Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor GTLP6C816MTC

For any questions, you can email us directly: sales@integrated-circuit.com

June 1998 Revised December 2000

GTLP6C816 GTLP/TTL 1:6 Clock Driver

General Description

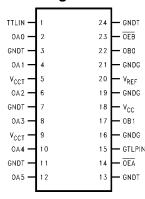
The GTLP6C816 is a clock driver that provides TTL to GTLP signal level translation (and vice versa). The device provides a high speed interface between cards operating at TTL logic levels and a backplane operating at GTLP logic levels. High speed backplane operation is a direct result of GTLP's reduced output swing (<1V), reduced input threshold levels and output edge rate control. The edge rate control minimizes bus settling time. GTLP is a Fairchild Semiconductor derivative of the Gunning Transceiver logic (GTL) JEDEC standard JESD8-3.

Fairchild's GTLP has internal edge-rate control and is process, voltage, and temperature (PVT) compensated. Its function is similar to BTL and GTL but with different output levels and receiver threshold. GTLP output LOW level is typically less than 0.5V, the output level HIGH is 1.5V and the receiver threshold is 1.0V.

Features

- Interface between LVTTL and GTLP logic levels
- Designed with edge rate control circuitry to reduce output noise on the GTLP port
- V_{REF} pin provides external supply reference voltage for receiver threshold adjustibility
- Special PVT compensation circuitry to provide consistent performance over variations of precess, supply voltage and temperature
- TTL compatible driver and control inputs
- Designed using Fairchild advanced CMOS technology
- Bushold data inputs on A port to eliminate the need for external pull-up resistors for unused inputs
- Power up/down and power off high impedance for live insertion
- 5V over voltage tolerance on LVTTL ports
- Open drain on GTLP to support wired-or connection
- A Port source/sink -24mA/+24mA
- B Port sink +50mA
- 1:6 fanout clock driver for TTL port
- 1:2 fanout clock driver for GTLP port

Ordering Code:


Order Number	Package Number	Package Description				
GTLP6C816MTC	MTC24	24-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide				

Device also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

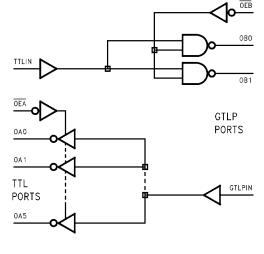
Pin Descriptions

Pin Names	Description			
TTLIN, GTLPIN	Clock Inputs (TTL and GTLP respectively)			
OEB	Output Enable (Active LOW) GTLP Port (TTL Levels)			
OEA	Output Enable (Active LOW) TTL Port (TTL Levels)			
V _{CCT} .GNDT	TTL Output Supplies (5V)			
V _{CC}	Internal Circuitry V _{CC} (5V)			
GNDG	OBn GTLP Output Grounds			
V_{REF}	Voltage Reference Input			
OA0-OA5	TTL Buffered Clock Outputs			
OB0-OB1	GTLP Buffered Clock Outputs			

Connection Diagram

GTLP6C816

Functional Description


The GTLP6C816 is a clock driver providing TTL-to-GTLP clock translation, and GTLP-to-TTL clock translation in the same package. The TTL-to-GTLP direction is a 1:2 clock driver path with a single Enable pin (OEB). For the GTLP-to-TTL direction the clock receiver path is a 1:6 buffer with a single Enable control (OEA). Data polarity is inverting for both directions.

Truth Tables

Inpu	ts	Outputs		
TTLIN	OEB	OBn		
Н	L	L		
L	L	Н		
Х	Н	High Z		

Inpu	ts	Outputs		
GTLPIN OEA		OAn		
Н	L	L		
L	L	Н		
Х	Н	High Z		

Logic Diagram

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

Absolute Maximum Ratings(Note 1) **Recommended Operating** Conditions (Note 3) Supply Voltage (V_{CC}) DC Input Voltage (V_I) -0.5V to +7.0V Supply Voltage V_{CC} 4.75V to 5.25V DC Output Voltage (V_O) Bus Termination Voltage (V_{TT}) Outputs 3-STATE -0.5V to +7.0V GTLP 1.47V to 1.53V Outputs Active (Note 2) -0.5V to +7.0V 0.98V to 1.02V V_{REF} DC Output Sink Current into Input Voltage (V_I) on INA Port OA Port IOL 48 mA and Control Pins 0.0V to 5.5V DC Output Source Current HIGH Level Output Current (I_{OH}) from OA Port I_{OH} –48 mA OA Port -24 mA DC Output Sink Current into LOW Level Output Current (I_{OL}) OB Port in the LOW State I_{OL} 80 mA OA Port +24 mA DC Input Diode Current (I_{IK}) OB Port +34 mA $V_I < 0V$ –50 mA -40°C to +85°C Operating Temperature (T_A) DC Output Diode Current (I_{OK}) Note 1: Absolute Maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or $V_O < 0V$ -50 mA conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum rated conditions is not +50 mA $V_{O} > V_{CC}$

> 2000V

 -65°C to $+150^{\circ}\text{C}$

DC Electrical Characteristics

ESD Rating

Storage Temperature (T_{STG})

Over Recommended Operating Free-Air Temperature Range, V_{RFF} = 1.0V (unless otherwise noted).

	Symbol	Test C	onditions	Min	Typ (Note 4)	Max	Units
V _{IH}	GTLPIN			V _{REF} +0.05	, ,	V _{TT}	
	Others			2.0			V
V _{IL}	GTLPIN			0.0		V _{REF} -0.05	
	Others					0.8	V
V _{REF}	GTLP				1.0		V
(Note 5)	GTL				0.8		V
V _{TT}	GTLP				1.5		V
(Note 5)	GTL				1.2		V
V _{IK}		V _{CC} = 4.75V	I _I = -18 mA			-1.2	V
V _{OH}	OAn Port	V _{CC} = 4.75V	$I_{OH} = -100 \mu A$	V _{CC} -0.2			
			$I_{OH} = -18 \text{ mA}$	2.4			V
			$I_{OH} = -24 \text{ mA}$	2.2			
V _{OL}	OAn Port	V _{CC} = 4.75V	$I_{OL} = 100 \mu A$			0.2	
			I _{OL} = 18 mA			0.4	V
			I _{OL} = 24 mA			0.5	
V _{OL}	OBn Port	V _{CC} = 4.75V	$I_{OL} = 100 \mu A$			0.2	V
			I _{OL} = 34 mA			0.65	V
l _l	TTLIN/	V _{CC} = 5.25V	V _I = 5.25V			5	μА
	Control Pins		$V_I = 0V$			-5	μА
	GTLPIN	V _{CC} = 5.25V	$V_I = V_{TT}$			5	μА
			$V_I = 0$			-5	μΑ
I _{OFF}	TTLIN	V _{CC} = 0	V _I or V _O = 0V to 5.25V			100	μА
l _{ozh}	OAn Port	V _{CC} = 5.25V	V _O = 5.25V			5	μА
	OBn Port		V _O = 1.5V			5	μΑ
I _{OZL}	OAn Port	V _{CC} = 5.25V	$V_O = 0$			-5	μΑ
Icc	OAn or	V _{CC} = 5.25V	Outputs HIGH		7	18	
	OBn Ports		Outputs LOW		7	20	mA
		$V_I = V_{CC}$ or GND	Outputs Disabled		7	20	
ΔI_{CC}	TTLIN	V _{CC} = 5.25V	$V_1 = V_{CC} - 2.1$			6	mA

Note 2: Io Absolute Maximum Rating must be observed.

Note 3: Unused input must be held HIGH or LOW.

Distributor of Fairchild Semiconductor: Excellent Integrated System Limited

GTLP6C816

DC Electrical Characteristics (Continued)

Symbol		Test Conditions	Min	Typ (Note 4)	Max	Units
C _{IN}	Control Pins/GTLPIN/ TTLIN	$V_{I} = V_{CC}$ or 0	3.7	3.7		pF
C _{OUT}	OAn Port	$V_I = V_{CC}$ or 0		7		pF
	OBn Port	$V_I = V_{CC}$ or 0		7		P

Note 4: All typical values are at $V_{CC} = 5.0 V$ and $T_A = 25 ^{\circ} C$.

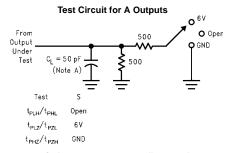
Note 5: GTLP V_{REF} and V_{TT} are specified to 2% tolerance since signal integrity and noise margin can be significantly degraded if these supplies are noisy. In addition, V_{TT} and R_{TERM} can be adjusted to accommodate backplane impedances other than 50Ω , within the boundaries of not exceeding the DC Absolute I_{OL} ratings. Similarly V_{REF} can be adjusted to compensate for changes in V_{TT} .

AC Electrical Characteristics

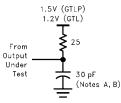
Over recommended range of supply voltage and operating free air temperature. $V_{REF} = 1.0V$ (unless otherwise noted).

 $C_L = 30\ pF$ for OBn Port and $C_L = 50\ pF$ for OAn Port.

Symbol	From	То	Min	Тур	Max	Units
Syllibol	(Input)	(Output)		(Note 6)		Units
t _{PLH}	TTLIN	OBn	1.5	3.8	6.0	20
t _{PHL}			1.5	2.8	5.0	ns
t _{PLH}	OEB	OBn	1.5	6.4	10.5	
t _{PHL}			1.5	3.2	6.0	ns
t _{RISE}	Transition Time, OB (Outputs (20% to 80%)		2.3		ns
t _{FALL}	Transition Time, OB		2.3		ns	
t _{RISE}	Transition Time, OA	Transition Time, OA outputs (10% to 90%)				ns
t _{FALL}	Transition Time, OA	Transition Time, OA outputs (10% to 90%)				ns
t _{PZH} , t _{PZL}	OEA	OAn	0.5	3.6	6.5	
t_{PLZ} , t_{PHZ}			0.5	3.8	6.5	ns
t _{PLH}	GTLPIN	OAn	1.5	4.4	6.5	ns
t _{PHL}			1.5	4.0	6.0	115
t _{OSHL} , t _{OSLH} (Note 7)	Common E		0.2	1.0	ns	

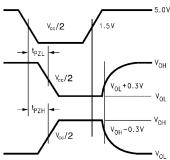

Note 6: All typical values are at $V_{CC} = 5.0 V$ and $T_A = 25 ^{\circ} C$.

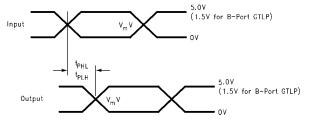
Note 7: Skew specs are given for specific worst case V_{CC} Temp. Skew values between the OBn outputs could vary on the backplane due to loading and impedance seen by the device.



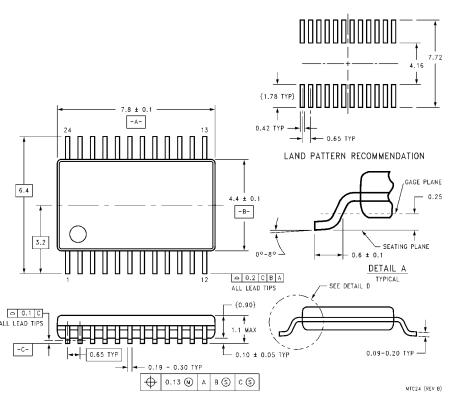
Datasheet of GTLP6C816MTC - IC CLK BUFFER 1:2/1:6 24TSSOP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

Test Circuit and Timing Waveforms


Test Circuit for B Outputs


Note A: C_L includes probes and jig capacitance.

Note A: C_L includes probes and jig capacitance. Note B: For B Port C_L = 30 pF is used for worst case.


Voltage Waveforms Enable and Disable Times A Port

Voltage Waveforms Propagation Delay ($V_m = V_{CC}/2$ for A Port and 1.0 for B Port)

Physical Dimensions inches (millimeters) unless otherwise noted

24-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC24

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com