

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor 74F794PC

For any questions, you can email us directly: <u>sales@integrated-circuit.com</u>

FAIRCHILD

SEMICONDUCTOR

74F794 8-Bit Register with Readback

General Description

The 74F794 is an 8-bit register with readback capability designed to store data as well as read the register information back onto the data bus. The I/O bus (D bus) has 3-STATE outputs. Current sinking capability is 64 mA on both the D and Q busses.

Data is loaded into the registers on the LOW-to-HIGH transition of the clock (CP). The output enable ($\overline{\text{OE}}$) is used to enable data on D₀–D₇. When $\overline{\text{OE}}$ is LOW, the output of the registers is enabled on D₀–D₇, enabling D as an output bus. When OE is HIGH, D₀–D₇ are inputs to the registers configuring D as an input bus.

Features

- 3-STATE outputs on the I/O port
- D and Q output sink capability of 64 mA
- Functionally and pin equivalent to the 74LS794

March 1990

Revised February 2004

74F794PC N20A 20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300° W Logic Symbol Connection Diagram		Package Number	Package Description
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	F794PC	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" W
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.ogic Syn	bol	Connection Diagram
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Г	D ₀ D ₁ D ₂ D ₃ D ₄ D ₅	De D7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-0 OE		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	— СР		
$ \begin{array}{ccccccccccccccccccccccccccccccccc$		$Q_0 Q_1 Q_2 Q_3 Q_4 Q_5$	
$\begin{array}{ccc} D_6 & = 8 & 13 & \square Q_6 \\ D_7 & = 9 & 12 & \square Q_7 \end{array}$			D ₄ -6 15-Q ₄
D ₇ - 9 12 - Q ₇			$D_5 - 7$ 14 $- Q_5$
			•

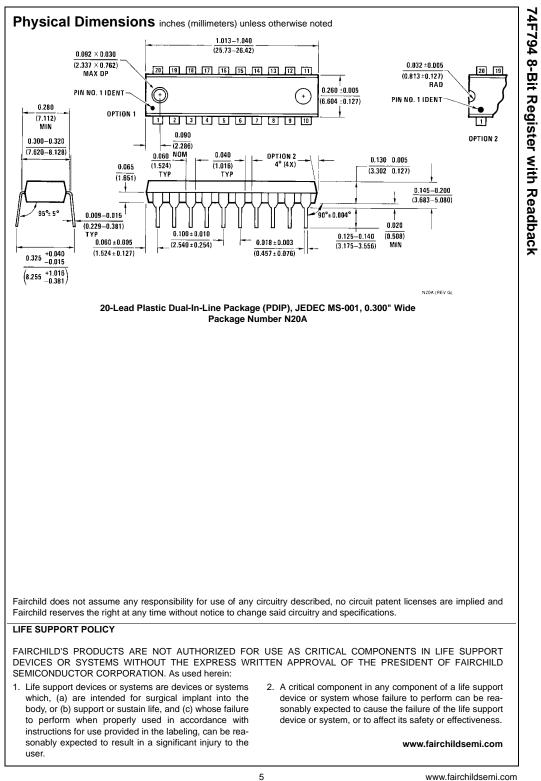
www.fairchildsemi.com

Absolute Maximum Ratings(Note 2)		Recommended Operating				
Storage Temperature	$-65^{\circ}C$ to $+ 150^{\circ}C$	Conditions				
Ambient Temperature under Bias	-55° to +125°C	Free Air Ambient Temperature	0°C to 70°C			
Junction Temperature under Bias	-55°C to +150°C	Supply Voltage	+4.5V to +5.5V			
V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V					
Input Voltage (Note 3)	-0.5V to +7.0V					
Input Current (Note 3)	-30 mA to +5.0 mA					
ESD Last Passing Voltage (Min)	4000V					
Voltage Applied to Output						
In HIGH State (with $V_{CC} = 0V$)		Note 2: Absolute maximum ratings are values	beyond which the device			
Standard Output	–0.5V to V _{CC}	may be damaged or have its useful life impaired. Functional ope under these conditions is not implied.				
3-STATE Output -0.5V to +		Note 3: In this case the output of the register is clocked to the inputs and				
Current Applied to Output		the overall Q output is unchanged at Q_n .				
in LOW State (Max)	Twice the Rated I _{OL} (mA)	Note 4: Either voltage limit or current limit is suf	ficient to protect inputs.			

Symbol	Parameter	Min	Тур	Max	Units	V _{cc}	Conditions	
V _{IH}	Input HIGH Voltage	2.0			V		Recognized as a HIGH Signal	
VIL	Input LOW Voltage			0.8	V		Recognized as a LOW Signal	
V _{CD}	Input Clamp			-1.2	v	Min	I _{IN} = -18 mA	
	Diode Voltage			-1.2	v	IVIIII	$\eta_N = -10 \text{ IIIA}$	
V _{OH}	Output HIGH	2.4	2.8		V	Min	I _{OH} = -3 mA	
	Voltage	2.0	2.44		v	IVIIII	I _{OH} = -15 mA	
V _{OL}	Output LOW		0.45	0.55	V	Min	I _{OI} = 64 mA	
	Voltage	0.45 0		0.00	, i			
I _{IH}	Input HIGH			5.0	μA	Max	V _{IN} = 2.7V	
	Current			0.0	μι	max	v _{IN} = 2.7 v	
I _{BVI}	Input HIGH Current			7.0			$V_{IN} = 7.0V (\overline{OE}, CP)$	
	Breakdown Test			7.0	μA	Max	V _{IN} = 7.0V (OE, CP)	
I _{BVIT}	Input HIGH Current			0.5	~^^	<u></u>)/	
	Breakdown (I/O)			0.5	mA	Max	$V_{IN} = 5.5V (D_n)$	
I _{CEX}	Output HIGH			50		May	N N	
	Leakage Current			50	μA	Max	$V_{OUT} = V_{CC}$	
V _{ID}	Input Leakage	4,75					I _{ID} = 1.9 μA	
	Test	4.75			V	0.0	All Other Pins Grounded	
I _{OD}	Output Leakage			3.75		0.0	V _{IOD} = 150 mV	
	Circuit Current			3.75	μA	0.0	All Other Pins Grounded	
IIL	Input LOW			-0.6	mA	Max	V _{IN} = 0.5V	
	Current			-0.0	mA	IVIAX	(OE, CP)	
I _{OS}	Output Short-	-100		-225	mA	Max	V _{OUT} = 0V	
	Circuit Current	-100		-225	IIIA	IVIAX	VOUT - UV	
I _{IH} +	Output Leakage			70	μΑ	Max	$V_{OUT} = 2.7V$	
I _{OZH}	Current						(Dn)	
I _{IL} +	Output Leakage			-650	μA	Max	$V_{OUT} = 0.5V$	
I _{OZL}	Current			-030	μΛ	IVIAX	(Dn)	
V _{ID}	Input Leakage	4.75			v	0.0	I _{ID} = 1.9 μA	
	Test	4.75					All Other Pins Grounded	
I _{OD}	Output Circuit			3.75	μA	0.0	V _{IOD} = 150 mV	
	Leakage Current			5.75	μΛ	0.0	All Other Pins Grounded	
I _{ZZ}	Bus Drainage Test			100	μΑ	0.0	V _{OUT} = 5.25V	
I _{CCH}	Power Supply Current			65	mA	Max	V _O = HIGH	
I _{CCL}	Power Supply Current			80	mA	Max	V _O = LOW	
I _{CCZ}	Power Supply Current			80	mA	Max	V _O = HIGH Z	

www.fairchildsemi.com

74F794


1

4
റ
~
ш
4
~
-

Symbol	Parameter		$T_{A} = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$			$T_{A} = 0^{\circ}C \text{ to } +70^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$		
		Min	Тур	Max	Min	Max	1	
f _{MAX}	Maximum Clock Frequency	90			90		MHz	
t _{PLH}	Propagation Delay	2.5		7.0	2.5	8.0	ns	
t _{PHL}	CP to Q _n	2.5		8.0	2.5	9.0		
t _{PZH}	Output Enable Time	2.3		8.5	2.0	9.0	ns	
t _{PZL}		2.0		10.0	2.0	10.5		
t _{PHZ}	Output Disable Time	1.0		7.0	1.0	8.0	ns	
t _{PLZ}		1.0		7.0	1.0	8.0		
t _S (H)	Setup Time, HIGH or LOW	4.0			4.0		ns	
t _S (L)	Bus to Clock	4.0			4.0			
t _H (H)	Hold Time, HIGH or LOW	1.5			1.5		ns	
t _H (L)	Bus to Clock	1.5			1.5			
t _W (H	Clock Pulse Width	5.8			5.8			
	HIGH or LOW	5.8			5.8		ns	

www.fairchildsemi.com

