

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

STMicroelectronics STPS15L30CDJFTR

For any questions, you can email us directly: sales@integrated-circuit.com

STPS15L30CDJF

Low drop power Schottky rectifier

Features

- Very small conduction losses
- Negligible switching losses
- Extremely fast switching
- Low forward voltage drop
- Low thermal resistance
- High avalanche capability specified

Description

Dual center tap Schottky rectifier suited for switch mode power supply and high frequency DC to DC converters.

Packaged in PowerFLAT™, this device is intended for use in low voltage, high frequency inverters, free-wheeling and polarity protection applications.

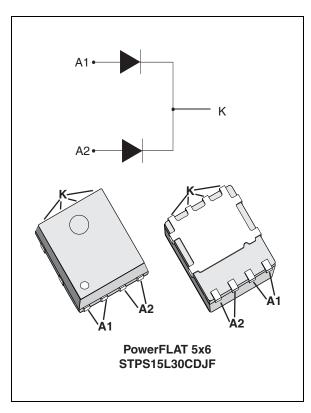


Table 1. Device summary

Symbol	Value
I _{F(AV)}	2 x 7.5 A
V_{RRM}	30 V
T _j (max)	150 °C
V _F (typ)	0.34 V

TM: PowerFLAT is a trademark of STMicroelectronics

May 2011 Doc ID 15664 Rev 4 1/7

Characteristics STPS15L30CDJF

1 Characteristics

Table 2. Absolute ratings (limiting values, per diode)

Symbol	Parameter			Value	Unit	
V _{RRM}	Repetitive peak reverse voltage			30	V	
I _{F(RMS)}	Forward rms current			10	Α	
1	Average forward current $\delta = 0.5$	T _c = 140 °C	Per diode	7.5	Α	
I _{F(AV)}	Average lorward current $\delta = 0.5$		Per device	15	, A	
I _{FSM}	Surge non repetitive forward current $t_p = 10 \text{ ms sinusoidal}$			75	Α	
I _{RRM}	Peak repetitive reverse current	k repetitive reverse current $t_p = 2 \mu s \text{ square } F = 1 \text{ kHz}$		1	Α	
P _{ARM}	epetitive peak avalanche power $t_p = 1 \mu s T_j = 25 ^{\circ}C$		2800	W		
T _{stg}	Storage temperature range			-65 to + 175	°C	
Tj	Maximum operating junction temperature (1)			150	°C	

^{1.} $\frac{dPtot}{dT_j} < \frac{1}{Rth(j-a)}$ condition to avoid thermal runaway for a diode on its own heatsink

Table 3. Thermal resistance

Symbol	Parameter	Value	Unit	
В		Per diode	2.5	
R _{th(j-c)}	Junction to case Total		1.6	°C/W
R _{th(c)}	Coupling	0.7		

When diodes 1 and 2 are used simultaneously:

 $\Delta T_j(diode 1) = P(diode 1) \times R_{th(j-c)}(per diode) + P(diode 2) \times R_{th(c)}$

Table 4. Static electrical characteristics (per diode)

Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
I _R ⁽¹⁾	Reverse leakage	T _j = 25 °C	V - V	-	-	1	mA
current	T _j = 125 °C	$V_R = V_{RRM}$	-	70	140	mA	
V _F ⁽¹⁾ Forward voltage drop		T _j = 25 °C	I _F = 7.5 A	-	-	0.48	
	Forward voltage drop	T _j = 125 °C	I _F = 7.5 A	-	0.34	0.39	V
	Polward voltage drop	T _j = 25 °C	I _F = 15 A	-	-	0.57	V
		T _j = 125 °C	I _F = 15 A	-	0.44	0.51	

^{1.} Pulse test: $t_p = 380 \mu s$, $\delta < 2\%$

To evaluate the conduction losses use the following equation:

$$P = 0.27 \text{ x } I_{F(AV)} + 0.016 I_{F}^{2}_{(RMS)}$$

2/7 Doc ID 15664 Rev 4

0

0

25

STPS15L30CDJF Characteristics

Figure 1. Average forward power dissipation Figure 2. versus average forward current (per diode)

(δ = 0.5, per diode)

T_{amb}(°C)

100

125

150

75

ambient temperature

Average forward current versus

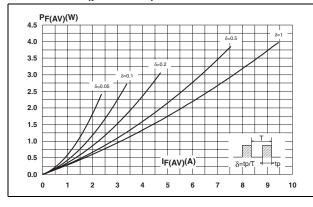
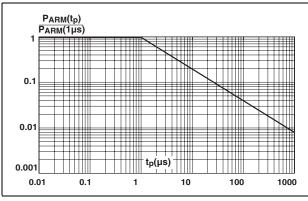



Figure 3. Normalized avalanche power derating versus pulse duration

Figure 4. Normalized avalanche power derating versus junction temperature

50

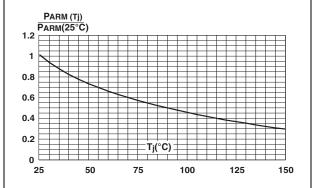
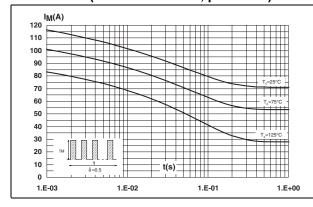
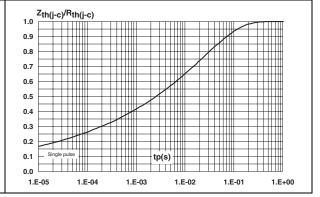
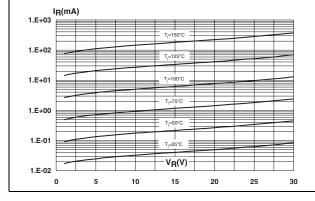




Figure 5. Non repetitive surge peak forward current versus overload duration (maximum values, per diode)

Figure 6. Relative variation of thermal impedance, junction to case, versus pulse duration


577

Characteristics STPS15L30CDJF

Figure 7. Reverse leakage current versus reverse voltage applied (typical values, per diode)

Figure 8. Junction capacitance versus reverse voltage applied (typical values, per diode)

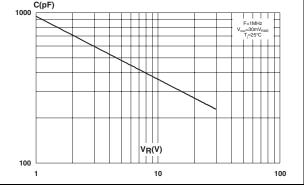
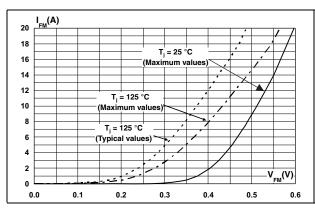
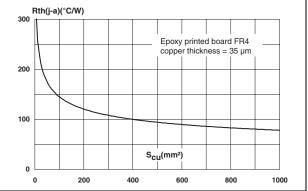




Figure 9. Forward voltage drop versus forward current (per diode)

Figure 10. Thermal resistance junction to ambient versus copper surface under each lead

4/7 Doc ID 15664 Rev 4

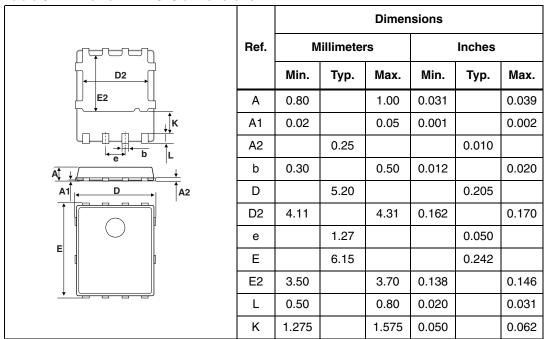
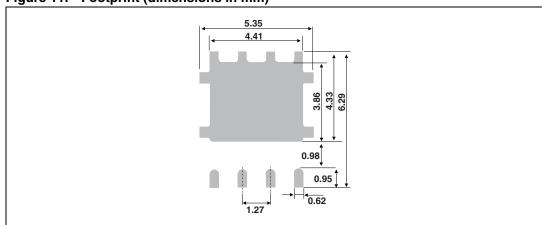
STPS15L30CDJF Package information

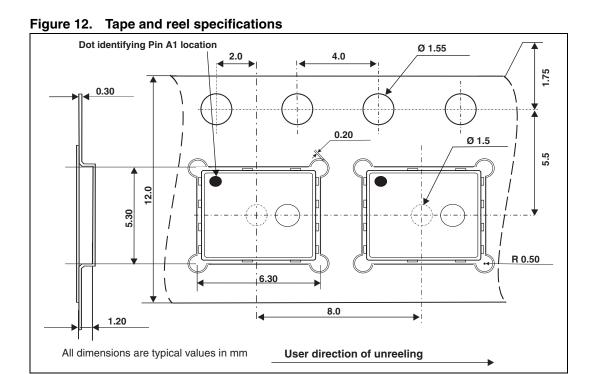
2 Package information

- Epoxy meets UL94,V0
- Lead-free package

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

Table 5. PowerFLAT 5x6 dimensions


Figure 11. Footprint (dimensions in mm)

Ordering information

STPS15L30CDJF

3 Ordering information

Table 6. Ordering information

Order code	Marking	Package	Weight	Base qty	Delivery mode
STPS15L30CDJFTR	PS15 L30C	PowerFLAT 5x6	0.095 g	3000	Tape and reel

4 Revision history

Table 7. Document revision history

,				
Date	Revision	Changes		
13-May-2009	1	First issue.		
09-Nov-2009	2	Updated <i>Table 1</i> .		
30-Jul-2010	3	Replace Power QFN with PowerFLAT. Updated Figure 9.		
18-May-2011	4	Added reference E in <i>Table 5</i> . Updated package graphics. Removed dash from order code and updated marking in <i>Table 6</i> . Added <i>Figure 12</i> .		

6/7 Doc ID 15664 Rev 4

Distributor of STMicroelectronics: Excellent Integrated System Limited Datasheet of STPS15L30CDJFTR - DIODE ARRAY SCHOTTKY 30V 7.5A

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

STPS15L30CDJF

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY. FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2011 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 15664 Rev 4