

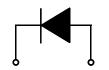
November 2014

FFPF08S60SN

8 A, 600 V, STEALTHTM II Diode

Features

- Stealth Recovery t_{rr} = 25 ns (@ I_F = 8 A)
- Max Forward Voltage, V_F = 3.4 V (@ T_C = 25°C)
- · 600 V Reverse Voltage and High Reliability
- · Avalanche Energy Rated
- · RoHS Compliant


Applications

- General Purpose
- · SMPS, Power Switching Circuits
- · Boost Diode in Continuous Mode Power Factor Corrections

Description

The FFPF08S60SN is a STEALTH™ II diode with soft recovery characteristics. It is silicon nitride passivated ion-implanted epitaxial planar construction. This device is intended for use as freewheeling of boost diode in switching power supplies and other power swithching applications. Their low stored charge and hyperfast soft recovery minimize ringing and electrical noise in many power switching circuits reducing power loss in the switching transistors.

1. Cathode 2. Anode

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Parameter	Ratings	Unit	
V_{RRM}	Peak Repetitive Reverse Voltage	600	V	
V_{RWM}	Vorking Peak Reverse Voltage 600			
V_R	DC Blocking Voltage	600	V	
I _{F(AV)}	Average Rectified Forward Current @ T _C = 60°C	8	Α	
I _{FSM}	Non-repetitive Peak Surge Current 60Hz Single Half-Sine Wave 60		А	
T _J , T _{STG}	Operating and Storage Temperature Range -65 to +175			

Thermal Characteristics

Symbol	Parameter	Max.	Unit
$R_{\theta JC}$	Maximum Thermal Resistance, Junction to Case	6.8	°C/W

Package Marking and Ordering Information

Part Number	Top Mark	Package	Packing Method	Reel Size	Tape Width	Quantity
FFPF08S60SNTU	FFPF08S60SN	TO-220F-2L	Tube	N/A	N/A	50

Electrical Characteristics $T_C = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter		Min.	Тур.	Max.	Unit
V_1	I _F = 8 A	$T_{\rm C} = 25^{\rm o}{\rm C}$ $T_{\rm C} = 125^{\rm o}{\rm C}$	=	2.7	3.4	V
V _F 1	I _F = 8 A	$T_{\rm C} = 125^{\rm o}{\rm C}$	-	2.1	-	V
1.4	$V_R = 600 \text{ V}$ $V_R = 600 \text{ V}$	$T_{C} = 25^{\circ}C$	-	-	100	μА
I _R 1		$T_{C} = 125^{\circ}C$	-	-	500	
t _{rr}	$I_F = 1 \text{ A, di}_F/\text{dt} = 100 \text{ A/}\mu\text{s, V}_R = 30 \text{ V}$	$T_C = 25^{\circ}C$	-	13	-	ns
t _{rr}			-	15	25	ns
I _{rr}	I _E = 8 A, di _E /dt = 200 A/μs, V _R = 390 V	$T_{\rm C} = 25^{\rm o}{\rm C}$	-	2.5	-	Α
S factor	$I_F = 6 \text{ A}, U_{IF}/U_{I} = 200 \text{ A}/\mu\text{S}, V_{R} = 390 \text{ V}$	1C = 23 C	-	0.4	-	
Q_{rr}			-	19	-	nC
t _{rr}			-	32	-	ns
I _{rr}	$I_{E} = 8 \text{ A}, di_{E}/dt = 200 \text{ A}/\mu\text{s}, V_{R} = 390 \text{ V}$	$T_{\rm C} = 125^{\rm o}{\rm C}$	-	3.8	-	Α
S factor	$I_F = 6 \text{ A}, U_{F}/U_{C} = 200 \text{ A}/\mu S, V_{R} = 390 V$	1C = 123 C	-	0.7	-	
Q_{rr}			-	62	-	nC
W_{AVL}	Avalanche Energy (L = 40 mH)		10	-	-	mJ

Test Circuit and Waveforms

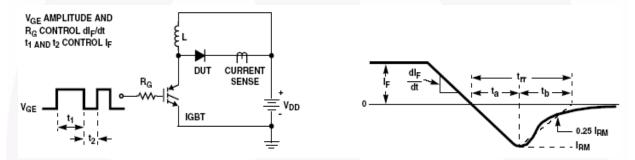


Figure 1. Diode Reverse Recovery Test Circuit & Waveform

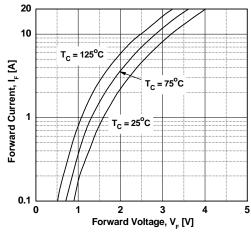

L = 40mH R < 0.1Ω $V_{DD} = 50V$ $\mathsf{EAVL} = 1/2\mathsf{LI2} \; [\mathsf{V}_{\mathsf{R}(\mathsf{AVL})}/(\mathsf{V}_{\mathsf{R}(\mathsf{AVL})} - \mathsf{V}_{\mathsf{DD}})]$ Q1 = IGBT (BV_{CES} > DUT V_{R(AVL)}) V_{AVL} CURRENT SENSE V_{DD}

Figure 2. Unclamped Inductive Switching Test Circuit & Waveform

Notes: 1: Pulse: Test Pulse width = 300 μ s, Duty Cycle = 2%

Typical Performance Characteristics

Figure 3. Typical Forward Voltage Drop vs. Forward Current

Figure 5. Typical Junction Capacitance

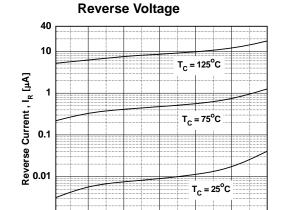


Figure 4. Typical Reverse Current vs.

Figure 6. Typical Reverse Recovery Time vs. di/dt

300

Reverse Voltage, V_R [V]

600

200

0.001

10

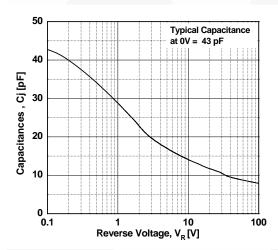


Figure 7. Typical Reverse Recovery Current vs. di/dt

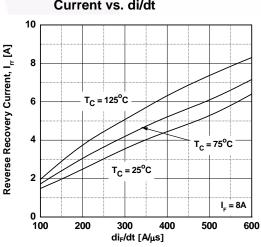
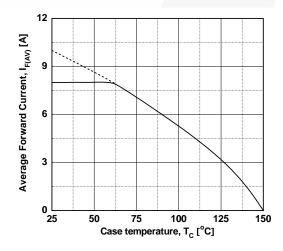



Figure 8. Forward Current Derating Curve

Mechanical Dimensions

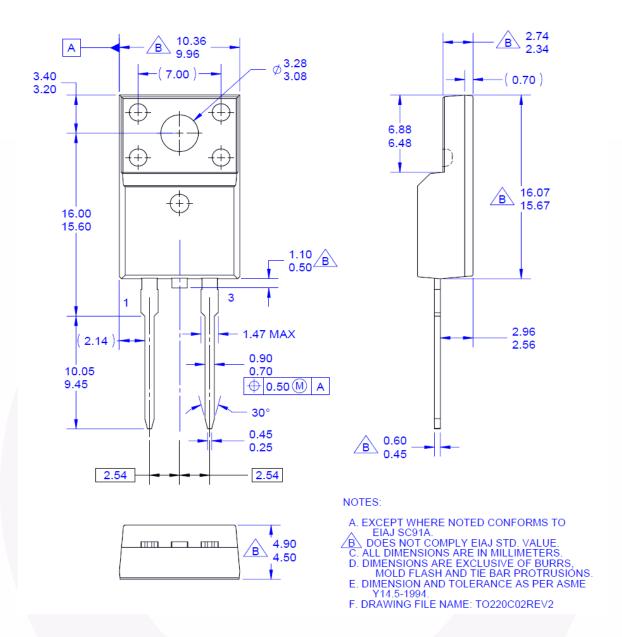


Figure 9. TO-220F 2L - 2LD; TO220; MOLDED; FULL PACK

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN TF220-002.

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

ntended to be an exhaustive list of AccuPower™
Awinda®
AX-CAP®*
BitSiC™
Build it Now™
CorePLUS™
CorePOWER™
CROSSVOLT™
CTL™

CTL™
Current Transfer Logic™
DEUXPEED®
Dual Cool™
EcoSPARK®
EfficentMax™
ESBC™

Fairchild[®]
Fairchild Semiconductor[®]
FACT Quiet Series[™]
FACT[®]
FAST[®]
FastvCore[™]
FETBench[™]
FPS[™]

F-PFS™ FRFET® Global Power ResourceSM GreenBridge™ Green FPS™

Green FPS™ e-Series™
Gmax™
GTO™
IntelliMAX™
ISOPLANAR™

Marking Small Speakers Sound Louder and Better™

MegaBuck™
MICROCOUPLER™
MicroFET™
MicroPak™
MicroPak2™
MillerDrive™
MotionMax™

MotionMax™ MotionGrid® MTi® MTx® MVN® mWSaver® OptoHiT™ ® PowerTrench[®] PowerXS™

Programmable Active Droop™

QFET®
QS™
Quiet Series™
RapidConfigure™

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

SPM®
STEALTH™
SuperFET®
SuperSOT™-3
SuperSOT™-8
SuperMOS®
SyncFET™
Sync-Lock™

SYSTEM ®*
GENERAL
TinyBoost®
TinyBuck®
TinyCalc™
TinyLogic®
TiNYOPTO™
TinyPower™
TinyPower™
TinyPWM™
TinyWire™
TranSiC™
TriFault Detect™
TRUECURRENT®*

µSerDes™

Scribes* UHC® UItra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™ XS™ Xsens™ 仙童™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT http://www.fairchildsemi.com. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

EAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are
 intended for surgical implant into the body or (b) support or sustain life,
 and (c) whose failure to perform when properly used in accordance with
 instructions for use provided in the labeling, can be reasonably
 expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification Product Status		Definition
		Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. I71