

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Vishay/Siliconix DG2511DN-T1-E4

For any questions, you can email us directly: sales@integrated-circuit.com

DG2511, DG2512, DG2513

Vishay Siliconix

RoHS

COMPLIANT

Low-Voltage, Low R_{ON}, Single Analog Switch In miniQFN-6 Package

DESCRIPTION

The DG2511, DG2512, DG2513 are low on-resistance, single-pole/double-throw single-pole/single-throw or monolithic CMOS analog switch. It is designed for low voltage applications. The DG2511, DG2512, DG2513 are ideal for portable and battery powered equipment, requiring high performance and efficient use of board space. In additional to the low on-resistance (1.3 Ω at 2.7 V).

The DG2511 is an SPDT and the DG2512, DG2513 are SPST. The switch conducts equally well in both directions when on, and blocks up to the power supply level when off.

The DG2511, DG2512, DG2513 are built on Vishay Siliconix's low voltage JI5L process. An epitaxial layer prevents latchup.

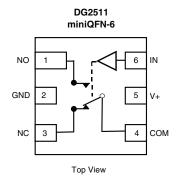
Break-before-make is guaranteed.

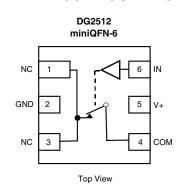
The DG2511, DG2512, DG2513 represents a breakthrough in packaging development for analog switching products. The miniQFN-6 package (1.2 x 1 mm).

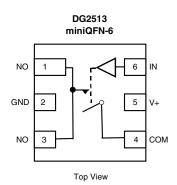
As a committed partner to the community and the environment, Vishay Siliconix manufactures this product with the lead (Pb)-free device terminations. For analog switching products manufactured with NiPdAu device terminations, the lead (Pb)-free "-E4" suffix is being used as a designator.

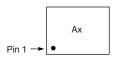
FEATURES

- Low voltage operation (1.8 V to 5.5 V)
- Low on-resistance $R_{\mbox{\scriptsize ON}}\!\!:$ 1.3 Ω at 2.7 V
- Low charge injection
- Latch-up current > 300 mA (JESD78A)
- miniQFN-6 package (1.2 x 1 mm)
- Material categorization: For definitions of compliance please see www.vishav.com/doc?99912


BENEFITS


- · Reduced power consumption
- Simple logic interface
- High accuracy
- Reduce board space
- Guaranteed 2 V operation


APPLICATIONS


- Cellular phones
- Communication systems
- Portable test equipment
- Battery operated systems
- Sample and hold circuits
- ADC and DAC applications
- Low voltage data acquisition systems

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

Device Marking: Ax for DG2511 Bx for DG2512 Cx for DG2513 x = Date/Lot Traceability Code Note: Pin 1 has long lead

TRUTH TABLE							
Logic	NC	NO					
0	On	Off					
1	Off	On					

COMMERCIAL ORDERING INFORMATION						
Temp Range	emp Range Package Part Numb					
- 40 °C to 85 °C	miniQFN-6	DG2511DN-T1-E4				
	Lead (Pb)-free	DG2512DN-T1-E4				
	with Tape and Reel	DG2513DN-T1-E4				

Document Number: 74454 S12-1989-Rev. D, 20-Aug-12

For more information please contact: analogswitchtechsuoort@vishay.com

www.vishay.com

Datasheet of DG2511DN-T1-E4 - IC SWITCH DUAL LV 6MINIQFN

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

DG2511, DG2512, DG2513

Vishay Siliconix

ABSOLUTE MAXIMUM RATINGS						
Parameter		Limit	Unit			
Reference V+ to GND		- 0.3 to + 6	V			
IN, COM, NC, NO ^a		- 0.3 to (V+ + 0.3)				
Continuous Current (NO, NC, COM pins)		± 150	A			
Peak Current (Pulsed at 1 ms, 10 % duty cycle)		± 300	mA			
Storage Temperature	D Suffix	- 65 to 150	°C			
Power Dissipation (Packages) ^b	miniQFN-6 ^c	160	mW			

Notes:

- a. Signals on NC, NO, or COM or IN exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
- b. All leads welded or soldered to PC board.
- c. Derate 2 mW/°C above 70 °C.

SPECIFICATIONS (V+ = 3 V)										
		Test Conditions Otherwise Unless Specified		Limits - 40 °C to 85 °C						
Parameter	Symbol	$V+ = 3 V$, $\pm 10 \%$, $V_{IN} = 0.4 V$ or 2 V^e	Temp.a	Min.b	Typ. ^c	Max.b	Unit			
Analog Switch										
Analog Signal Range ^d	V_{NO}, V_{NC}, V_{COM}		Full	0		V+	٧			
On-Resistance	R _{ON}	V 27 V. V 0 F.V/1 F.V.	Room Full		1.4	1.7 1.9				
R _{ON} Match	ΔR_{ON}	$V+ = 2.7 \text{ V}, V_{COM} = 0.5 \text{ V}/1.5 \text{ V}$ $I_{NO}, I_{NC} = 100 \text{ mA}$	Room			0.15	Ω			
R _{ON} Flatness	R _{ON} Flatness	NO, NC = 100 IIIA	Room		0.3	0.4				
Switch Off Leakage Current ^f	I _{NO(off)}	V+ = 3.3 V,	Room Full	- 2 - 20		2 20				
Switch Oil Leakage Current	I _{COM(off)}	V_{NO} , V_{NC} = 1 V/3 V, V_{COM} = 3 V/1 V	Room Full	- 2 - 20		2 20	nA			
Channel-On Leakage Current ^f	I _{COM(on)}	$V+ = 3.3 \text{ V}, V_{NO}, V_{NC} = V_{COM} = 1 \text{ V/3 V}$	Room Full	- 2 - 20		2 20				
Digital Control										
Input High Voltage	V _{INH}		Full	1.6			V			
Input Low Voltage	V _{INL}		Full			0.4	•			
Input Capacitance	C _{in}		Full		4		pF			
Input Current	I _{INL} or I _{INH}	V _{IN} = 0 or V+	Full	1		1	μΑ			
Dynamic Characteristics			_				,			
Turn-On Time	t _{ON}	$V+ = 2.7 \text{ V}, V_{NO} \text{ or } V_{NC} = 1.5 \text{ V},$	Room Full		18	43 49				
Turn-Off Time	t _{OFF}	$R_L = 50 \Omega$, $C_L = 35 pF$	Room Full		7	32 34	ns			
Break-Before-Make Time	t _{BBM}		Room	1	12					
Charge Injection ^d	Q_{INJ}	$C_L = 1 \text{ nF, } V_{GEN} = 0 \text{ V, } R_{GEN} = 0 \Omega$	Room		3		рC			
Off-Isolation ^d	OIRR	$R_1 = 50 \Omega$, $C_1 = 5 pF$, $f = 1 MHz$	Room		- 58		dB			
Crosstalk ^d	X _{TALK}	11 = 00 32, 0 = 0 p1, 1 = 1 Will2	Room		- 64		ub			
N _O , N _C Off Capacitance ^d	C _{NO(off)} C _{NC(off)}	V _{IN} = 0 or V+, f = 1 MHz	Room		21		pF			
Channel-On Capacitance ^d	C _{ON}		Room		61					
Power Supply	•									
Power Supply Range	V+			1.8		5.5	V			
Power Supply Current	I+	$V_{IN} = 0$ or $V+$			0.01	1	μΑ			

Datasheet of DG2511DN-T1-E4 - IC SWITCH DUAL LV 6MINIQFN

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

DG2511, DG2512, DG2513

Vishay Siliconix

		Test Conditions Otherwise Unless Specified		Limits - 40 °C to 85 °C			
Parameter	Symbol	$V+ = 5 V$, $\pm 10 \%$, $V_{IN} = 0.6 V$ or $1.8 V^e$	Temp.a	Min.b	Typ.c	Max.b	Uni
Analog Switch					•	•	
Analog Signal Range ^d	V_{NO}, V_{NC}, V_{COM}		Full	0		V+	٧
On-Resistance	R _{ON}	V 45VV 05V05V	Room Full		1	1.3 1.45	Ω
R _{ON} Match	ΔR_{ON}	$V+ = 4.5 \text{ V}, V_{COM} = 0.5 \text{ V}/2.5 \text{ V},$ $I_{NO}, I_{NC} = 100 \text{ mA}$	Room			0.15	
R _{ON} Flatness	R _{ON} Flatness	INO, INC - 100 IIIA	Room		0.3	0.4	
Switch Off Leakage Current	I _{NO(off)}	V+ = 5.5 V,	Room Full	- 2 - 20		2 20	
Switch On Leakage Guirent	I _{COM(off)}	V_{NO} , V_{NC} = 1 V/4.5 V, V_{COM} = 4.5 V/1 V	Room Full	- 2 - 20		2 20	nA
Channel-On Leakage Current	I _{COM(on)}	$V+ = 5.5 \text{ V}, V_{NO}, V_{NC} = V_{COM} = 1 \text{ V}/4.5 \text{ V}$	Room Full	- 2 - 20		2 20	
Digital Control							
Input High Voltage	V _{INH}		Full	1.8			V
Input Low Voltage	V_{INL}		Full			0.6	
Input Capacitance	C _{in}		Full		4		pF
Input Current	I _{INL} or I _{INH}	$V_{IN} = 0 \text{ or } V+$	Full	1		1	μΑ
Dynamic Characteristics							
Turn-On Time	t _{ON}		Room Full		11	35 39	
Turn-Off Time	t _{OFF}	V_{NO} or V_{NC} = 2.5 V, R_L = 50 Ω , C_L = 35 pF	Room Full		6	31 33	ns
Break-Before-Make Time	t _{BBM}		Room	1	5		
Charge Injection ^d	Q _{INJ}	$C_L = 1 \text{ nF, } V_{GEN} = 0 \text{ V, } R_{GEN} = 0 \Omega$	Room		14		рC
Off-Isolation ^d	OIRR	$R_1 = 50 \Omega$, $C_1 = 5 pF$, $f = 1 MHz$	Room		- 58		dB
Crosstalk ^d	X _{TALK}	π. σε εξ σ μ.,	Room		- 64		u.D
N _O , N _C Off Capacitance ^d	C _{NO(off)} C _{NC(off)}	V _{IN} = 0 or V+, f = 1 MHz	Room		19		pF
Channel-On Capacitance ^d	C _{ON}		Room		61		
Power Supply							
Power Supply Range	V+	V _{IN} = 0 or V+		1.8		5.5	V
Power Supply Current	I+				0.01	1	μΑ

Notes:

- a. Room = 25 °C, Full = as determined by the operating suffix.
- b. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet.
- c. Typical values are for design aid only, not guaranteed nor subject to production testing.
- d. Guarantee by design, nor subjected to production test.
- e. V_{IN} = input voltage to perform proper function.
- f. Guaranteed by 5 V leakage testing, not production tested.

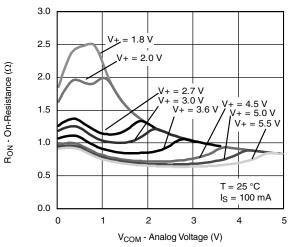
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Document Number: 74454 S12-1989-Rev. D, 20-Aug-12

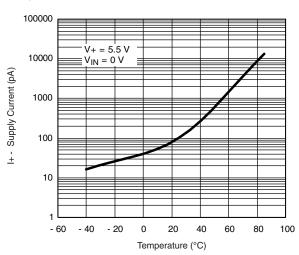
For more information please contact: analogswitchtechsuoort@vishay.com

www.vishay.com

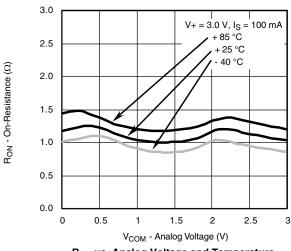
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

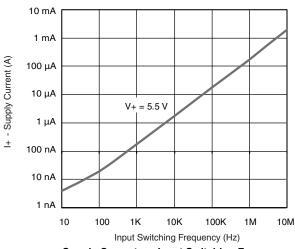


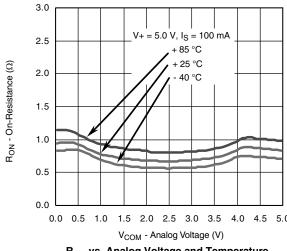
DG2511, DG2512, DG2513

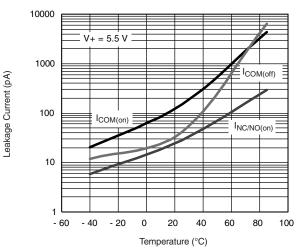

Vishay Siliconix

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)




 R_{ON} vs. V_{COM} and Supply Voltage

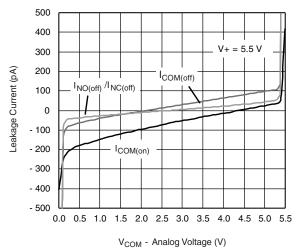

Supply Current vs. Temperature

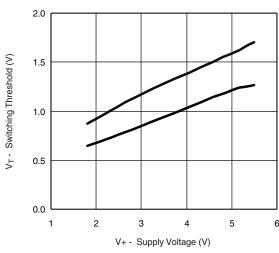

R_{ON} vs. Analog Voltage and Temperature

Supply Current vs. Input Switching Frequency

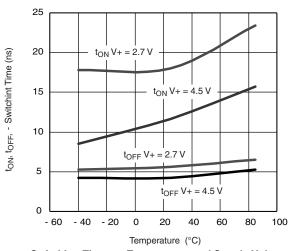
R_{ON} vs. Analog Voltage and Temperature

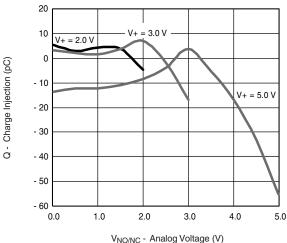
Leakage Current vs. Temperature

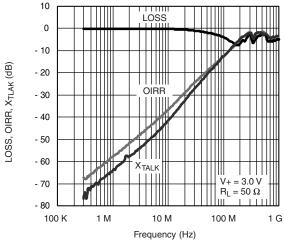



DG2511, DG2512, DG2513

Vishay Siliconix


TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)


Leakage vs. Analog Voltage


Switching Threshold vs. Supply Voltage

Switching Time vs. Temperature and Supply Voltage

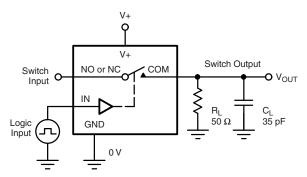
Charge Injection vs. Analog Voltage

Insertion Loss, Off-Isolation, Crosstalk vs. Frequency

Document Number: 74454 S12-1989-Rev. D, 20-Aug-12

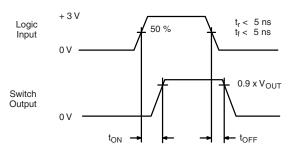
For more information please contact: analogswitchtechsuoort@vishay.com

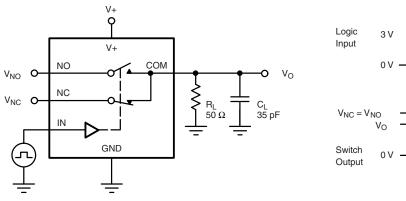
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

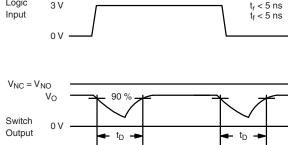

Datasheet of DG2511DN-T1-E4 - IC SWITCH DUAL LV 6MINIQFN

DG2511, DG2512, DG2513

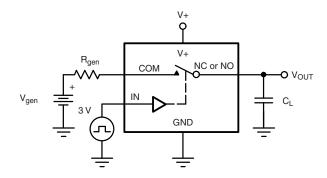
Vishay Siliconix

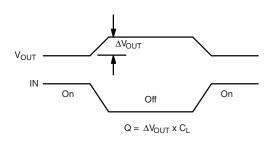

TEST CIRCUITS


C_L (includes fixture and stray capacitance)


$$V_{OUT} = V_{COM} \left(\frac{R_L}{R_L + R_{ON}} \right)$$

Logic "1" = Switch On $Logic\$ input waveforms inverted for switches that have the opposite logic sense.


Figure 1. Switching Time



C_L (includes fixture and stray capacitance)

Figure 2. Break-Before-Make Interval

IN depends on switch configuration: input polarity determined by sense of switch.

Figure 3. Charge Injection

DG2511, DG2512, DG2513

Vishay Siliconix

TEST CIRCUITS

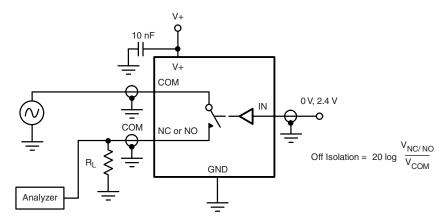


Figure 4. Off-Isolation

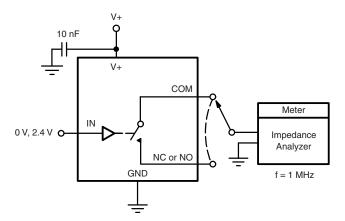
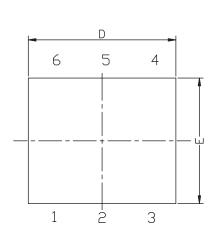


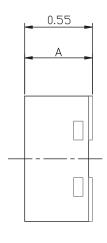
Figure 5. Channel Off/On Capacitance

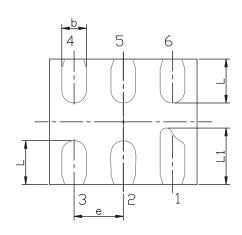
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?74454.

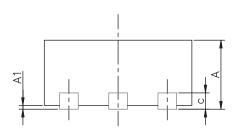
Document Number: 74454 S12-1989–Rev. D, 20-Aug-12 For more information please contact: analogswitchtechsuoort@vishay.com

www.vishay.com






Package Information


Vishay Siliconix

MINI QFN-6L CASE OUTLINE

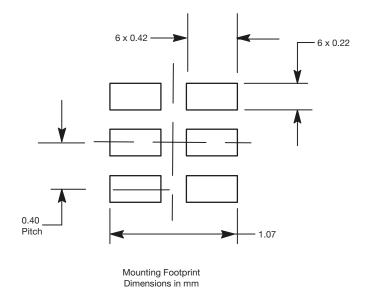
DIM	M	IILLIMETER	s	INCHES			
DIIVI	MIN.	NAM.	MAX.	MIN.	NAM.	MAX.	
Α	0.50	0.55	0.60	0.0197	0.0217	0.0236	
A1	0.00	-	0.05	0.000	-	0.002	
b	0.15	0.20	0.25	0.006	0.008	0.010	
С		0.15 REF		0.006 REF			
D	1.15	1.20	1.25	0.045	0.047	0.049	
Е	0.95	1.00	1.05	0.037	0.039	0.041	
е	0.40 BSC				0.016 BSC		
L	0.30	0.35	0.40	0.012	0.014	0.016	
L1	0.40	0.45	0.50	0.016	0.018	0.020	

ECN T-07039-Rev. A, 12-Feb-07

DWG: 5958

Document Number: 74497 www.vishay.com 12-Feb-07 11

Datasheet of DG2511DN-T1-E4 - IC SWITCH DUAL LV 6MINIQFN


Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

PAD Pattern

Vishay Siliconix

RECOMMENDED MINIMUM PADS FOR MINI QFN 6L

Document Number: 66556

Revision: 05-Mar-10

www.vishay.com

Datasheet of DG2511DN-T1-E4 - IC SWITCH DUAL LV 6MINIQFN

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

Legal Disclaimer Notice

www.vishay.com

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Revision: 13-Jun-16 1 Document Number: 91000