

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor CD40106BCN

For any questions, you can email us directly: <u>sales@integrated-circuit.com</u>

SEMICONDUCTOR

CD40106BC Hex Schmitt Trigger

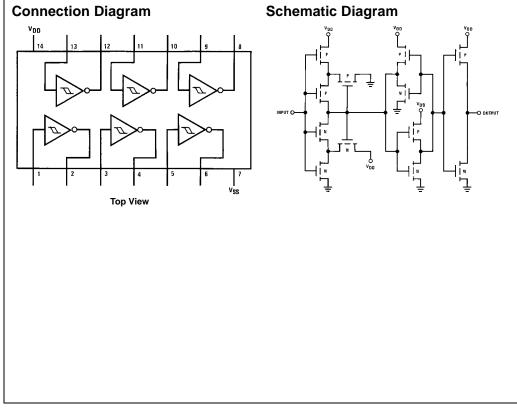
General Description

The CD40106BC Hex Schmitt Trigger is a monolithic complementary MOS (CMOS) integrated circuit constructed with N and P-channel enhancement transistors. The positive and negative-going threshold voltages, V_{T+} and V_{T-} , show low variation with respect to temperature (typ 0.0005V/°C at V_{DD} = 10V), and hysteresis, $V_{T+}-V_{T-}\geq 0.2$ V_{DD} is guaranteed.

All inputs are protected from damage due to static discharge by diode clamps to $V_{\rm DD}$ and $V_{\rm SS}.$

Revised September 2003

October 1987


CD40106BC Hex Schmitt Trigger

- Wide supply voltage range: 3V to 15V
- High noise immunity: 0.7 V_{DD} (typ.)
- Low power TTL compatibility:
- Fan out of 2 driving 74L or 1 driving 74LS ■ Hysteresis: 0.4 V_{DD} (typ.),
- 0.2 V_{DD} guaranteed ■ Equivalent to MM74C14

Features

Ordering Code:

Order Number	Package Number	Package Description				
CD40106BCM	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow				
CD40106BCN	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide				
Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.						

Distributor of Fairchild Semiconductor: Excellent Integrated System Limited Datasheet of CD40106BCN - IC TRIGGER HEX SCHMITT 14-DIP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

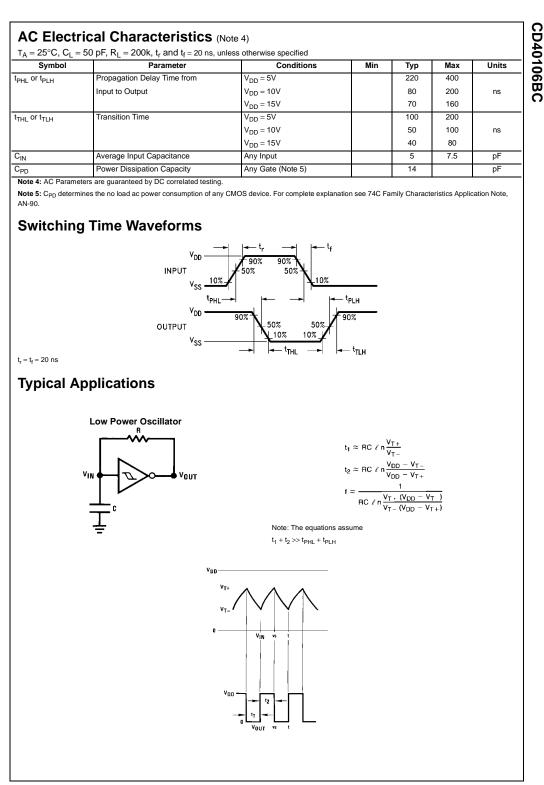
Absolute Maximum Ratings(Note 1) (Note 2)

DC Supply Voltage (V _{DD})	-0.5 to $+18$ V _{DC}
Input Voltage (V _{IN})	–0.5 to V_{DD} +0.5 V_{DC}
Storage Temperature Range (T _S)	$-65^{\circ}C$ to $+150^{\circ}C$
Power Dissipation (P _D)	
Dual-In-Line	700 mW
Small Outline	500 mW
Lead Temperature (T _L)	
(Soldering, 10 seconds)	260°C

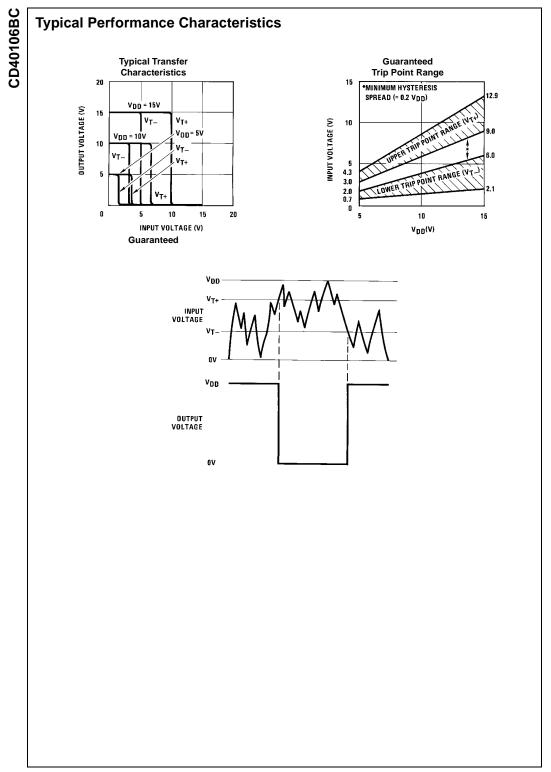
Recommended Operating Conditions (Note 2)

DC Supply Voltage (V _{DD})				
Input Voltage (V _{IN})				

3 to 15 V_{DC} 0 to $V_{DD} V_{DC}$ -55°C to +125°C


Note 2: $V_{SS} = 0V$ unless otherwise specified.

DC Electrical Characteristics (Note 3)


Symbol	Parameter	Conditions	-5	–55°C		+25°C			+125°C		
	Parameter		Min	Max	Min	Тур	Max	Min	Max	Units	
I _{DD}	Quiescent Device Current	$V_{DD} = 5V$		1.0			1.0		30		
		$V_{DD} = 10V$		2.0			2.0		60	μA	
		$V_{DD} = 15V$		4.0			4.0		120		
0L	LOW Level Output	I _O < 1 μA									
	Voltage	$V_{DD} = 5V$		0.05			0.05		0.05	v	
		$V_{DD} = 10V$		0.05			0.05		0.05	v	
		$V_{DD} = 15V$		0.05			0.05		0.05		
011	HIGH Level Output	I _O < 1 μA									
	Voltage	$V_{DD} = 5V$	4.95		4.95	5		4.95		v	
		$V_{DD} = 10V$	9.95		9.95	10		0.95		v	
		$V_{DD} = 15V$	14.95		14.95	15		14.95			
	Negative-Going Threshold	$V_{DD} = 5V, V_{O} = 4.5V$	0.7	2.0	0.7	1.4	2.0	0.7	2.0		
	Voltage	$V_{DD} = 10V, V_O = 9V$	1.4	4.0	1.4	3.2	4.0	1.4	4.0	V	
		$V_{DD} = 15V, V_{O} = 13.5V$	2.1	6.0	2.1	5.0	6.0	2.1	6.0		
	Positive-Going Threshold	$V_{DD} = 5V, V_{O} = 0.5V$	3.0	4.3	3.0	3.6	4.3	3.0	4.3		
	Voltage	$V_{DD} = 10V, V_O = 1V$	6.0	8.6	6.0	6.8	8.6	6.0	8.6	V	
		$V_{DD} = 15V, V_{O} = 1.5V$	9.0	12.9	9.0	10.0	12.9	9.0	12.9		
V _H	Hysteresis (V _{T+} – V _{T-})	$V_{DD} = 5V$	1.0	3.6	1.0	2.2	3.6	1.0	3.6		
	Voltage	$V_{DD} = 10V$	2.0	7.2	2.0	3.6	7.2	2.0	7.2	V	
		$V_{DD} = 15V$	3.0	10.8	3.0	5.0	10.8	3.0	10.8		
I _{OL}	LOW Level Output	$V_{DD} = 5V, V_{O} = 0.4V$	0.64		0.51	0.88		0.36			
	Current (Note 3)	$V_{DD} = 10V, V_{O} = 0.5V$	1.6		1.3	2.25		0.9		mA	
		$V_{DD} = 15V, V_{O} = 1.5V$	4.2		3.4	8.8		2.4			
I _{ОН}	HIGH Level Output	V _{DD} = 5V, V _O = 4.6V	-0.64		-0.51	-0.88		-0.36			
	Current (Note 3)	$V_{DD} = 10V, V_{O} = 9.5V$	-1.6		-1.3	-2.25		-0.9		mA	
		$V_{DD} = 15V, V_{O} = 13.5V$	-4.2		-3.4	-8.8		-2.4			
I _{IN}	Input Current	V _{DD} = 15V, V _{IN} = 0V		-0.1		-10 ⁻⁵	-0.1		-1.0	μA	
		V _{DD} = 15V, V _{IN} = 15V		0.1		10 ⁻⁵	0.1		1.0	μΑ	

Note 3: I_{OH} and I_{OL} are tested one output at a time.

