Excellent Integrated System Limited Stocking Distributor Click to view price, real time Inventory, Delivery & Lifecycle Information: Integrated Device Technology (IDT) 841S012BKILF For any questions, you can email us directly: sales@integrated-circuit.com Datasheet of 841S012BKILF - IC CLOCK SYNTHESIZER 56-VFQFPN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com **PRELIMINARY** ## CRYSTAL-TO-0.7V DIFFERENTIAL HCSL/ LVCMOS FREQUENCY SYNTHESIZER ICS841S012I ### GENERAL DESCRIPTION The ICS841S012I is an optimized PCIe, sRIO and Gigabit Ethernet Frequency Synthesizer and a member of HiperClocks™family of high performance clock solutions from IDT. The ICS841S012I uses a 25MHz parallel resonant crystal to gener- ate 33.33MHz - 200MHz clock signals, replacing solutions requiring multiple oscillator and fanout buffer solution. The device supports ±0.25% center-spread, and -0.5% downspread clocking with two spread select pins (SSC[1:0]). The VCO operates at frequency of 2GHz. The device has three output banks: Bank A with two HCSL outputs, 100MHz - 250MHz; Bank B with seven 33.33MHz - 200MHz LVCMOS/LVTTL outputs; and Bank C with one 33.33MHz - 200MHz LVCMOS/LVTTL output. All Banks A, B and C have their own dedicated frequency select pins and can be independently set for the frequencies mentioned above. The low jitter characteristic of the ICS841S012I makes it an ideal clock source for PCIe, sRIO and Gigabit Ethernet applications. Designed for networking and industrial applications, the ICS841S012I can also drive the highspeed clock inputs of communication processors, DSPs, switches and bridges. ### **F**EATURES Two 0.7V differential HCSL outputs (Bank A), configurable for PCIe (100MHz or 250MHz) and sRIO (100MHz or 125MHz) clock signals Eight LVCMOS/LVTTL outputs (Banks B/C), 15Ω typical output impedance Two REF_OUT LVCMOS/LVTTL clock outputs, 20Ω typical output impedance - Selectable crystal oscillator interface, 25MHz, 18pF parallel resonant crystal or one LVCMOS/LVTTL single-ended reference clock input - Supports the following output frequencies: HCSL Bank A: 100MHz, 125MHz, 200MHz and 250MHz LVCMOS/LVTTL Bank B/C: 33.33MHz, 50MHz, 66.67MHz, 100MHz, 125MHz, 133.33MHz, 166.67MHz and 200MHz - VCO: 2GHz - Spread spectrum clock: ±0.25% center-spread and -0.5% down-spread - · PLL bypass and output enable - RMS period jitter: 15ps (typical), QB outputs - Full 3.3V supply mode - -40°C to 85°C ambient operating temperature - Available in both standard (RoHS 5) and lead-free (RoHS 6) packages ### PIN ASSIGNMENT The Preliminary Information presented herein represents a product in pre-production. The noted characteristics are based on initial product characterization and/or qualification. Integrated Device Technology, Incorporated (IDT) reserves the right to change any circuitry or specifications without notice. Datasheet of 841S012BKILF - IC CLOCK SYNTHESIZER 56-VFQFPN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com ICS841S012I CRYSTAL-TO-0.7V DIFFERENTIAL HCSL/LVCMOS FREQUENCY SYNTHESIZER **PRELIMINARY** # **BLOCK DIAGRAM** Datasheet of 841S012BKILF - IC CLOCK SYNTHESIZER 56-VFQFPN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com ICS841S012I ### CRYSTAL-TO-0.7V DIFFERENTIAL HCSL/LVCMOS FREQUENCY SYNTHESIZER **PRELIMINARY** TABLE 1. PIN DESCRIPTIONS | Number | Name | Туре | | Description | |--|---|--------|----------|---| | 1, 7, 14, 28,
29 | $V_{_{\mathrm{DD}}}$ | Power | | Core supply pins. | | 2,
3 | REF_OUT0,
REF_OUT1 | Output | | Single-ended LVCMOS/LVTTL reference clock outputs. 20Ω typical output impedance. | | 4, 5, 15, 27,
35, 36, 40,
46, 50, 54 | GND | Power | | Power supply ground. | | 6 | REF_IN | Input | Pulldown | Single-ended LVCMOS/LVTTL reference clock input. | | 8 | REF_SEL | Input | Pulldown | Reference select pin. When HIGH selects REF_IN. When LOW, selects crystal. LVCMOS/LVTTL interface levels. See Table 3E. | | 9,
10 | XTAL_IN,
XTAL_OUT | Input | | Crystal oscillator interface. XTAL_OUT is the output. XTAL_IN is the input. | | 11 | BYPASS | Input | Pulldown | When HIGH bypasses PLL. When LOW, selects N divider. LVCMOS/LVTTL interface levels. | | 12 | REF_OE | Input | Pulldown | Active HIGH REF_OUT enables/disables pin. LVCMOS/LVTTL interface levels. See Table 3H. | | 13 | nMR | Input | Pullup | Active LOW Master Reset. When logic LOW, the internal dividers are reset and the outputs are in high impedance (HI-Z). When logic HIGH, the internal dividers and the outputs are enabled. LVCMOS/LVTTL interface levels. | | 16,
17 | SSC1,
SSC0 | Input | Pullup | SSC control pin. LVCMOS/LVTTL interface levels. See Table 3D. | | 18,
19,
20 | F_SELB2,
F_SELB1,
F_SELB0 | Input | Pulldown | Frequency select pins for QBx outputs. See Table 3B. LVCMOS/LVTTL interface levels. | | 21,
22,
23 | F_SELC2,
F_SELC1,
F_SELC0 | Input | Pulldown | Frequency select pins for QC output. See Table 3C. LVCMOS/LVTTL interface levels. | | 24,
25 | F_SELA1,
F_SELA0 | Input | Pulldown | Frequency select pins for QAx/nQAx outputs. See Table 3A. LVCMOS/LVTTL interface levels. | | 26 | QA_OE | Input | Pullup | Output enable pin for Bank A outputs. LVCMOS/LVTTL interface levels. See Table 3F. | | 30, 31
32, 33 | nQA1, QA1
nQA0, QA | Output | | Differential Bank A clock outputs. HCSL interface levels. | | 34 | IREF | Output | | External fixed precision resistor (475 Ω) from this pin to ground provides a reference current used for differential current-mode QAx/nQAx clock outputs. | | 37, 38 | $V_{\scriptscriptstyle DDA}$ | Power | | Analog supply pin. | | 39 | QBC_OE | Input | Pullup | Output enable pin for Bank B and Bank C outputs. LVCMOS/LVTTL Interface levels. See Table 3G. | | 41 | QC | Output | | Single-ended Bank C clock output. LVCMOS/LVTTL interface levels. 15Ω typical output impedance. | | 42 | V _{DDOC} | Power | | Output supply pin for QC LVCMOS output. | | 43, 48, 52, 56 | V _{DDOB} | Power | | Output supply pins for QBx LVCMOS outputs. | | 44, 45,
47, 49,
51, 53, 55 | QB0, QB1,
QB2, QB3,
QB4, QB5, QB6 | Output | | Single-ended Bank B clock outputs. LVCMOS/LVTTL interface levels. 15Ω typical output impedance. | NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values. Datasheet of 841S012BKILF - IC CLOCK SYNTHESIZER 56-VFQFPN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com ICS841S012I ### CRYSTAL-TO-0.7V DIFFERENTIAL HCSL/LVCMOS FREQUENCY SYNTHESIZER **PRELIMINARY** #### Table 2. Pin Characteristics | Symbol | Parameter | | Test Conditions | Minimum | Typical | Maximum | Units | |-----------------------|----------------------------------|--------------|---|---------|---------|---------|-------| | C _{IN} | Input Capacitance | | | | 4 | | pF | | C _{PD} | Power Dissipation
Capacitance | QB[0:6], QC | V_{DD} , V_{DDOB} , $V_{DDOC} = 3.465V$ | | 9 | | pF | | R _{PULLUP} | Input Pullup Resistor | | | | 51 | | kΩ | | R _{PULLDOWN} | Input Pulldown Resistor | | | | 51 | | kΩ | | В | Output Impedance | QB[0:6], QC | | | 15 | | Ω | | R _{out} | Output Impedance | REF_OUT[1:0] | | | 20 | | Ω | ### TABLE 3A. F_SELA FREQUENCY SELECT FUNCTION TABLE | | | Inputs | Output Frequency (25MHz Ref.) | | |---------|---------|-----------------|-------------------------------|------------------------| | F_SELA1 | F_SELA0 | M Divider Value | NA Divider Value | QA[0:1]/nQA[0:1] (MHz) | | L | L | 80 | 20 | 100 | | L | Н | 80 | 16 | 125 | | Н | L | 80 | 10 | 200 | | Н | Н | 80 | 8 | 250 | #### TABLE 3B. F_SELB FREQUENCY SELECT FUNCTION TABLE | Inputs | | | | | Output Frequency (25MHz Ref.) | |---------|---------|---------|-----------------|------------------|-------------------------------| | F_SELB2 | F_SELB1 | F_SELB0 | M Divider Value | NB Divider Value | QB[0:6] (MHz) | | L | L | L | 80 | 60 | 33.33 | | L | L | Н | 80 | 40 | 50 | | L | Н | L | 80 | 30 | 66.67 | | L | Н | Н | 80 | 20 | 100 | | Н | L | L | 80 | 16 | 125 | | Н | L | Н | 80 | 15 | 133.33 | | Н | Н | L | 80 | 12 | 166.67 | | Н | Н | Н | 80 | 10 | 200 | #### TABLE 3C. F_SELC FREQUENCY SELECT FUNCTION TABLE | Inputs | | | | | Output Frequency (25MHz Ref.) | |---------|---------|---------|-----------------|------------------|-------------------------------| | F_SELC2 | F_SELC1 | F_SELC0 | M Divider Value | NC Divider Value | QC (MHz) | | L | L | L | 80 | 60 | 33.33 | | L | L | Н | 80 | 40 | 50 | | L | Н | L | 80 | 30 | 66.67 | | L | Н | Н | 80 | 20 | 100 | | Н | L | L | 80 | 16 | 125 | | Н | L | Н | 80 | 15 | 133.33 | | Н | Н | L | 80 | 12 | 166.67 | | Н | Н | Н | 80 | 10 | 200 | Datasheet of 841S012BKILF - IC CLOCK SYNTHESIZER 56-VFQFPN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com ICS841S012I ### CRYSTAL-TO-0.7V DIFFERENTIAL HCSL/LVCMOS FREQUENCY SYNTHESIZER **PRELIMINARY** TABLE 3D. SSC FUNCTION TABLE | Input | | | |-------|------|------------------------| | SSC1 | SSC0 | Mode | | 0 | 0 | 0 to -0.5% Down-spread | | 0 | 1 | ±0.25% Center-spread | | 1 | 0 | ±0.25% Center-spread | | 1 | 1 | SSC Off (default) | TABLE 3E. REF_SEL FUNCTION TABLE | Input | | | | |-------------------------|--------|--|--| | REF_SEL Input Reference | | | | | 0 | XTAL | | | | 1 | REF_IN | | | TABLE 3F. QA_OE FUNCTION TABLE | Input | | | | | |----------------|----------------------------------|--|--|--| | QA_OE Function | | | | | | 0 | QA[0:1]/nQA[0:1] disabled (Hi-Z) | | | | | 1 | QA[0:1]/nQA[0:1] enabled | | | | TABLE 3G. QBC_OE FUNCTION TABLE | Input | | | | | |-----------------|--------------------------------|--|--|--| | QBC_OE Function | | | | | | 0 | QB[0:6] and QC disabled (Hi-Z) | | | | | 1 | QB[0:6] and QC enabled | | | | TABLE 3H. REF_OE FUNCTION TABLE | Input | | | | | |-----------------|------------------------------|--|--|--| | REF_OE Function | | | | | | 0 | REF_OUT[0:1] disabled (Hi-Z) | | | | | 1 | REF_OUT[0:1] enabled | | | | TABLE 31. nMR FUNCTION TABLE | Input | | | | | | |--------------|--|--|--|--|--| | nMR Function | | | | | | | 0 | Device reset, output divider disabled (Hi-Z) | | | | | | 1 | Output enabled | | | | | NOTE: This device requires a reset signal after power-up to function properly. Datasheet of 841S012BKILF - IC CLOCK SYNTHESIZER 56-VFQFPN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com ICS841S012I #### CRYSTAL-TO-0.7V DIFFERENTIAL HCSL/LVCMOS FREQUENCY SYNTHESIZER **PRELIMINARY** #### ABSOLUTE MAXIMUM RATINGS Supply Voltage, V_{DD} 4.6V Inputs, V_{I} -0.5V to V_{DD} + 0.5 V Outputs, V_{O} -0.5V to $V_{DDO} + 0.5V$ Package Thermal Impedance, θ_{JA} 31.4°C/W (0 mps) Storage Temperature, $T_{\rm STG}$ -65°C to 150°C NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability. Table 4A. Power Supply DC Characteristics, $V_{DD} = V_{DDOB} = V_{DDOC} = 3.3V \pm 5\%$, Ta = -40°C to 85°C | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |---------------------------------------|-----------------------|-----------------|------------------------|---------|-----------------|-------| | $V_{_{ m DD}}$ | Core Supply Voltage | | 3.135 | 3.3 | 3.465 | V | | V_{DDA} | Analog Supply Voltage | | V _{DD} - 0.20 | 3.3 | V _{DD} | V | | V _{DDOB} , V _{DDOC} | Output Supply Voltage | | 3.135 | 3.3 | 3.465 | V | | I _{DD} | Power Supply Current | | | 250 | | mA | | I _{DDA} | Analog Supply Current | | | 20 | | mA | Table 4B. LVCMOS/LVTTL DC Characteristics, $V_{DD} = V_{DDOB} = V_{DDOC} = 3.3V \pm 5\%$, Ta = -40°C to 85°C | Symbol | Parameter | | Test Conditions | Minimum | Typical | Maximum | Units | |-----------------|-----------------------------|--|-------------------------------------|---------|---------|-----------------------|-------| | V _{IH} | Input High Voltage | | | 2 | | V _{DD} + 0.3 | V | | V _{IL} | Input Low Volt | age | | -0.3 | | 0.8 | V | | | | QA_OE, QBC_OE,
nMR, SSC0, SSC1, | $V_{DD} = V_{IN} = 3.465V$ | | | 5 | μΑ | | I _{IH} | Input
High Current | F_SELA[0:1],
F_SELB[0:2].
F_SELC[0:2],
REF_OE, BYPASS,
REF_IN, REF_SEL | $V_{DD} = V_{IN} = 3.465V$ | | | 150 | μΑ | | I _{IL} | Input
Low Current | QA_OE, QBC_OE,
nMR, SSC0, SSC1, | $V_{DD} = 3.465V, V_{IN} = 0V$ | -150 | | | μΑ | | | | F_SELA[0:1],
F_SELB[0:2].
F_SELC[0:2],
REF_OE, BYPASS,
REF_IN, REF_SEL | $V_{DD} = 3.465V, V_{IN} = 0V$ | -5 | | | μΑ | | V _{OH} | Output High Voltage; NOTE 1 | | $V_{DDOB,} V_{DDOC} = 3.3V \pm 5\%$ | 2.6 | | | ٧ | | V _{OL} | Output Low Voltage; NOTE 1 | | $V_{DDOB,}V_{DDOC} = 3.3V \pm 5\%$ | | | 0.5 | ٧ | NOTE 1: Outputs terminated with 50Ω to $V_{\text{DDOB, c}}/2$. See Parameter Measurement Information, Output Load Test Circuit diagram. Datasheet of 841S012BKILF - IC CLOCK SYNTHESIZER 56-VFQFPN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com ICS841S012I ### CRYSTAL-TO-0.7V DIFFERENTIAL HCSL/LVCMOS FREQUENCY SYNTHESIZER **PRELIMINARY** #### TABLE 5. CRYSTAL CHARACTERISTICS | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |------------------------------------|-----------------|---------|-----------|---------|-------| | Mode of Oscillation | | Fı | ındamenta | ıl | | | Frequency | | | 25 | | MHz | | Equivalent Series Resistance (ESR) | | | | 50 | Ω | | Shunt Capacitance | | | | 7 | pF | | Drive Level | | | | 100 | μW | NOTE: Characterized using an 18pF parallel resonant crystal. Table 6. AC Characteristics, $V_{DD} = V_{DDOB} = V_{DDOC} = 3.3V \pm 5\%$, Ta = -40°C to 85°C | Symbol | Parameter | | Test Conditions | Minimum | Typical | Maximum | Units | |---------------------------------|--|------------------|-----------------------------------|---------|---------|---------|-------| | | | QB[0:6] | | 33.33 | | 200 | MHz | | f _{out} | Output Frequency | QA[0:1]/nQA[0:1] | | 100 | | 250 | MHz | | | | QC | | 33.33 | | 200 | MHz | | tsk(o) | Output Skew; | QB[0:6] | | | 35 | | ps | | 15K(U) | NOTE 1, 2 | QA[0:1]/nQA[0:1] | | | 10 | | ps | | tsk(b) | Bank Skew; NOTE 2 | 2, 3 | across Banks B and C | | 50 | | ps | | | Ovala ta Ovala | QA[0:1]/nQA[0:1] | | | 45 | | ps | | tjit(cc) | Cycle-to-Cycle
Jitter; NOTE 2 | QB[0:6] | | | 55 | | ps | | | ontor, NOTE 2 | QC | | | 50 | | ps | | | RMS Period Jitter | QA[0:1]/nQA[0:1] | | | 7 | | ps | | <i>t</i> jit(per) | | QB[0:6], QC | | | 15 | | ps | | F _M | SSC Modulation
Frequency | Banks A, B, C | | 29 | | 33.33 | kHz | | V_{HIGH} | Voltage High | | | 660 | | 850 | mV | | V _{LOW} | Voltage Low | | | -150 | | | mV | | V _{CROSS} | Absolute Crossing Voltage | | | 250 | | 550 | mV | | $\Delta V_{ ext{CROSS}}$ | Total Variation of V _{CROSS} over all edges | | | | | 140 | mV | | t _R / t _F | Output
Rise/Fall Time | Bank A | measured between 0.175V to 0.525V | 175 | | 700 | ps | | | | Banks B, C | 20% - 80% | | 350 | | ps | | odc | Output Duty Cycle | Bank A | | 45 | | 55 | % | | ouc | Output Duty Cycle | Banks B, C | | L | 50 | | % | NOTE 1: Defined as skew between outputs at the same supply voltages and with equal load conditions. Measured at $V_{\text{DDOB, c}}/2$. NOTE 2: This parameter is defined in accordance with JEDEC Standard 65. NOTE 3: Defined as skew within a bank of outputs at the same supply voltage and with equal load conditions. ICS841S012I CRYSTAL-TO-0.7V DIFFERENTIAL HCSL/LVCMOS FREQUENCY SYNTHESIZER **PRELIMINARY** # PARAMETER MEASUREMENT INFORMATION #### 3.3V CORE/3.3V LVCMOS OUTPUT LOAD AC TEST CIRCUIT #### LVCMOS OUTPUT SKEW HCSL OUTPUT SKEW LVCMOS OUTPUT RISE/FALL TIME DIFFERENTIAL MEASUREMENT POINTS FOR RISE/FALL TIME ICS841S012I CRYSTAL-TO-0.7V DIFFERENTIAL HCSL/LVCMOS FREQUENCY SYNTHESIZER **PRELIMINARY** # PARAMETER MEASUREMENT INFORMATION, CONTINUED (where X = Bank A or Bank B) #### BANK SKEW #### RMS PERIOD JITTER #### DIFFERENTIAL CYCLE-TO-CYCLE JITTER ### LVCMOS CYCLE-TO-CYCLE JITTER DIFFERENTIAL MEASUREMENT POINTS FOR DUTY CYCLE/PERIOD # Distributor of Integrated Device Technology (IDT): Excellent Integrated System Limited Datasheet of 841S012BKILF - IC CLOCK SYNTHESIZER 56-VFQFPN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com ICS841S012I CRYSTAL-TO-0.7V DIFFERENTIAL HCSL/LVCMOS FREQUENCY SYNTHESIZER **PRELIMINARY** # PARAMETER MEASUREMENT INFORMATION, CONTINUED SE MEASUREMENT POINTS FOR DELTA CROSS POINT Datasheet of 841S012BKILF - IC CLOCK SYNTHESIZER 56-VFQFPN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com ICS841S012I CRYSTAL-TO-0.7V DIFFERENTIAL HCSL/LVCMOS FREQUENCY SYNTHESIZER **PRELIMINARY** ### APPLICATION INFORMATION #### Power Supply Filtering Techniques As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. To achieve optimum jitter performance, power supply isolation is required. The ICS841S012I provides separate power supplies to isolate any high switching noise from the outputs to the internal PLL. $V_{\rm DD},\,V_{\rm DDA},\,V_{\rm DDOB},\,$ and $V_{\rm DDOC}$ should be individually connected to the power supply plane through vias, and 0.01µF bypass capacitors should be used for each pin. Figure 1 illustrates this for a generic $V_{\rm DD}$ pin and also shows that $V_{\rm DDA}$ requires that an additional10 Ω resistor along with a 10µF bypass capacitor be connected to the $V_{\rm DDA}$ pin. The 10 Ω resistor can also be replaced by a ferrite bead. FIGURE 1. POWER SUPPLY FILTERING #### RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS #### INPUTS: #### **CRYSTAL INPUTS** For applications not requiring the use of the crystal oscillator input, both XTAL_IN and XTAL_OUT can be left floating. Though not required, but for additional protection, a 1k Ω resistor can be tied from XTAL_IN to ground. ### REF_IN INPUT For applications not requiring the use of the reference clock, it can be left floating. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from the REF_IN to ground. #### LVCMOS CONTROL PINS All control pins have internal pull-ups or pull-downs; additional resistance is not required but can be added for additional protection. A $1k\Omega$ resistor can be used. #### **OUTPUTS:** #### **LVCMOS OUTPUTS** All unused LVCMOS output can be left floating. We recommend that there is no trace attached. #### DIFFERENTIAL OUTPUT All unused differential outputs can be left floating. We recommend that there is no trace attached. Both sides of the differential output pair should either be left floating or terminated. Datasheet of 841S012BKILF - IC CLOCK SYNTHESIZER 56-VFQFPN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com ICS841S012I CRYSTAL-TO-0.7V DIFFERENTIAL HCSL/LVCMOS FREQUENCY SYNTHESIZER **PRELIMINARY** #### **CRYSTAL INPUT INTERFACE** The ICS841S012I has been characterized with 18pF parallel resonant crystals. The capacitor values shown in *Figure 2* below were determined using a 25MHz, 18pF parallel resonant crystal and were chosen to minimize the ppm error. FIGURE 2. CRYSTAL INPUT INTERFACE #### LVCMOS TO XTAL INTERFACE The XTAL_IN input can accept a single-ended LVCMOS signal through an AC coupling capacitor. A general interface diagram is shown in *Figure 3*. The XTAL_OUT pin can be left floating. The input edge rate can be as slow as 10ns. For LVCMOS inputs, it is recommended that the amplitude be reduced from full swing to half swing in order to prevent signal interference with the power rail and to reduce noise. This configuration requires that the output impedance of the driver (Ro) plus the series resistance (Rs) equals the transmission line impedance. In addition, matched termination at the crystal input will attenuate the signal in half. This can be done in one of two ways. First, R1 and R2 in parallel should equal the transmission line impedance. For most 50Ω applications, R1 and R2 can be 100Ω . This can also be accomplished by removing R1 and making R2 50Ω . FIGURE 3. GENERAL DIAGRAM FOR LVCMOS DRIVER TO XTAL INPUT INTERFACE Datasheet of 841S012BKILF - IC CLOCK SYNTHESIZER 56-VFQFPN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com ICS841S012I CRYSTAL-TO-0.7V DIFFERENTIAL HCSL/LVCMOS FREQUENCY SYNTHESIZER **PRELIMINARY** #### VFQFN EPAD THERMAL RELEASE PATH In order to maximize both the removal of heat from the package and the electrical performance, a land pattern must be incorporated on the Printed Circuit Board (PCB) within the footprint of the package corresponding to the exposed metal pad or exposed heat slug on the package, as shown in *Figure 4*. The solderable area on the PCB, as defined by the solder mask, should be at least the same size/shape as the exposed pad/slug area on the package to maximize the thermal/electrical performance. Sufficient clearance should be designed on the PCB between the outer edges of the land pattern and the inner edges of pad pattern for the leads to avoid any shorts. While the land pattern on the PCB provides a means of heat transfer and electrical grounding from the package to the board through a solder joint, thermal vias are necessary to effectively conduct from the surface of the PCB to the ground plane(s). The land pattern must be connected to ground through these vias. The vias act as "heat pipes". The number of vias (i.e. "heat pipes") are application specific and dependent upon the package power dissipation as well as electrical conductivity requirements. Thus, thermal and electrical analysis and/or testing are recommended to determine the minimum number needed. Maximum thermal and electrical performance is achieved when an array of vias is incorporated in the land pattern. It is recommended to use as many vias connected to ground as possible. It is also recommended that the via diameter should be 12 to 13mils (0.30 to 0.33mm) with 1oz copper via barrel plating. This is desirable to avoid any solder wicking inside the via during the soldering process which may result in voids in solder between the exposed pad/ slug and the thermal land. Precautions should be taken to eliminate any solder voids between the exposed heat slug and the land pattern. Note: These recommendations are to be used as a guideline only. For further information, refer to the Application Note on the Surface Mount Assembly of Amkor's Thermally/ Electrically Enhance Leadfame Base Package, Amkor Technology. FIGURE 4. P.C.ASSEMBLY FOR EXPOSED PAD THERMAL RELEASE PATH -SIDE VIEW (DRAWING NOT TO SCALE) Datasheet of 841S012BKILF - IC CLOCK SYNTHESIZER 56-VFQFPN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com ICS841S012I CRYSTAL-TO-0.7V DIFFERENTIAL HCSL/LVCMOS FREQUENCY SYNTHESIZER **PRELIMINARY** #### **RECOMMENDED TERMINATION** Figure 5A is the recommended termination for applications which require the receiver and driver to be on a separate PCB. All traces should be $50\grave{\mathrm{U}}$ impedance. FIGURE 5A. RECOMMENDED TERMINATION Figure 5B is the recommended termination for applications which require a point to point connection and contain the driver and receiver on the same PCB. All traces should all be $50\grave{\mathrm{U}}$ impedance. FIGURE 5B. RECOMMENDED TERMINATION Datasheet of 841S012BKILF - IC CLOCK SYNTHESIZER 56-VFQFPN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com ICS841S012I CRYSTAL-TO-0.7V DIFFERENTIAL HCSL/LVCMOS FREQUENCY SYNTHESIZER **PRELIMINARY** # POWER CONSIDERATIONS This section provides information on power dissipation and junction temperature for the ICS841S012I. Equations and example calculations are also provided. #### 1. Power Dissipation. The total power dissipation for the ICS841S012I is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for $V_{DD} = 3.3V + 5\% = 3.465V$, which gives worst case results. #### Core and HCSL Output Power Dissipation Power (core) = V_{DD_MAX} * (I_{DD} + I_{DDA}) = 3.465V * (250mA + 20mA) = 935.6mW Power (HCSL) = 44.5mW/Load Output Pair If all outputs are loaded, the total power is 2 * 44.5mW = 89mW ### LVCMOS Output Power Dissipation, $R_{OUT} = 15\Omega$ - Output Impedance R_{OUT} Power Dissipation due to Loading 50Ω to $V_{DDO}/2$ Output Current $I_{OUT} = V_{DDO_MAX} / [2 * (50\Omega + R_{OUT})] = 3.465 V / [2 * (50\Omega + 15\Omega)] = 26.7 mA$ - Power Dissipation on the R_{OUT} per LVCMOS output Power (R_{OUT}) = R_{OUT} * (I_{OUT})² = 15 Ω * (26.7mA)² = **10.7mW per output** - Total Power Dissipation on the R_{OUT} **Total Power (R**_{out} = $$15\Omega$$) = 10.7mW * 7 = **74.9mW** Dynamic Power Dissipation at 200MHz Power (200MHz) = $$C_{PD}$$ * Frequency * $(V_{DDO})^2 = 9pF$ * 200MHz * $(3.465V)^2 = 21.6mW$ per output Total Power (200MHz) = $21.6mW$ * 7 = $151.2mW$ ### LVCMOS Output Power Dissipation, $R_{OUT} = 20\Omega$ - Output Impedance R_{OUT} Power Dissipation due to Loading 50Ω to $V_{DDO}/2$ Output Current $I_{OUT} = V_{DDO\ MAX} / [2 * (50\Omega + R_{OUT})] = 3.465 V / [2 * (50\Omega + 20\Omega)] =$ **24.75mA** - Power Dissipation on the R_{OUT} per LVCMOS output Power $(R_{OUT}) = R_{OUT} * (I_{OUT})^2 = 20\Omega * (24.75mA)^2 = 12.3mW$ per output - Total Power Dissipation on the R_{OUT} Total Power ($$R_{OUT} = 20\Omega$$) = 12.3mW * 2 = 24.6mW Dynamic Power Dissipation at 25MHz Power (25MHz) = $$C_{PD}$$ * Frequency * $(V_{DDO})^2 = 9pF * 25MHz * $(3.465V)^2 = 2.7mW$ per output Total Power (25MHz) = $2.7mW * 2 = 5.4mW$$ #### **Total Power Dissipation** - Total Power - = Power (core) + Power (HCSL) + Total Power (R_{OUT} = 15 Ω) + Total Power (200MHz) + Total Power (R_{OUT} = 20 Ω) + Total Power (25MHz) - = 935.6 mW + 89 mW + 74.9 mW + 151.2 mW + 24.6 mW + 5.4 mW - = 1280.7mW Datasheet of 841S012BKILF - IC CLOCK SYNTHESIZER 56-VFQFPN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com #### ICS841S012I #### CRYSTAL-TO-0.7V DIFFERENTIAL HCSL/LVCMOS FREQUENCY SYNTHESIZER **PRELIMINARY** #### 2. Junction Temperature. Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature for HiPerClockS[™] devices is 125°C. The equation for Tj is as follows: Tj = θ_{JA} * Pd_total + T_A Tj = Junction Temperature θ_{JA} = Junction-to-Ambient Thermal Resistance Pd_total = Total Device Power Dissipation (example calculation is in section 1 above) T_A = Ambient Temperature In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming 1 meter per second air flow and a multi-layer board, the appropriate value is 27.5°C/W per Table 7. Therefore, Tj for an ambient temperature of 85°C with all outputs switching is: $85^{\circ}\text{C} + 1.281\text{W} * 27.5^{\circ}\text{C/W} = 120.2^{\circ}\text{C}$. This is below the limit of 125°C . This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow, and the type of board (single layer or multi-layer). #### Table 7. Thermal Resistance $\theta_{\rm JA}$ for 56 Lead VFQFN, Forced Convection | θ _{JA} by Velocity (Meters per second) | | | | | | |---|----------|----------|----------|--|--| | | 0 | 1 | 2.5 | | | | Multi-Layer PCB, JEDEC Standard Test Boards | 31.4°C/W | 27.5°C/W | 24.6°C/W | | | ICS841S012I ### CRYSTAL-TO-0.7V DIFFERENTIAL HCSL/LVCMOS FREQUENCY SYNTHESIZER **PRELIMINARY** #### 3. Calculations and Equations. The purpose of this section is to calculate power dissipation on the IC per HCSL output pair. HCSL output driver circuit and termination are shown in Figure 6. FIGURE 6. HCSL DRIVER CIRCUIT AND TERMINATION HCSL is a current steering output which sources a maximum of 17mA of current per output. To calculate worst case on-chip power dissipation, use the following equations which assume a 50Ω load to ground. The highest power dissipation occurs at maximum V_{DD}. Power = $$(V_{DD_MAX} - V_{OUT}) * I_{OUT}$$, since $V_{OUT} = I_{OUT} * R_L$ = $(V_{DD_MAX} - I_{OUT} * R_L) * I_{OUT}$ = $(3.465V - 17mA * 50\Omega) * 17mA$ Total Power Dissipation per output pair = 44.5mW Datasheet of 841S012BKILF - IC CLOCK SYNTHESIZER 56-VFQFPN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com electronic components ICS841S012I CRYSTAL-TO-0.7V DIFFERENTIAL HCSL/LVCMOS FREQUENCY SYNTHESIZER **PRELIMINARY** # RELIABILITY INFORMATION Table 8. $\theta_{\text{JA}} \text{vs. Air Flow Table for 56 Lead VFQFN}$ θ_{AA} by Velocity (Meters per second) 0 1 2.5 Multi-Layer PCB, JEDEC Standard Test Boards 31.4°C/W 27.5°C/W 24.6°C/W #### **TRANSISTOR COUNT** The transistor count for ICS841S012I is: 11,537 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com ICS841S012I CRYSTAL-TO-0.7V DIFFERENTIAL HCSL/LVCMOS FREQUENCY SYNTHESIZER **PRELIMINARY** #### PACKAGE OUTLINE - K SUFFIX FOR 56 LEAD VFQFN NOTE: The following package mechanical drawing is a generic drawing that applies to any pin count VFQFN package. This drawing is not intended to convey the actual pin count or pin layout of this device. The pin count and pinout are shown on the front page. The package dimensions are in Table 8 below. TABLE 9. PACKAGE DIMENSIONS | JEDEC VARIATION ALL DIMENSIONS IN MILLIMETERS | | | | | | |---|------------|----------|--|--|--| | SYMBOL | MINIMUM | MAXIMUM | | | | | N | 5 | 6 | | | | | Α | 0.80 | 1.0 | | | | | A1 | 0 | 0.05 | | | | | А3 | 0.25 Re | eference | | | | | b | 0.18 0.30 | | | | | | е | 0.50 BASIC | | | | | | N _D | 14 | | | | | | N _E | 14 | | | | | | D | 8.0 | | | | | | D2 | 4.35 4.65 | | | | | | E | 8.0 | | | | | | E2 | 5.05 5.35 | | | | | | L | 0.3 0.55 | | | | | Reference Document: JEDEC Publication 95, MO-220 Datasheet of 841S012BKILF - IC CLOCK SYNTHESIZER 56-VFQFPN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com ICS841S012I CRYSTAL-TO-0.7V DIFFERENTIAL HCSL/LVCMOS FREQUENCY SYNTHESIZER **PRELIMINARY** #### TABLE 10. ORDERING INFORMATION | Part/Order Number | Marking | Package | Shipping Packaging | Temperature | |-------------------|---------------|---------------------------|--------------------|---------------| | 841S012BKI | TBD | 56 lead VFQFN | tray | -40°C to 85°C | | 841S012BKIT | TBD | 56 lead VFQFN | 1000 tape & reel | -40°C to 85°C | | 841S012BKILF | ICS841S012BIL | 56 lead "Lead-Free" VFQFN | tray | -40°C to 85°C | | 841S012BKILFT | ICS841S012BIL | 56 lead "Lead-Free" VFQFN | 1000 tape & reel | -40°C to 85°C | NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant. While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology, Incorporated (IDT) assumes no responsibility for either its use or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and industrial applications. Any other applications such as those requiring high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments. Datasheet of 841S012BKILF - IC CLOCK SYNTHESIZER 56-VFQFPN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com ICS841S012I CRYSTAL-TO-0.7V DIFFERENTIAL HCSL/LVCMOS FREQUENCY SYNTHESIZER **PRELIMINARY** ## Innovate with IDT and accelerate your future networks. Contact: www.IDT.com #### **For Sales** 800-345-7015 (inside USA) +408-284-8200 (outside USA) Fax: 408-284-2775 www.IDT.com/go/contactIDT ### For Tech Support netcom@idt.com +480-763-2056 #### **Corporate Headquarters** Integrated Device Technology, Inc. 6024 Silver Creek Valley Road San Jose, CA 95138 United States 800-345-7015 (inside USA) +408-284-8200 (outside USA)