

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

[AVX Corporation](#)

[PMLE480W-R](#)

For any questions, you can email us directly:

sales@integrated-circuit.com

EQM08-4KC-F5AS101-00

PreliminaryMessrs.

Shock Sensor Specification

Part No. : PMLE480W-R

RoHS Compliant**Halogen-Free Compliant**16.Dec. 2010

<u>Approved by</u>	Kazuki Shimizu
<u>Checked by</u>	Yasuhiro Nakai
<u>Issued by</u>	Akira Oikawa

KYOCERA CORPORATION

EQM08-4KC-F5AS101 -00

Modification Table

1.Scope

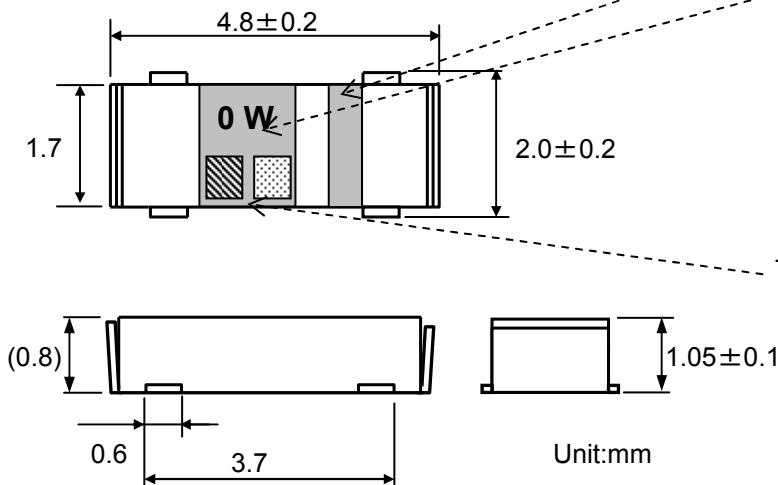
This specification shall cover the characteristics of the shock sensor.

Preliminary

2.Kyocera's Type Name

PMLE480W-R

3.Customer's Type Name


4.Electrical Characteristics

Items	Specifications
4-1 Primary Axis Inclined Angle	$0 \pm 3\text{degree}$
4-2 Capacitance	$890\text{pF} \pm 30\%$, at $1\text{Vrms}, 1\text{kHz}$
4-3 Charge Sensitivity	$0.608 \text{ pC/G} \pm 15\%$ under vibration at $200\text{Hz}, 2\text{G}$
4-4 Insulation Resistance	0.5Gohm minimum, at 10VDC after 1min .
4-5 Resonant Frequency	$19.5 \pm 3.5\text{kHz}$
4-6 Non-linearity	5% maximum, under vibration at 25G
4-7 Charge Sensitivity Temperature Drift	Ta : 70°C $7.7 \pm 3.0\%$ Ta : 0°C $-4.2 \pm 2.0\%$ under vibration at $200\text{Hz}, 2\text{G}$

<Measurement Condition>

The reference temperature shall be $25^\circ\text{C} \pm 5^\circ\text{C}$.

5.Dimensions and Marking

Marking of Polarity

Characteristic Spec

0: Initial of Primary Axis Inclined Angle.

W: Specification

Manufacturing Day Code :

Day	1	2	3	4	5	6	7	8	9	10
Cade	A	B	C	D	E	F	G	H	J	K
Day	11	12	13	14	15	16	17	18	19	20
Cade	L	M	N	P	Q	R	S	T	U	V
Day	21	22	23	24	25	26	27	28	29	30
Cade	W	X	Y	Z	a	b	c	d	e	f
Day										g

Manufacturing Month Code :

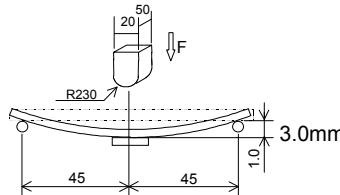
2010 Jan. ~ Dec. : N ~ Z except "O"

2011 Jan. ~ Dec. : a ~ m except "i"

2012 Jan. ~ Dec. : n ~ z except "o"

2013 Jan. ~ Dec. : A ~ M except "l"

Note: These alphabets should be repeated after Jan. 2014.

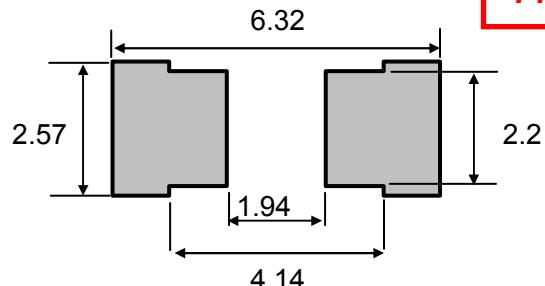
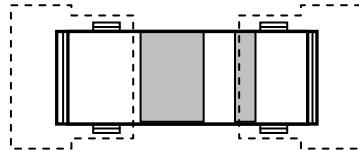

EQM08-4KC-F5AS101-00

(2/5)

6.Environmental Characteristics

Preliminary

Items	Conditions
6-1.High Temperature Storage Test	Keep in a chamber at $85 \pm 2^\circ\text{C}$ for 1000 +12/-0 hours, and then keep at room temperature for 1 hour. The characteristics of shock sensor shall meet the specifications.
6-2.Low Temperature Storage Test	Keep in a chamber at $-40 \pm 2^\circ\text{C}$ for 1000 +12/-0 hours, and then keep at room temperature for 1 hour. The characteristics of shock sensor shall meet the specifications.
6-3.Moisture Resistance Test	Keep in a chamber at 90 to 95 % R.H. and $60 \pm 2^\circ\text{C}$ for 500 +12/-0 hours, and then keep at room temperature for 1 hour. The characteristics of shock sensor shall meet the specifications.
6-4.Temperature Cycling Test	Apply 100 thermal cycles with the following temperatures: <ul style="list-style-type: none"> - upper temperature 85°C for 20 minutes and transfer time 10 minutes - lower temperature -40°C for 20 minutes and transfer time 10 minutes - total cycle time is 1hour and then left at room temperature for 1 hour. The characteristics of shock sensor shall meet the specifications.
6-5.Mechanical Shock Test	After applying the acceleration at 29430m/sec^2 {3000G} in each of X, Y and Z axis (each 3 times). The characteristics of shock sensor shall meet the specifications.
6-6.Solderability Test	At first, being soaked in the Methanol solution containing Rosin for 5 seconds and then being dipped in a bath of Pb/Sn solder at $250 \pm 5^\circ\text{C}$ for 4 ± 0.5 seconds. The surface of the electrode terminal shall be soldered more than 95%.
6-7.Resistance to Soldering Heat Test	Pre-heat temperature is 150 to 180°C for 1 minute. High temperature is $250 \pm 5^\circ\text{C}$, over 200°C for 20 seconds max.(2times). Then keep at room temperature for 1 hour. The characteristics of shock sensor shall meet the specifications.
6-8.Board Flex Test	After soldered on the circuit board specified as below, then the load which cause 3 mm bend to the board is applied. The characteristics of shock sensor shall meet the specifications. The shock sensor cause no defect in the appearance. (Circuit Board: FR4, 100 x 40 x 1.6)



<Measurement Condition>

The reference temperature shall be $25^\circ\text{C} \pm 5^\circ\text{C}$.

EQM08-4KC-F5AS101-00

(3/5)

7. Recommended Land pattern

Preliminary

Unit: (mm)

Fig.2 Recommended Land pattern

8. Recommended Convection Reflow profile

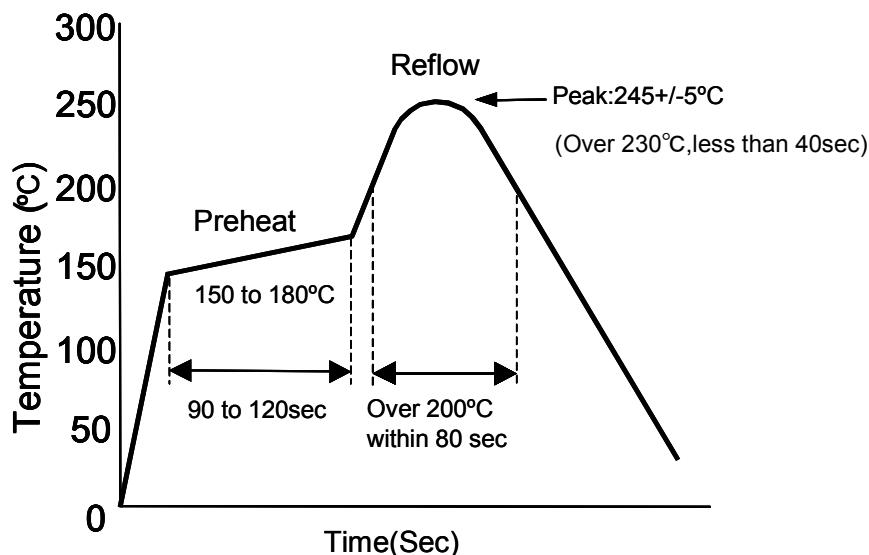
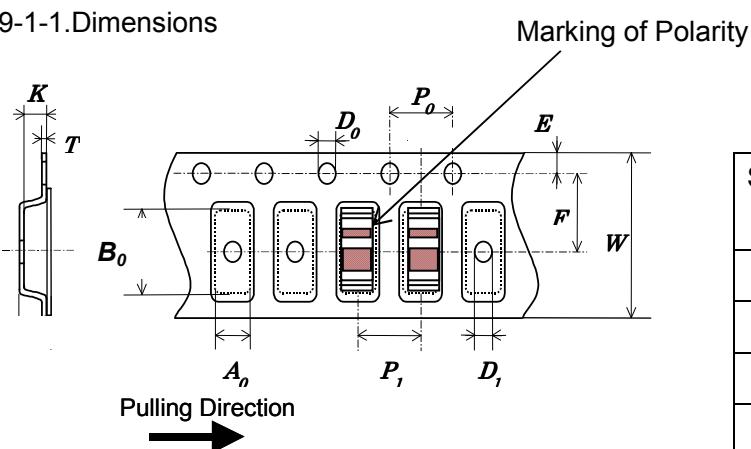



Fig.3 Recommended Convection Reflow profile

9. Taping Specifications

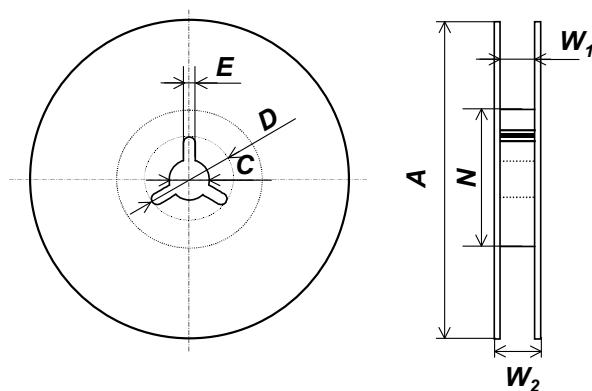
9-1.Carrier Tape

9-1-1.Dimensions

Unit: (mm)

Symbol	Dimensions	Symbol	Dimensions
A_0	2.25 ± 0.1	P_0	4.0 ± 0.1
B_0	4.4 ± 0.1	P_1	4.0 ± 0.1
W	$12.0 +0.3/-0.1$	D_0	$1.5 +0.1/-0$
E	1.75 ± 0.1	K	1.25 ± 0.1
F	5.5 ± 0.05	T	0.3 ± 0.05

Fig.4 Emboss Carrier Tape Dimensions

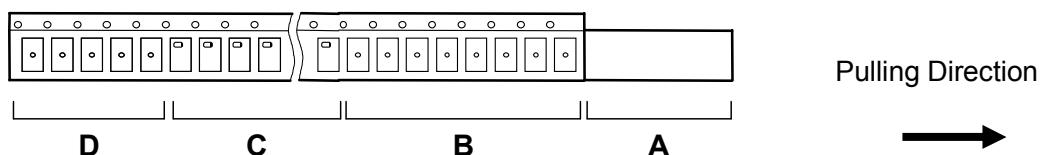

9-2. Taping

9-2-1. Taping Quantity

Preliminary

One reel of the carrier tape shall pack 3500 pcs. Shock sensor shall be contained in pocket continuously.

9-2-2. Dimensions


Fig.5 Reel

Unit: (mm)

Symbol	A	N	W₁	W₂
Dimensions	180±5.0	60min.	12.5 +2.0/-0.0	20.5 max.
Symbol	C	D	E	
Dimensions	13.0±0.2	21.0±0.8	2.0±0.5	

9-2-3. Leader and Blank Pocket

Package shall consist of leader, blank pocket and loaded pocket as follows. (fig.6)

A) Leader

B) Blank Pocket (160mm Min.)

A+B: 400mm to 560mm

C) Load Pocket

D) Blank Pocket (40 to 190mm)

Fig.6 Packing Method

Peeling load of top tape shall be 0.1N {10gf} to 0.7N {70gf} from Carrier Tape.

Fig.7 Peeling Strength

9-2-4. Reel label

A reel label shall be contained as below: (Based on EIAJ C-3 format)

Preliminary

- A) Customer P/N
- B) Lot No.
- C) Quantity
- D) Shipping date
- E) Vender Name

9-2-5. Exterior Package label

Shock sensor shall be packed properly to avoid defect in transportation and the marking of exterior package shall be contained as below:

- A) Name of Customer
- B) P/O No.
- C) Customer P/N
- D) Lot No.
- E) Quantity
- F) Shipping Date
- G) Vender Name

10. The agreement of this specifications

Should any part of the content of this specification become questionable, it shall be settled by mutual deliberations.

11. Remarks on Usage

- A) This part can use only reflow soldering.
- B) Not washable
- C) Maximum temperature is 280 degree.

12. RoHS Compliant

- A) Sensor Case: LCP(liquid crystal polymer)
- B) Terminal: Bronze with phosphate (thickness 100 um)
Plating: Cu(1-2um), Ag(1-3 um)
- C) Element: Piezo Ceramic, contains lead-oxide, however, piezo-electronic devices are exempted from RoHS compliant requirement of article 4(1).
(Refer to Annex, Section 7)

All materials meet to RoHS Compliant.

13. Halogen-Free Compliant

- A) Bromine(Br) <900ppm(0.09%)
- B) Chlorine(Cl) <900ppm(0.09%)
- C) Total concentration of Chlorine(Cl) + Bromine(Br) <1500ppm(0.15%)
- D) Antimony Trioxide(Sb₂O₃) <1000ppm(0.1%)
- E) Red Phosphorus <1000ppm(0.1%)

All materials meet to Halogen-Free Compliant.