

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

IXYS Corporation DHG5I600PM

For any questions, you can email us directly: <u>sales@integrated-circuit.com</u>

Distributor of IXYS Corporation: Excellent Integrated System Limited Datasheet of DHG5I600PM - DIODE GEN PURP 600V 5A TO220ACFP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

Applications:

Snubber diode

switching devices

Antisaturation diode

• Free wheeling diode

supplies (SMPS)

• Antiparallel diode for high frequency

• Rectifiers in switch mode power

• Uninterruptible power supplies (UPS)

Sonic-FRD

Single Diode

DHG 5 | 600PM

Features / Advantages:

Planar passivated chips

Very low leakage current

Very short recovery time

• Very low Irm-values

Low Irm reduces:

operation

Improved thermal behaviour

Very soft recovery behaviour

Avalanche voltage rated for reliable

Soft reverse recovery for low EMI/RFI

- Power dissipation within the diode - Turn-on loss in the commutating switch

Part number

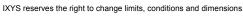

High Performance Fast Recovery Diode

Low Loss and Soft Recovery

DHG 5 | 600PM

advanced

V _{RRM} =	=	600 V
I _{FAV} =	=	5 A
t _{rr} =	=	35 ns


Package:

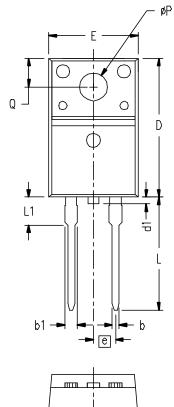
TO-220FPAC

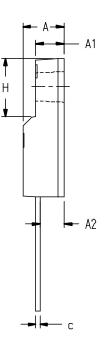
- Industry standard outline
- Plastic overmolded tab for
- electrical isolation • Epoxy meets UL 94V-0

Ratings

- RoHS compliant
- Symbol Definition Conditions Unit min. typ. max. $T_{v,i} = 25 \ ^{\circ}C$ max. repetitive reverse voltage 600 V_{RRM} V $V_{R} = 600 V$ $T_{V,I} = 25 \,^{\circ}C$ I_R reverse current 10 uА $V_{p} = 600 V$ T_{vJ} = 125 °C mΑ 1 ٧ forward voltage I_F = 5A T_{v.1} = 25 °C 2.20 V 10 A 0.00 2.98 = ν T_{v.I} = 125 °C 2.02 I_c = 5 A ν 0.00 $I_{\rm F} = 10 \, {\rm A}$ 2.85 ٧ average forward current rectangular, d = 0.5 $T_c = 95 °C$ 5 А I_{FAV} v threshold voltage T_{v1} = 150 °C 1.31 V_{F0} for power loss calculation only slope resistance 133 mΩ r_F thermal resistance junction to case 4.20 K/W R_{thJC} °C virtual junction temperature -55 150 Τ_v P_{tot} total power dissipation $T_c = 25 °C$ 30 W $t_{p} = 10 \text{ ms} (50 \text{ Hz}), \text{ sine}$ 40 A max. forward surge current $T_{VI} = 45 \,^{\circ}C$ IFSM $T_{v,l} = 25 \,^{\circ}C$ max. reverse recovery current 2 А IRM $I_{\rm F} = 5 {\rm A};$ T_{v.1} = 125 °C А $-di_{e}/dt = 100 \text{ A/}\mu\text{s}$ t, reverse recovery time $T_{v,l} = 25 \,^{\circ}C$ 35 ns V_D = 400 V $T_{vJ} = 125 ^{\circ}C$ ns CJ $V_{R} = 300 V; f = 1 MHz$ $T_{VJ} = 25 \,^{\circ}C$ junction capacitance tbd pF non-repetitive avalanche energy I_{AS} = tbd A; L = 100 μ H $T_{VJ} = 25 °C$ E_{AS} tbd mJ repetitive avalanche current $V_{A} = 1.5 \cdot V_{R}$ typ.; f = 10 kHz tbd А I_{AR}

DHG 5 I 600PM


advanced


					Ratings		
Symbol	Definition	Conditions	m	in.	typ.	max.	Unit
I _{RMS}	RMS current	per pin*				35	Α
R _{thCH}	thermal resistance case to	heatsink			0.50		K/W
M _D	mounting torque).4		0.6	Nm
F _c	mounting force with clip			20		60	N
T _{stg}	storage temperature		-	55		150	°C
Weight					2		g

* Irms is typically limited by: 1. pin-to-chip resistance; or by 2. current capability of the chip.

In case of 1, a common cathode/anode configuration and a non-isolated backside, the whole current capability can be used by connecting the backside.

Outlines TO-220FPAC

SYM	INCH	IES	MILLIMETERS		
	MIN	MAX	MIN	MAX	
A	.177	.193	4.50	4.90	
A1	.092	.108	2.34	2.74	
A2	.101	.117	2.56	2.96	
b	.028	.035	0.70	0.90	
b1	.050	.058	1.27	1.47	
С	.018	.024	0.45	0.60	
D	.617	.633	15.67	16.07	
d1	0	.043	0	1.10	
E	.392	.408	9,96	10.36	
e	.100	BSC	2.54 BSC		
H	.255	.271	6,48	6,88	
L	,499	.523	12.68	13,28	
L1	.119	.135	3.03	3,43	
ØP	.121	.129	3.08	3,28	
Q	.126	.134	3.20	3.40	

NOTE:

1. All metal surface are matte pure tin plated except trimmed area.