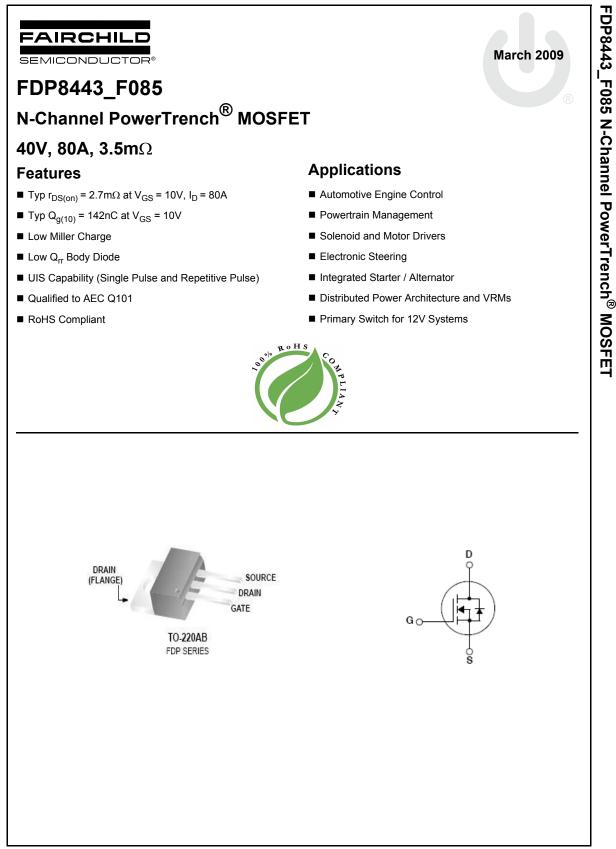


Excellent Integrated System Limited


Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor FDP8443_F085

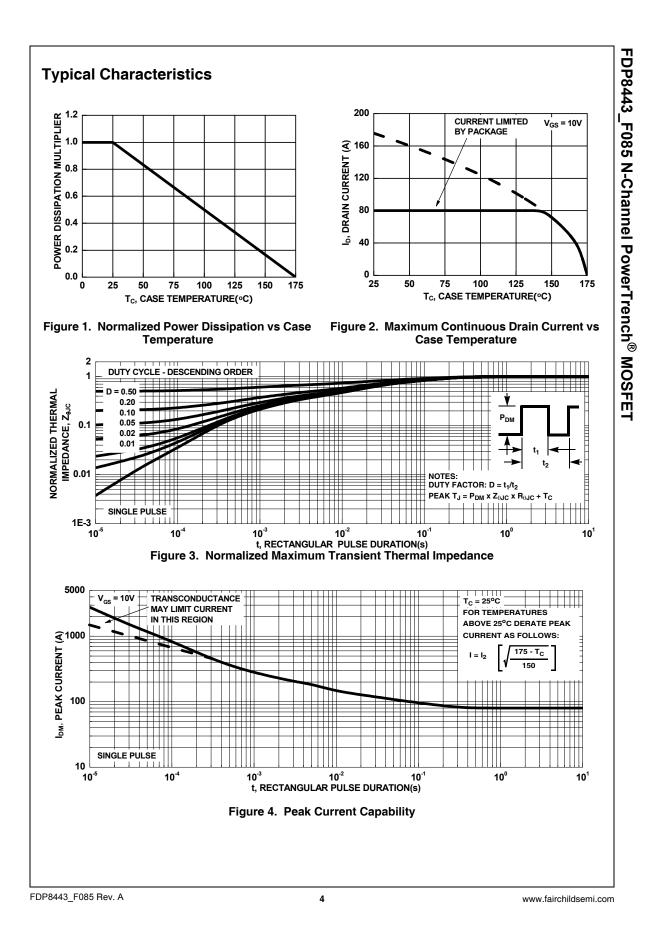
For any questions, you can email us directly: <u>sales@integrated-circuit.com</u>

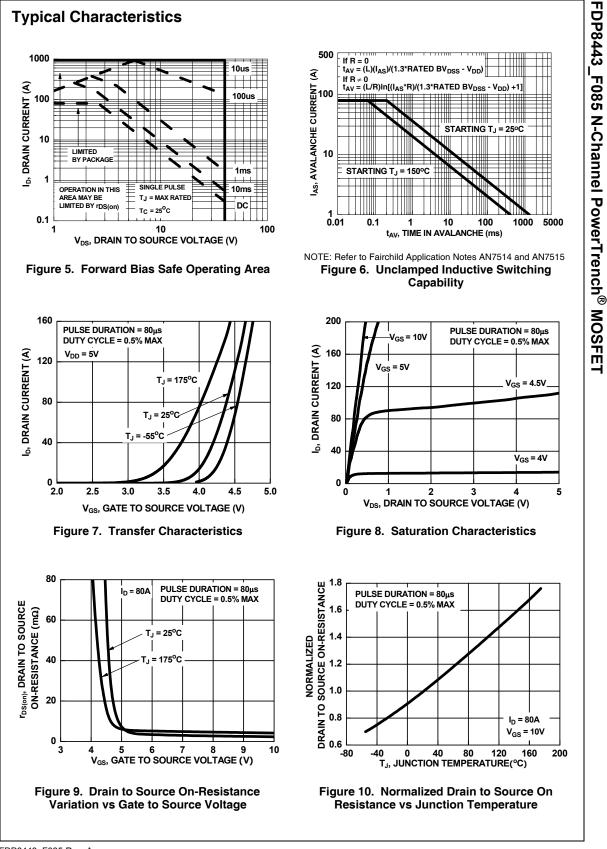
©2009 Fairchild Semiconductor Corporation FDP8443_F085 Rev. A

www.fairchildsemi.com

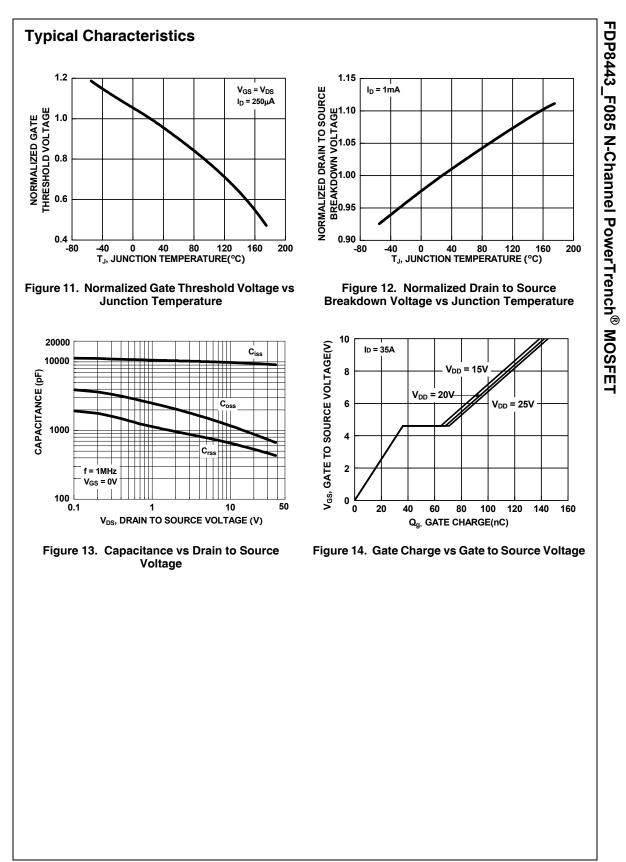
Symbol			Parame	ter					Rating	s	Units
/ _{DSS}	Drain to S	ource Voltage							40		V
/ _{GS}	Gate to Se	ource Voltage							±20		V
		rent Continuous (T ₀							80		
C	Continuou	is ($T_{amb} = 25^{\circ}C, V_{GS}$	_S = 10V, wit	h R _{θJA} =	= 62 ^o C/W)				20		Α
	Pulsed							S	ee Figu	re 4	
AS	Single Pu	lse Avalanche Ener	gy			(Nc	ote 1)		531		mJ
D	Power Dis	sipation							188		W
	Derate ab								1.25		W/ºC
T _J , T _{STG}	Operating	and Storage Temp	erature					-	55 to +1	75	°C
[herm	al Cha	racteristics									
	1										
۲ _{θJC}	Thermal F	Resistance Junction	to Case						0.8		°C/W
$R_{\theta JA}$	Thermal F	Resistance Junction	to Ambient	t		(No	te 2)		62		°C/W
Packa	ge Mar	king and Or	dering	Infor	mation						
Device	Marking	Device	Packa	ge	Reel Size	•	Тар	e Width		Quan	tity
FDF	P8443	FDP8443_F085	TO-220	AB	Tube			N/A		50 ur	nits
Symbol		Parameter			Test Condit			Min	Тур	Max	Units
Off Cha	racterist	ics									
Dff Cha B _{VDSS}		ource Breakdown \	/oltage	I _D = 25	60μΑ, V _{GS} = 0V	/		40		-	V
B _{VDSS}	Drain to S	ource Breakdown \		V _{DS} =	32V,			40	-	- 1	
BVDSS	Drain to S			V _{DS} = V _{GS} =	32V, 0V	/ T _C = 15	0°C	40 - -		- 1 250	V µA
B _{VDSS} DSS	Drain to S Zero Gate	ource Breakdown \	rent	V _{DS} =	32V, 0V		0°C	40 - - -	-	-	
BVDSS DSS GSS	Drain to S Zero Gate Gate to Se	ource Breakdown \ Voltage Drain Curr ource Leakage Curr	rent	V _{DS} = V _{GS} =	32V, 0V		0°C	-	- - -	250	μA
B _{VDSS} DSS GSS	Drain to S Zero Gate	ource Breakdown \ Voltage Drain Curr ource Leakage Curr	rent	V _{DS} = V _{GS} =	32V, 0V		0°C	-	-	250	μA
B _{VDSS} DSS GSS Dn Cha	Drain to S Zero Gate Gate to So racterist	ource Breakdown \ Voltage Drain Curr ource Leakage Curr	rent	V _{DS} = V _{GS} = V _{GS} =	32V, 0V	T _C = 15	0°C	-	- - - 2.8	250	μA
B _{VDSS} DSS GSS Dn Cha	Drain to S Zero Gate Gate to So racterist	ource Breakdown V Voltage Drain Curr purce Leakage Curr ics	rent	V_{DS} = V_{GS} = V_{GS} =	32V, 0V ±20V	T _C = 15	0°C	-		250 ±100	μA nA
B _{VDSS} DSS GSS	Drain to S Zero Gate Gate to S racterist Gate to S	ource Breakdown V Voltage Drain Curr purce Leakage Curr ics	rent rent Ditage	$V_{DS} = V_{GS} = V_{GS} = V_{GS} = I_D = 80$ $I_D = 80$	32V, 0V $\pm 20V$ $V_{DS}, I_D = 250\mu$ $A, V_{GS} = 10V$ $A, V_{GS} = 10V$	T _C = 15	0°C	2	2.8 2.7	250 ±100 4 3.5	μA nA
BVDSS DSS GSS Dn Cha / _{GS(th)}	Drain to S Zero Gate Gate to S racterist Gate to S	ource Breakdown V Voltage Drain Curr ource Leakage Curr ics ource Threshold Vo	rent rent Ditage	$V_{DS} =$ $V_{GS} =$ $V_{GS} =$ $V_{GS} =$ $I_D = 80$	32V, 0V $\pm 20V$ $V_{DS}, I_D = 250\mu$ $A, V_{GS} = 10V$ $A, V_{GS} = 10V$	T _C = 15	0°C	- - - 2 -	2.8	250 ±100	μA nA V
BVDSS DSS DSS Dn Cha /GS(th) DS(on)	Drain to S Zero Gate Gate to S racterist Gate to S Drain to S	ource Breakdown V Voltage Drain Curr ource Leakage Curr ics ource Threshold Vo Source On Resistan	rent rent Ditage	$V_{DS} = V_{GS} = V_{GS} = V_{GS} = I_D = 80$ $I_D = 80$	32V, 0V $\pm 20V$ $V_{DS}, I_D = 250\mu$ $A, V_{GS} = 10V$ $A, V_{GS} = 10V$	T _C = 15	0°C	- - - 2 -	2.8 2.7	250 ±100 4 3.5	μA nA V
B _{VDSS} DSS GSS Dn Cha / _{GS(th)} DS(on)	Drain to S Zero Gate Gate to S racterist Gate to S Drain to S	ource Breakdown V Voltage Drain Curr ource Leakage Curr ics ource Threshold Vo	rent rent Ditage	$V_{DS} = V_{GS} = V_{GS} = V_{GS} = I_D = 80$ $I_D = 80$	32V, 0V $\pm 20V$ $V_{DS}, I_D = 250\mu$ $A, V_{GS} = 10V$ $A, V_{GS} = 10V$	T _C = 15	0°C	- - - 2 -	2.8 2.7	250 ±100 4 3.5	μA nA V
3 _{VDSS} DSS GSS)n Cha / _{GS(th)} DS(on))ynami	Drain to S Zero Gate Gate to S racterist Gate to S Drain to S	ource Breakdown V Voltage Drain Curr ource Leakage Curr ics ource Threshold Vo Gource On Resistan	rent rent Ditage	$V_{DS} = V_{GS} = V_{GS} = V_{GS} = I_D = 80$ $I_D = 80$ $T_J = 17$	32V, 0V $\pm 20V$ $V_{DS}, I_D = 250\mu$ $A, V_{GS} = 10V$ $A, V_{GS} = 10V,$ $75^{\circ}C$	T _C = 15	0°C	- - - 2 -	2.8 2.7	250 ±100 4 3.5	μA nA V
B _{VDSS} DSS GSS Dn Cha V _{GS(th)} DS(on) D S(on) D S(on)	Drain to S Zero Gate Gate to S Gate to S Gate to S Drain to S C Charace Input Cap	ource Breakdown V Voltage Drain Curr ource Leakage Curr ics ource Threshold Vo Gource On Resistan	rent rent Ditage	$V_{DS} = V_{GS} = V_{GS} = V_{GS} = I_D = 80$ $I_D = 80$ $T_J = 17$	32V, 0V $\pm 20V$ $V_{DS}, I_D = 250\mu$ $A, V_{GS} = 10V$ $A, V_{GS} = 10V,$ $75^{\circ}C$ 25V, $V_{GS} = 0V$	T _C = 15	0°C	- - - 2 -	2.8 2.7 4.7	250 ±100 4 3.5	μA nA V mΩ
B _{VDSS} DSS GSS Dn Cha /GS(th) DS(on) DS(on) Dynami Ciss Coss	Drain to S Zero Gate Gate to S Gate to S Drain to S C Charac Input Cap Output Ca	ource Breakdown V voltage Drain Curr ource Leakage Curr ics ource Threshold Vo Gource On Resistan cteristics	rent rent oltage ce	$V_{DS} = V_{GS} = V_{GS} = V_{GS} = I_D = 80$ $I_D = 80$ $T_J = 17$	32V, 0V $\pm 20V$ $V_{DS}, I_D = 250\mu$ $A, V_{GS} = 10V$ $A, V_{GS} = 10V,$ $75^{\circ}C$ 25V, $V_{GS} = 0V$	T _C = 15	0°C	- - - 2 -	2.8 2.7 4.7 9310	250 ±100 4 3.5	μΑ nA V mΩ
B _{VDSS} DSS GSS Dn Cha V _{GS(th)} DS(on)	Drain to S Zero Gate Gate to S Gate to S Drain to S C Charac Input Cap Output Ca	ource Breakdown V Voltage Drain Curr ource Leakage Curr ics ource Threshold Vo Source On Resistan cteristics pacitance apacitance Transfer Capacitance	rent rent oltage ce	$V_{DS} = V_{GS} = V_{GS} = V_{GS} = I_D = 80$ $I_D = 80$ $T_J = 17$ $V_{DS} = 1$	32V, 0V $\pm 20V$ $V_{DS}, I_D = 250\mu$ $A, V_{GS} = 10V$ $A, V_{GS} = 10V,$ $75^{\circ}C$ 25V, $V_{GS} = 0V$	T _C = 15 μΑ	0°C	- - - 2 -	2.8 2.7 4.7 9310 800	250 ±100 4 3.5	μA nA V mΩ pF pF
Byddss DSS GSS Dn Cha (GS(th) DS(on)	Drain to S Zero Gate Gate to S Gate to S Drain to S C Charac Input Cap Output Ca Reverse Gate Res	ource Breakdown V Voltage Drain Curr ource Leakage Curr ics ource Threshold Vo Source On Resistan cteristics pacitance apacitance Transfer Capacitance	rent rent oltage ce	$V_{DS} = V_{GS} = V_{GS} = V_{GS} = I_D = 80$ $I_D = 80$ $T_J = 17$ $V_{DS} = 1$ f = 1MI $V_{GS} = V_{GS} = 1$	32V, 0V $\pm 20V$ $V_{DS}, I_D = 250\mu$ $DA, V_{GS} = 10V$ $DA, V_{GS} = 10V,$ $75^{\circ}C$ 25V, $V_{GS} = 0V$ Hz 0.5V, f = 1MHz 0 to 10V	T _C = 15 μΑ	0°C		2.8 2.7 4.7 9310 800 510	250 ±100 4 3.5 6.1 - -	μA nA V mΩ pF pF
Byddss DSS DSS DSS DN Cha (GS(th) DS(on) DS(Drain to S Zero Gate Gate to S Gate to S Gate to S Drain to S C Charae Input Cap Output Ca Reverse Gate Res Total Gate Threshold	ource Breakdown V Voltage Drain Curr burce Leakage Curr ics ource Threshold Vo Source On Resistan cteristics macitance apacitance Transfer Capacitance istance e Charge at 10V I Gate Charge	rent rent ce ce	$V_{DS} = V_{GS} = V_{GS} = V_{GS} = I_D = 80$ $I_D = 80$ $T_J = 17$ $V_{DS} = 1$ f = 1MI $V_{GS} = V_{GS} = 1$	32V, 0V $\pm 20V$ $V_{DS}, I_D = 250\mu$ $DA, V_{GS} = 10V$ $DA, V_{GS} = 10V,$ $75^{\circ}C$ 25V, $V_{GS} = 0V$ Hz 0.5V, f = 1MHz 0 to 10V	T _C = 15 μA /, z V _{DD} = 2			2.8 2.7 4.7 9310 800 510 0.9	250 ±100 4 3.5 6.1 - - - -	μA nA V mΩ pF pF pF
3vDSS DSS GSS Dn Cha /GS(th) DS(on)	Drain to S Zero Gate Gate to S Gate to S Gate to S Drain to S C Charac Input Cap Output Ca Reverse Gate Res Total Gate Threshold Gate to S	ource Breakdown V Voltage Drain Curr ource Leakage Curr ics ource Threshold Vo Source On Resistan cteristics macitance apacitance apacitance istance a Charge at 10V I Gate Charge ource Gate Charge	rent rent ce ce	$V_{DS} = V_{GS} = V_{GS} = V_{GS} = I_D = 80$ $I_D = 80$ $T_J = 17$ $V_{DS} = 1$ f = 1MI $V_{GS} = V_{GS} = 1$	32V, 0V $\pm 20V$ $V_{DS}, I_D = 250\mu$ $DA, V_{GS} = 10V$ $DA, V_{GS} = 10V,$ $75^{\circ}C$ 25V, $V_{GS} = 0V$ Hz 0.5V, f = 1MHz 0 to 10V	T _C = 15 μA /, z V _{DD} = 20 I _D = 35	0V - 5A		2.8 2.7 4.7 9310 800 510 0.9 142	250 ±100 4 3.5 6.1 - - - 185	μA nA V mΩ pF pF Ω nC
B _{VDSS} DSS GSS Dn Cha (GS(th) DS(on)	Drain to S Zero Gate Gate to S Gate to S Gate to S Drain to S C Charac Input Cap Output Ca Reverse Gate Res Total Gate Threshold Gate to S	ource Breakdown V Voltage Drain Curr burce Leakage Curr ics ource Threshold Vo Source On Resistan cteristics macitance apacitance Transfer Capacitance istance e Charge at 10V I Gate Charge	rent rent ce ce	$V_{DS} = V_{GS} = V_{GS} = V_{GS} = I_D = 80$ $I_D = 80$ $T_J = 17$ $V_{DS} = 1$ f = 1MI $V_{GS} = V_{GS} = 1$	32V, 0V $\pm 20V$ $V_{DS}, I_D = 250\mu$ $DA, V_{GS} = 10V$ $DA, V_{GS} = 10V,$ $75^{\circ}C$ 25V, $V_{GS} = 0V$ Hz 0.5V, f = 1MHz 0 to 10V	T _C = 15 μA /, z V _{DD} = 2	0V - 5A	- - - - - - - - - - - - - -	2.8 2.7 4.7 9310 800 510 0.9 142 17.5	250 ±100 4 3.5 6.1 - - - 185 23	μΑ nA V mΩ pF pF pF Ω nC nC

FDP8443_F085 Rev. A


2


Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Switch	ing Characteristics (V _{GS}	= 10V)				
t _{on}	Turn-On Time		-	-	58	ns
t _{d(on)}	Turn-On Delay Time	V_{DD} = 20V, I _D = 35A V_{GS} = 10V, R _{GS} = 2Ω	-	18.4	-	ns
t _r	Rise Time		-	17.9	-	ns
t _{d(off)}	Turn-Off Delay Time		-	55	-	ns
t _f	Fall Time		-	13.5	-	ns
t _{off} Drain-So	Turn-Off Time Diode Characteristics		-	-	109	ns
Drain-So	ource Diode Characteristics	I _{SD} = 35A	-	- 0.8	109	
				- 0.8 0.8		ns - V
Drain-So	ource Diode Characteristics	I _{SD} = 35A	-		1.25	

This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a copy of the requirements, see AEC Q101 at: http://www.aecouncil.com/ All Fairchild Semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification.



FDP8443_F085 Rev. A

FAIRCHILD SEMICONDUCTOF TRADEMARKS The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks. FRFFT® Build it Now™ Programmable Active Droop™ franchise CorePLUS™ Global Power ResourceSM QFET[®] Green FPS™ QS™ CorePOWER™ TinyBoost™ Green FPS™ e-Series™ CROSSVOLT™ Quiet Series™ TinyBuck™ CTL™ GTO™ RapidConfigure™ TinyLogic® Current Transfer Logic™ IntelliMAX™ TINYOPTO™ EcoSPARK[®] **ISOPLANAR™** ты TinyPower™ TinyPWM™ EfficentMax™ MegaBuck™ Saving our world, 1mW /W /kW at a time™ EZSWITCH™ 3 MIČROCOUPLER™ SmartMax™ TinyWire™ SMART START™ SPM[®] MicroFET™ MicroPak™ TriFault Detect™ uSerDes™ MillerDrive™ STEALTH™ MotionMax™ SuperFET™ Fairchild® Motion-SPM™ SuperSOT™-3 Fairchild Semiconductor® **OPTOLOGIC[®]** SuperSOT™-6 UHC® FACT Quiet Series™ FACT[®] Ultra FRFET™ SuperSOT™-8 **OPTOPLANAR[®]** SupreMOS™ UniFET™ VCX™ FAST® SyncFET™ FastvCore™ VisualMax™ SYSTEM ® PDP SPM™ FlashWriter[®] * GENERAL XS™ Power-SPM™ **FPSTM** The Power Franchise[®] PowerTrench[®] F-PFS™ PowerXS™ * EZSWITCH™ and FlashWriter[®] are trademarks of System General Corporation, used under license by Fairchild Semiconductor. DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS. LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: Life support devices or systems are devices or systems which, (a) are A critical component in any component of a life support, device, or 1. 2. intended for surgical implant into the body or (b) support or sustain life, system whose failure to perform can be reasonably expected to cause and (c) whose failure to perform when properly used in accordance with the failure of the life support device or system, or to affect its safety or instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. effectiveness. ANTI-COUNTERFEITING POLICY Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Farichild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support. Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors. **PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status** Definition Datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Advance Information Formative / In Design Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without Preliminary First Production notice to improve design. Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design. No Identification Needed Full Production Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only. Obsolete Not In Production

Rev. 138