unused amplifiers should be connected as grounded unity-gain followers to avoid possible oscillation.

noise performance

The noise specifications in operational amplifier circuits are greatly dependent on the current in the first-stage differential amplifier. The low input bias current requirements of the TLC272 and TLC277 result in a very low noise current, which is insignificant in most applications. This feature makes the devices especially favorable over bipolar devices when using values of circuit impedance greater than 50 k Ω , since bipolar devices exhibit greater noise currents.

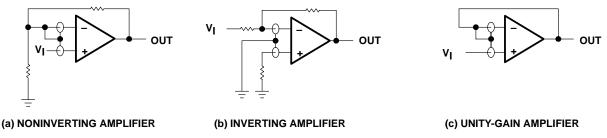


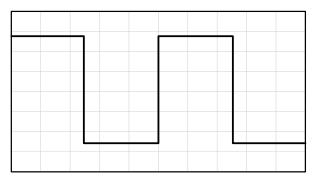
Figure 40. Guard-Ring Schemes

output characteristics

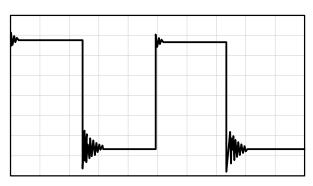
The output stage of the TLC272 and TLC277 is designed to sink and source relatively high amounts of current (see typical characteristics). If the output is subjected to a short-circuit condition, this high current capability can cause device damage under certain conditions. Output current capability increases with supply voltage.

All operating characteristics of the TLC272 and TLC277 are measured using a 20-pF load. The devices can drive higher capacitive loads; however, as output load capacitance increases, the resulting response pole occurs at lower frequencies, thereby causing ringing, peaking, or even oscillation (see Figure 41). In many cases, adding a small amount of resistance in series with the load capacitance alleviates the problem.

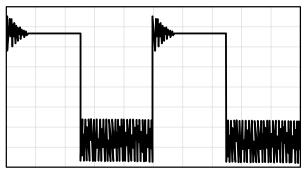
Datasheet of TLC277CPS - IC OPAMP GP 2.2MHZ 8SO

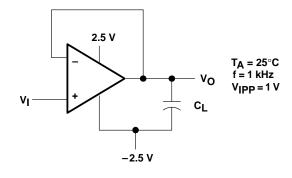

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

TLC272, TLC272A, TLC272B, TLC272Y, TLC277 LinCMOS™ PRECISION DUAL OPERATIONAL AMPLIFIERS


SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

APPLICATION INFORMATION


output characteristics (continued)


(a) $C_L = 20 pF$, $R_L = NO LOAD$

(b) $C_L = 130 \text{ pF}$, $R_L = NO \text{ LOAD}$

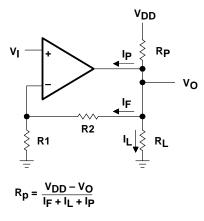
(c) $C_L = 150 \text{ pF}, R_L = NO \text{ LOAD}$

(d) TEST CIRCUIT

Figure 41. Effect of Capacitive Loads and Test Circuit

Although the TLC272 and TLC277 possess excellent high-level output voltage and current capability, methods for boosting this capability are available, if needed. The simplest method involves the use of a pullup resistor (R_P) connected from the output to the positive supply rail (see Figure 42). There are two disadvantages to the use of this circuit. First, the NMOS pulldown transistor N4 (see equivalent schematic) must sink a comparatively large amount of current. In this circuit, N4 behaves like a linear resistor with an on resistance between approximately 60 Ω and 180 Ω , depending on how hard the operational amplifier input is driven. With very low values of R_P, a voltage offset from 0 V at the output occurs. Second, pullup resistor R_P acts as a drain load to N4 and the gain of the operational amplifier is reduced at output voltage levels where N5 is not supplying the output current.

Datasheet of TLC277CPS - IC OPAMP GP 2.2MHZ 8SO


Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

TLC272, TLC272A, TLC272B, TLC272Y, TLC277 LinCMOS™ PRECISION DUAL OPERATIONAL AMPLIFIERS

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

APPLICATION INFORMATION

output characteristics (continued)

 I_p = Pullup current required by the operational amplifier (typically 500 μ A)

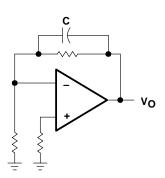


Figure 42. Resistive Pullup to Increase VOH

Figure 43. Compensation for Input Capacitance

feedback

Operational amplifier circuits almost always employ feedback, and since feedback is the first prerequisite for oscillation, some caution is appropriate. Most oscillation problems result from driving capacitive loads (discussed previously) and ignoring stray input capacitance. A small-value capacitor connected in parallel with the feedback resistor is an effective remedy (see Figure 43). The value of this capacitor is optimized empirically.

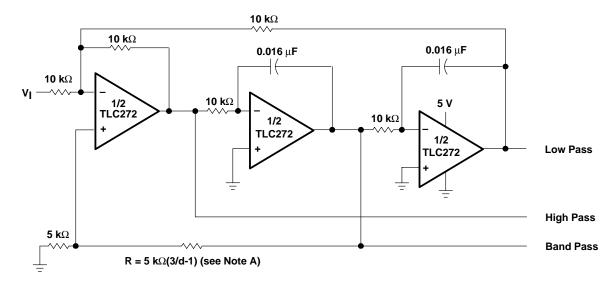
electrostatic discharge protection

The TLC272 and TLC277 incorporate an internal electrostatic discharge (ESD) protection circuit that prevents functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2. Care should be exercised, however, when handling these devices as exposure to ESD may result in the degradation of the device parametric performance. The protection circuit also causes the input bias currents to be temperature dependent and have the characteristics of a reverse-biased diode.

latch-up

Because CMOS devices are susceptible to latch-up due to their inherent parasitic thyristors, the TLC272 and TLC277 inputs and outputs were designed to withstand -100-mA surge currents without sustaining latch-up; however, techniques should be used to reduce the chance of latch-up whenever possible. Internal protection diodes should not, by design, be forward biased. Applied input and output voltage should not exceed the supply voltage by more than 300 mV. Care should be exercised when using capacitive coupling on pulse generators. Supply transients should be shunted by the use of decoupling capacitors (0.1 μ F typical) located across the supply rails as close to the device as possible.

The current path established if latch-up occurs is usually between the positive supply rail and ground and can be triggered by surges on the supply lines and/or voltages on either the output or inputs that exceed the supply voltage. Once latch-up occurs, the current flow is limited only by the impedance of the power supply and the forward resistance of the parasitic thyristor and usually results in the destruction of the device. The chance of latch-up occurring increases with increasing temperature and supply voltages.



Datasheet of TLC277CPS - IC OPAMP GP 2.2MHZ 8SO

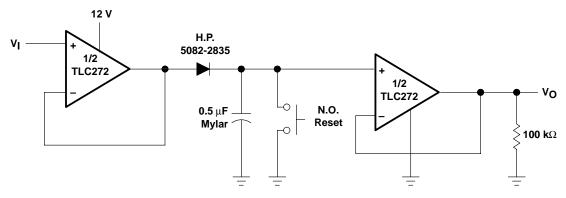
TLC272, TLC272A, TLC272B, TLC272Y, TLC277 LINCMOS™ PRECISION DUAL OPERATIONAL AMPLIFIERS

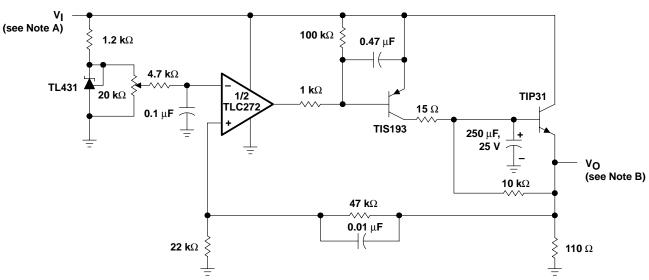
SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

APPLICATION INFORMATION

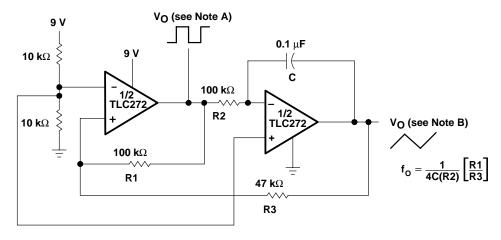
NOTE A: d = damping factor, 1/Q

Figure 44. State-Variable Filter




Figure 45. Positive-Peak Detector

TLC272, TLC272A, TLC272B, TLC272Y, TLC277 LinCMOS™ PRECISION DUAL OPERATIONAL AMPLIFIERS


SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

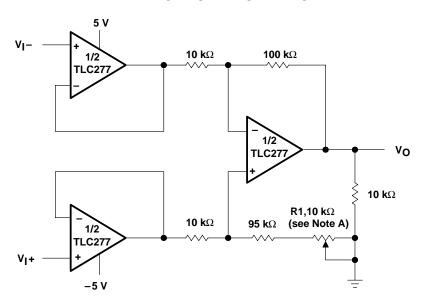
APPLICATION INFORMATION

NOTES: A. $V_I = 3.5 \text{ to } 15 \text{ V}$ B. $V_O = 2 \text{ V}, 0 \text{ to } 1 \text{ A}$

Figure 46. Logic-Array Power Supply

NOTES: A. $V_{O(PP)} = 8 \text{ V}$ B. $V_{O(PP)} = 4 \text{ V}$

Figure 47. Single-Supply Function Generator



TLC272, TLC272A, TLC272B, TLC272Y, TLC277

LINCMOS™ PRECISION DUAL OPERATIONAL AMPLIFIERS

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

APPLICATION INFORMATION

NOTE B: CMRR adjustment must be noninductive.

Figure 48. Low-Power Instrumentation Amplifier

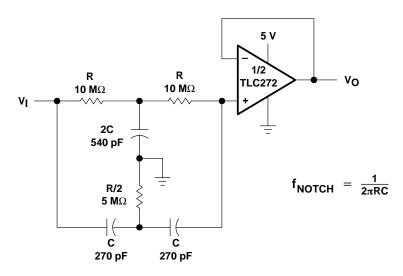


Figure 49. Single-Supply Twin-T Notch Filter

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

PACKAGE OPTION ADDENDUM

10-Jun-2014

PACKAGING INFORMATION

Orderable Device	vice Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Tem (1) Drawing Qty (2) (6) (3)		MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples						
5962-89494022A	OBSOLETE	LCCC	FK	20		TBD	Call TI	Call TI	-55 to 125	(112)		
TLC272ACD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	272AC	Sample	
TLC272ACDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	272AC	Sample	
TLC272ACDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	272AC	Sample	
TLC272ACDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	272AC	Sample	
TLC272ACP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TLC272ACP	Sample	
TLC272ACPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TLC272ACP	Sample	
TLC272AID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	272AI	Sample	
TLC272AIDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	272AI	Sample	
TLC272AIDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	272AI	Sample	
TLC272AIDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	272AI	Sampl	
TLC272AIP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 85	TLC272AIP	Sampl	
TLC272AIPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 85	TLC272AIP	Sampl	
TLC272BCD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	272BC	Sampl	
TLC272BCDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	272BC	Samp	
TLC272BCDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	272BC	Sampl	
TLC272BCDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	272BC	Sampl	

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

PACKAGE OPTION ADDENDUM

10-Jun-2014

Orderable Device	ce Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Ten (1) Qty (2) (6) (3)		MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples					
TLC272BCP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TLC272BCP	Samples
TLC272BCPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TLC272BCP	Samples
TLC272BID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	272BI	Samples
TLC272BIDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	272BI	Samples
TLC272BIDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	272BI	Samples
TLC272BIDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	272BI	Samples
TLC272BIP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 85	TLC272BIP	Samples
TLC272CD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	272C	Samples
TLC272CDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	272C	Samples
TLC272CDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	272C	Samples
TLC272CDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	272C	Samples
TLC272CP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TLC272CP	Samples
TLC272CPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TLC272CP	Samples
TLC272CPSR	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	P272	Samples
TLC272CPSRG4	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	P272	Samples
TLC272CPW	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	P272C	Samples
TLC272CPWG4	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	P272C	Samples
TLC272CPWLE	OBSOLETE	TSSOP	PW	8		TBD	Call TI	Call TI	0 to 70		

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

PACKAGE OPTION ADDENDUM

www.ti.com 10-Jun-2014

Orderable Device		Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Sampl
TI COZOCDWD	(1) ACTIVE	TSSOP	PW	0		(2)	(6) CU NIPDAU	(3) Level-1-260C-UNLIM	0 to 70	(4/5) P272C	
TLC272CPWR	ACTIVE	1550P	PW	8	2000	Green (RoHS & no Sb/Br)	CO NIPDAU	Level-1-2000-OINLINI 0 to 70		P2/2C	Sampl
TLC272CPWRG4	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	P272C	Sampl
TLC272ID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	2721	Sampl
TLC272IDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	2721	Samp
TLC272IDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	2721	Samp
TLC272IDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM -40 to 85		2721	Samp
TLC272IP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type -40 to 85		TLC272IP	Samp
TLC272IPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type -40 to 85		TLC272IP	Samp
TLC272MFKB	OBSOLETE	LCCC	FK	20		TBD	Call TI	Call TI	-55 to 125		
TLC272MJG	OBSOLETE	CDIP	JG	8		TBD	Call TI	Call TI	-55 to 125		
TLC272MJGB	OBSOLETE	CDIP	JG	8		TBD	Call TI	Call TI	-55 to 125		
TLC272P-M	PREVIEW	PDIP	Р	8		TBD	Call TI	Call TI			
TLC277CD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		277C	Samp
TLC277CDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		277C	Samp
TLC277CDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		277C	Samp
TLC277CDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		277C	Sam
TLC277CP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type		TLC277CP	Samj
TLC277CPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type		TLC277CP	Sam
TLC277CPSR	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		P277	Sam
TLC277ID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		2771	Sam

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

PACKAGE OPTION ADDENDUM

www.ti.com 10-Jun-2014

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TLC277IDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		2771	Samples
TLC277IDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		2771	Samples
TLC277IDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		2771	Samples
TLC277IP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type		TLC277IP	Samples
TLC277IPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type		TLC277IP	Samples
TLC277MFKB	OBSOLETE	LCCC	FK	20		TBD	Call TI	Call TI	-55 to 125		
TLC277MJG	OBSOLETE	CDIP	JG	8		TBD	Call TI	Call TI	-55 to 125		
TLC277MJGB	OBSOLETE	CDIP	JG	8		TBD	Call TI	Call TI	-55 to 125		

⁽¹⁾ The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): Ti's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "-" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

PACKAGE OPTION ADDENDUM

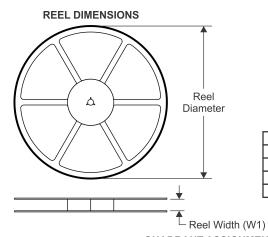
www.ti.com 10-Jun-2014

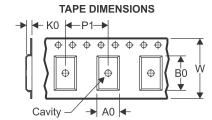
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information thus provided destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

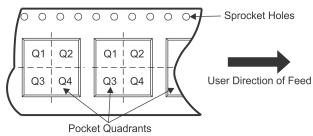
Datasheet of TLC277CPS - IC OPAMP GP 2.2MHZ 8SO


Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com



PACKAGE MATERIALS INFORMATION

www.ti.com 14-May-2016

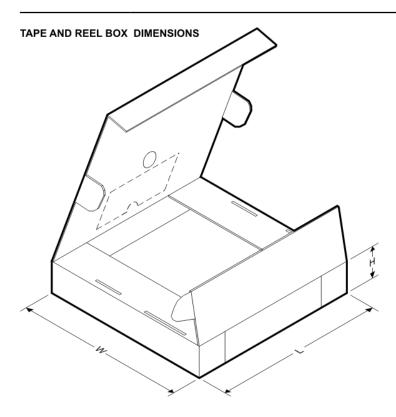

TAPE AND REEL INFORMATION

- A0 Dimension designed to accommodate the component width
- B0 Dimension designed to accommodate the component length
- K0 Dimension designed to accommodate the component thickness
- W Overall width of the carrier tape
- P1 Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

"All dimensions are nominal	1				1	1						1
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TLC272ACDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC272AIDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC272BCDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC272BCDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC272BIDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC272BIDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC272CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC272CPWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
TLC272IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC277CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC277CPSR	SO	PS	8	2000	330.0	16.4	8.2	6.6	2.5	12.0	16.0	Q1
TLC277IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC277IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1


Datasheet of TLC277CPS - IC OPAMP GP 2.2MHZ 8SO

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

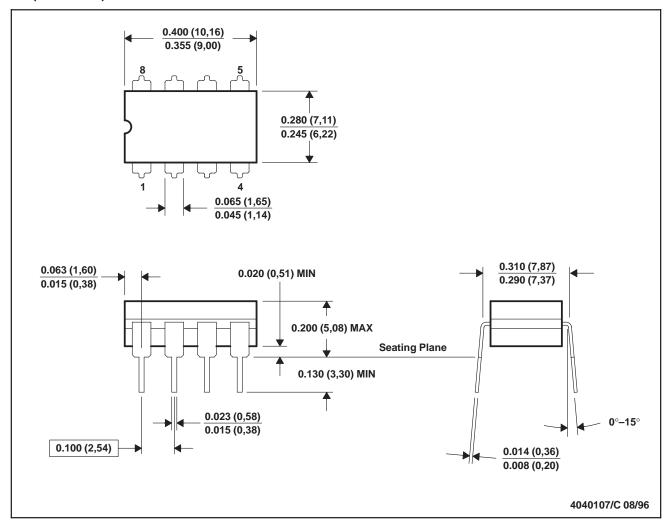
PACKAGE MATERIALS INFORMATION

www.ti.com 14-May-2016

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TLC272ACDR	SOIC	D	8	2500	340.5	338.1	20.6
TLC272AIDR	SOIC	D	8	2500	340.5	338.1	20.6
TLC272BCDR	SOIC	D	8	2500	367.0	367.0	38.0
TLC272BCDR	SOIC	D	8	2500	340.5	338.1	20.6
TLC272BIDR	SOIC	D	8	2500	340.5	338.1	20.6
TLC272BIDR	SOIC	D	8	2500	367.0	367.0	38.0
TLC272CDR	SOIC	D	8	2500	340.5	338.1	20.6
TLC272CPWR	TSSOP	PW	8	2000	367.0	367.0	35.0
TLC272IDR	SOIC	D	8	2500	340.5	338.1	20.6
TLC277CDR	SOIC	D	8	2500	340.5	338.1	20.6
TLC277CPSR	SO	PS	8	2000	367.0	367.0	38.0
TLC277IDR	SOIC	D	8	2500	340.5	338.1	20.6
TLC277IDR	SOIC	D	8	2500	367.0	367.0	38.0

Datasheet of TLC277CPS - IC OPAMP GP 2.2MHZ 8SO


Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

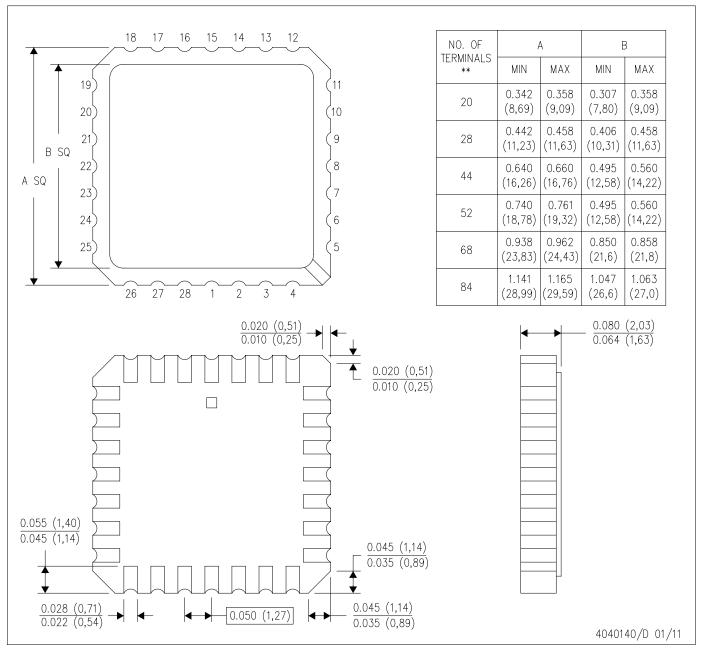
MECHANICAL DATA

MCER001A - JANUARY 1995 - REVISED JANUARY 1997

JG (R-GDIP-T8)

CERAMIC DUAL-IN-LINE

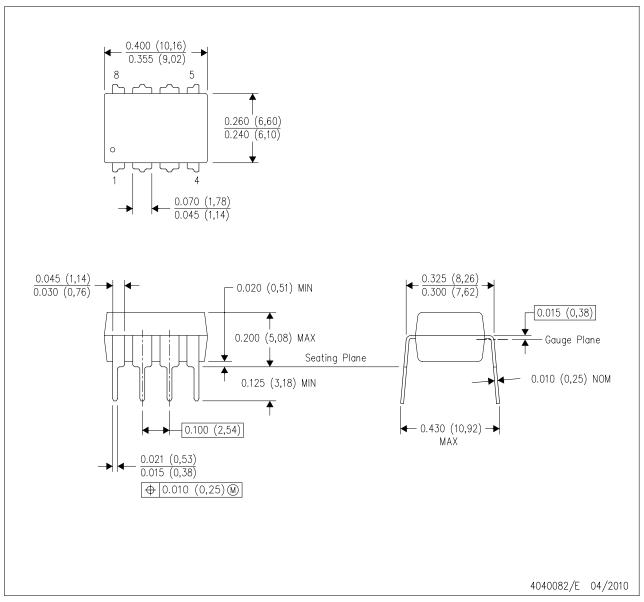
NOTES: A. All linear dimensions are in inches (millimeters).


- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification.
- E. Falls within MIL STD 1835 GDIP1-T8

FK (S-CQCC-N**)

LEADLESS CERAMIC CHIP CARRIER

28 TERMINAL SHOWN


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004

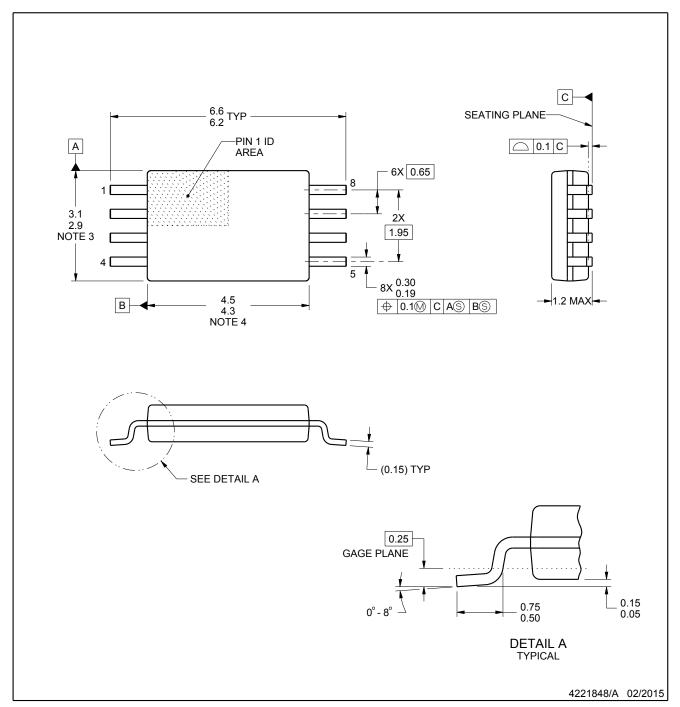
P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

Datasheet of TLC277CPS - IC OPAMP GP 2.2MHZ 8SO

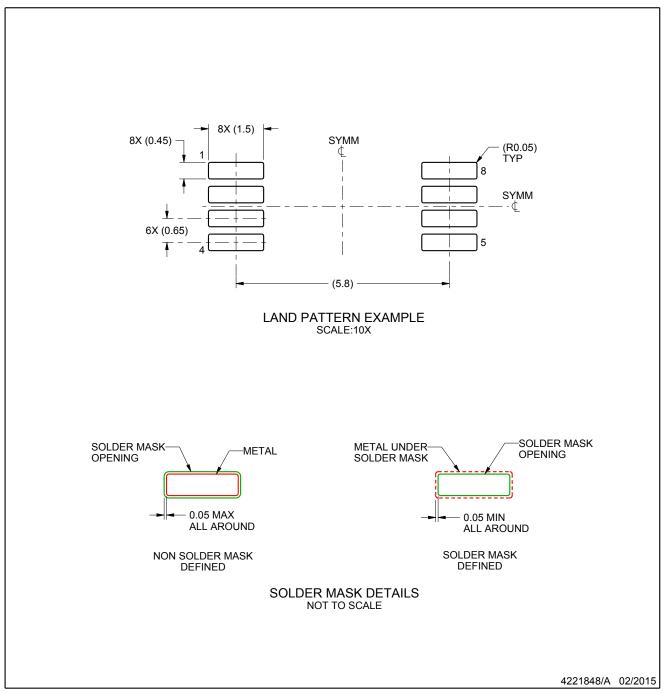

PACKAGE OUTLINE

PW0008A

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153, variation AA.



EXAMPLE BOARD LAYOUT

PW0008A

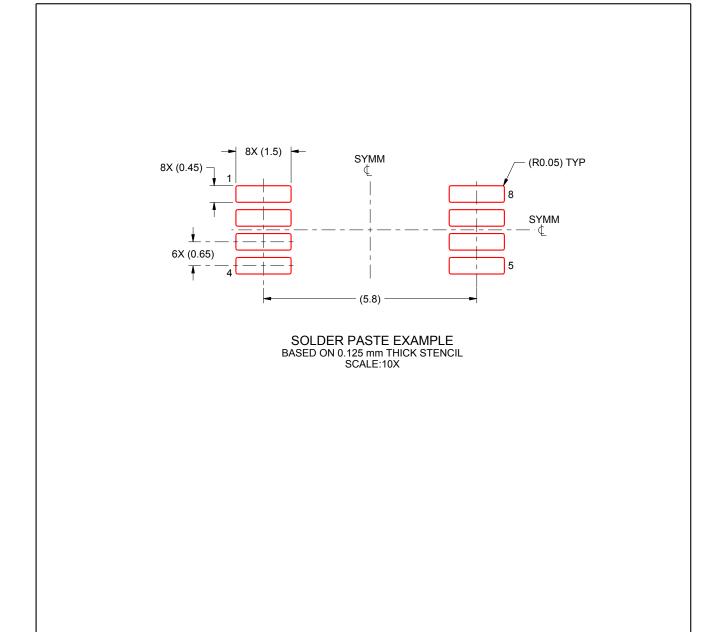
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.


EXAMPLE STENCIL DESIGN

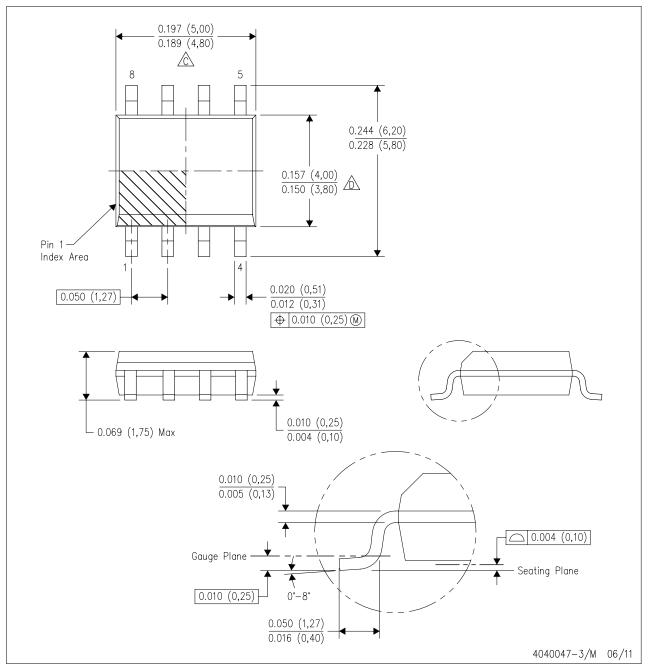
PW0008A

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

4221848/A 02/2015

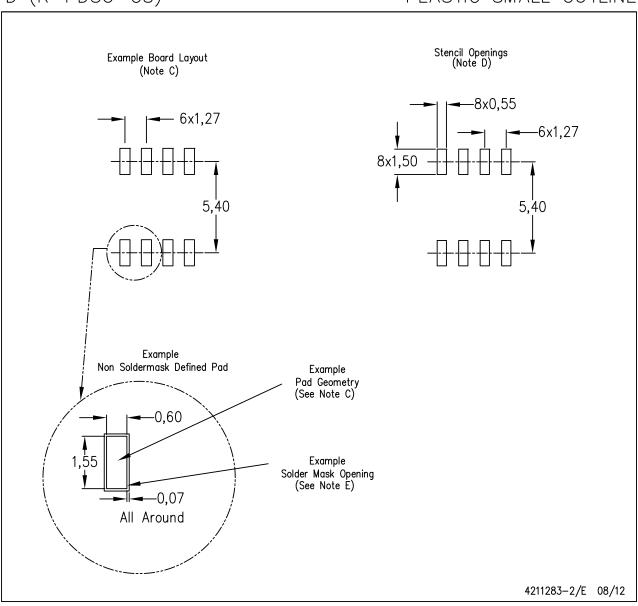
NOTES: (continued)


- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- Board assembly site may have different recommendations for stencil design.

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

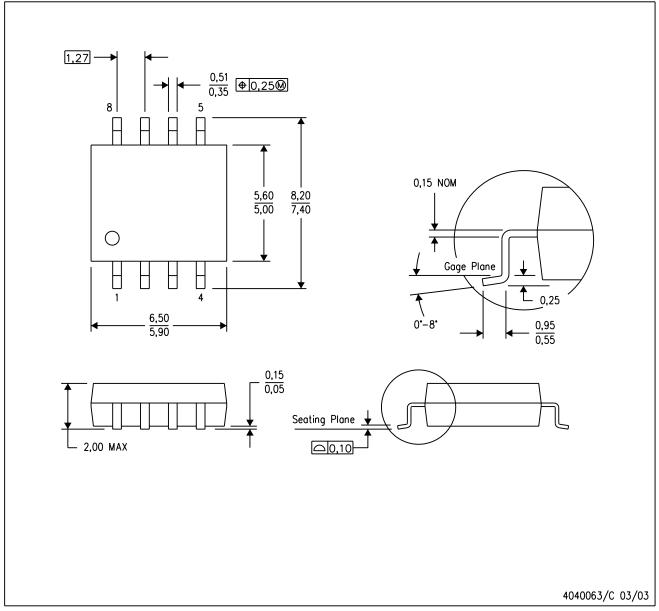
- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.



LAND PATTERN DATA

D (R-PDSO-G8)

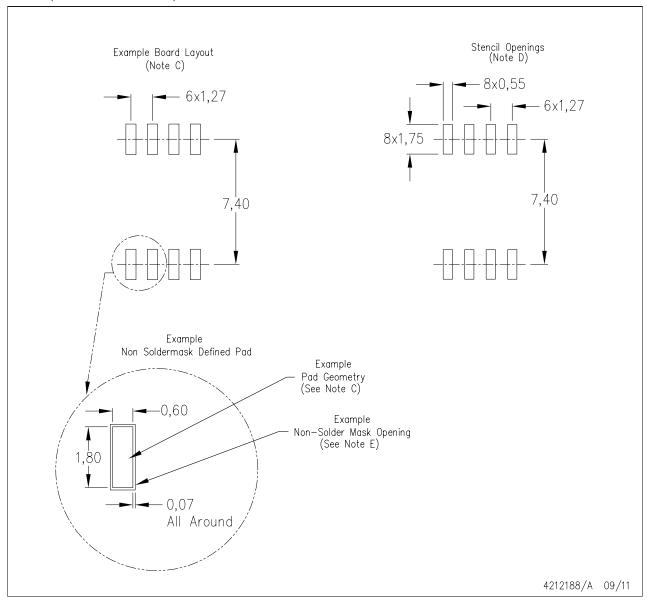
PLASTIC SMALL OUTLINE


- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PS (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.


Datasheet of TLC277CPS - IC OPAMP GP 2.2MHZ 8SO

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

LAND PATTERN DATA

PS (R-PDSO-G8)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

Datasheet of TLC277CPS - IC OPAMP GP 2.2MHZ 8SO

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications Computers and Peripherals **Data Converters** dataconverter.ti.com www.ti.com/computers **DLP® Products** Consumer Electronics www.ti.com/consumer-apps www.dlp.com DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial

Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Security www.ti.com/security Logic

Power Mgmt Space, Avionics and Defense www.ti.com/space-avionics-defense power.ti.com

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

Products

OMAP Applications Processors TI E2E Community www.ti.com/omap e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated