

# **Excellent Integrated System Limited**

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Vishay/Siliconix DG2711DL-T1-E3

For any questions, you can email us directly: <u>sales@integrated-circuit.com</u>





DG2711

Vishay Siliconix

# Low-Voltage, Sub-Ohm, SPDT Analog Switch

### DESCRIPTION

The DG2711 is a sub-ohm single-pole/double-throw monolithic CMOS analog switch designed for high performance switching of analog signals. Combining low power, high speed ( $t_{ON}$ : 25 ns,  $t_{OFF}$ : 14 ns), low on-resistance ( $R_{DS(on)}$ : 0.44  $\Omega$ ) and small physical size (SC70), the DG2711 is ideal for portable and battery powered applications requiring high performance and efficient use of board space.

The DG2711 is built on Vishay Siliconix's low voltage submicron CMOS process. An epitaxial layer prevents latchup. Break-before-make is guaranteed for DG2711.

Each switch conducts equally well in both directions when on, and blocks up to the power supply level when off.

As a committed partner to the community and the environment, Vishay Siliconix manufactures this product with the lead (Pb)-free device terminations. For analog switching products manufactured with 100 % matte tin device terminations, the lead (Pb)-free "-E3" suffix is being used as a designator.

#### **FEATURES**

- Low voltage operation (1.6 V to 3.6 V)
- Low on-resistance R<sub>DS(on)</sub>: 0.44 Ω typ.
- Fast switching t<sub>ON</sub>: 25 ns, t<sub>OFF</sub>: 14 ns
- Low leakage
- TTL/CMOS compatible
- 6-pin SC-70 package
- Compliant to RoHS directive 2002/95/EC


#### BENEFITS

- Reduced power consumption
- · Simple logic interface
- High accuracy
- Reduce board space

#### **APPLICATIONS**

- Cellular phones
- Communication systems
- Portable test equipment
- Battery operated systems
- Sample and hold circuits

### FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION



| TRUTH TABLE |     |     |  |  |  |  |
|-------------|-----|-----|--|--|--|--|
| Logic       | NC  | NO  |  |  |  |  |
| 0           | ON  | OFF |  |  |  |  |
| 1           | OFF | ON  |  |  |  |  |

| ORDERING INFORMATION |         |                |  |  |  |  |
|----------------------|---------|----------------|--|--|--|--|
| Temp. Range          | Package | Part Number    |  |  |  |  |
| - 40 to 85 °C        | SC70-6  | DG2711DL-T1-E3 |  |  |  |  |





# DG2711

Vishay Siliconix



| ABSOLUTE MAXIMUM RATINGS                  |                         |             |    |  |  |  |  |
|-------------------------------------------|-------------------------|-------------|----|--|--|--|--|
| Parameter                                 | Limit                   | Unit        |    |  |  |  |  |
| Reference V+ to GND                       | - 0.3 to + 4            | V           |    |  |  |  |  |
| IN, COM, NC, NO <sup>a</sup>              | - 0.3 to (V+ + 0.3)     | v           |    |  |  |  |  |
| Continuous Current (NO, NC and COM F      | ± 200                   | mA          |    |  |  |  |  |
| Peak Current (Pulsed at 1 ms, 10 % duty   | ± 300                   | IIIA        |    |  |  |  |  |
| Storage Temperature                       | (D Suffix)              | - 65 to 150 | °C |  |  |  |  |
| Power Dissipation (Packages) <sup>b</sup> | 6-Pin SO70 <sup>c</sup> | 250         | mW |  |  |  |  |

Notes:

a. Signals on NC, NO, or COM or IN exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings. b. All leads welded or soldered to PC board.

c. Derate 3.1 mW/°C above 70 °C.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

| SPECIFICATIONS (V+                      | = 1.8 V)                                                |                                                                                        |                           |                            |                   |                   |      |  |
|-----------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------|----------------------------|-------------------|-------------------|------|--|
|                                         |                                                         | Test Conditions<br>Otherwise Unless Specified                                          |                           | Limits<br>- 40 °C to 85 °C |                   |                   |      |  |
| Parameter                               | Symbol                                                  | V+ = 1.8 V, $\pm$ 10 %, V $_{IN}$ = 0.4 V or 1.0 V $^{e}$                              | Temp. <sup>a</sup>        | Min. <sup>b</sup>          | Typ. <sup>c</sup> | Max. <sup>b</sup> | Unit |  |
| Analog Switch                           |                                                         |                                                                                        | •                         | •                          | •                 |                   |      |  |
| Analog Signal Range <sup>d</sup>        | V <sub>NO</sub> , V <sub>NC</sub> ,<br>V <sub>COM</sub> |                                                                                        | Full                      | 0                          |                   | V+                | V    |  |
| On-Resistance                           | R <sub>ON</sub>                                         | V+ = 1.8 V, V <sub>COM</sub> = 0.9 V<br>I <sub>NO</sub> , I <sub>NC</sub> = 100 mA     | Room<br>Full              |                            | 0.8               | 2.0<br>2.5        | Ω    |  |
| Switch Off Leakage Current <sup>f</sup> | I <sub>NO(off)</sub><br>I <sub>NC(off)</sub>            | V+ = 2.2 V,                                                                            | Room<br>Full <sup>d</sup> | - 1<br>- 10                |                   | 1<br>10           |      |  |
| Switch On Leakage Guirent               | I <sub>COM(off)</sub>                                   | $V_{NO}$ , $V_{NC}$ = 0.2 V/2 V, $V_{COM}$ = 2 V/0.2 V                                 | Room<br>Full <sup>d</sup> | - 1<br>- 10                |                   | 1<br>10           | nA   |  |
| Channel-On Leakage Current <sup>f</sup> | I <sub>COM(on)</sub>                                    | V+ = 2.2 V, V <sub>NO</sub> , V <sub>NC</sub> = V <sub>COM</sub> = 0.2 V/2 V           | Room<br>Full <sup>d</sup> | - 1<br>- 10                |                   | 1<br>10           |      |  |
| Digital Control                         |                                                         |                                                                                        |                           |                            |                   |                   |      |  |
| Input High Voltage                      | V <sub>INH</sub>                                        |                                                                                        | Full                      | 1.0                        |                   |                   | v    |  |
| Input Low Voltage                       | V <sub>INL</sub>                                        |                                                                                        | Full                      |                            |                   | 0.4               | v    |  |
| Input Capacitance <sup>d</sup>          | C <sub>in</sub>                                         |                                                                                        | Full                      |                            | 5                 |                   | pF   |  |
| Input Current <sup>f</sup>              | $I_{\rm INL}$ or $I_{\rm INH}$                          | V <sub>IN</sub> = 0 or V+                                                              | Full                      | - 1                        |                   | 1                 | μA   |  |
| Dynamic Characteristics                 |                                                         |                                                                                        |                           |                            |                   |                   |      |  |
| Turn-On Time <sup>d</sup>               | t <sub>ON</sub>                                         |                                                                                        | Room<br>Full <sup>d</sup> |                            | 36                | 60<br>62          |      |  |
| Turn-Off Time <sup>d</sup>              | t <sub>OFF</sub>                                        | $V_{NO} \text{ or } V_{NC}$ = 1.5 V, $R_L$ = 300 $\Omega,  C_L$ = 35 pF Figures1 and 2 | Room<br>Full              |                            | 22                | 42<br>44          | ns   |  |
| Break-Before-Make Time <sup>d</sup>     | t <sub>d</sub>                                          |                                                                                        | Room                      | 3                          |                   |                   |      |  |
| Charge Injection <sup>d</sup>           | Q <sub>INJ</sub>                                        | $C_L$ = 1 nF, $V_{GEN}$ = 0 V, $R_{GEN}$ = 0 $\Omega,$ figure 3                        | Room                      |                            | 20                |                   | рС   |  |
| Off-Isolation <sup>d</sup>              | OIRR                                                    | $R_1 = 50 \Omega_1 C_1 = 5 pF_1 f = 1 MHz$                                             | Room                      |                            | - 56              |                   | dB   |  |
| Crosstalk <sup>d</sup>                  | X <sub>TALK</sub>                                       | hi = 50 sz, οι = 5 pr, i = 1 ΜΠΖ                                                       | Room                      |                            | - 56              |                   | uВ   |  |
| NO, NC Off Capacitance <sup>d</sup>     | C <sub>NO(off)</sub><br>C <sub>NC(off)</sub>            | V <sub>IN</sub> = 0 or V+, f = 1 MHz                                                   | Room                      |                            | 73                |                   | pF   |  |
| Channel-On Capacitance <sup>d</sup>     | C <sub>ON</sub>                                         |                                                                                        | Room                      |                            | 167               |                   | ]    |  |





# DG2711

Vishay Siliconix

|                                     |                                                         | Test Conditions<br>Otherwise Unless Specified                                              |                    | Limits<br>- 40 °C to 85 °C |                   |                   |      |
|-------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------|----------------------------|-------------------|-------------------|------|
| Parameter                           | Symbol                                                  | V+ = 3 V, $\pm$ 10 %,V_{IN} = 0.5 V or 1.4 V $^{e}$                                        | Temp. <sup>a</sup> | Min. <sup>b</sup>          | Typ. <sup>c</sup> | Max. <sup>b</sup> | Unit |
| Analog Switch                       |                                                         | -                                                                                          |                    |                            | •                 |                   |      |
| Analog Signal Range <sup>d</sup>    | V <sub>NO</sub> , V <sub>NC</sub> ,<br>V <sub>COM</sub> |                                                                                            | Full               | 0                          |                   | V+                | v    |
| On-Resistance                       | R <sub>ON</sub>                                         | V+ = 2.7 V, V <sub>COM</sub> = 1.5 V<br>I <sub>NO</sub> , I <sub>NC</sub> = 100 mA         | Room<br>Full       |                            | 0.44              | 0.6<br>0.7        |      |
| R <sub>ON</sub> Flatness            | R <sub>ON</sub><br>Flatness                             | V+ = 2.7 V, V <sub>COM</sub> = 0.6 V, 1.5 V<br>I <sub>NO</sub> , I <sub>NC</sub> = 100 mA  | Room               |                            | 0.14              | 0.2               | Ω    |
| R <sub>ON</sub> Match               | ∆R <sub>ON</sub>                                        | V+ = 2.7 V, V <sub>COM</sub> = 1.5 V<br>I <sub>NO</sub> , I <sub>NC</sub> = 100 mA         | Room               |                            |                   | 0.07              |      |
|                                     | I <sub>NO(off)</sub><br>I <sub>NC(off)</sub>            | V+ = 3.3 V,                                                                                | Room<br>Full       | - 1<br>- 10                |                   | 1<br>10           |      |
| Switch Off Leakage Current          | I <sub>COM(off)</sub>                                   | V <sub>NO</sub> , V <sub>NC</sub> = 0.3 V/3 V, V <sub>COM</sub> = 3 V/0.3 V                |                    | - 1<br>- 10                |                   | 1<br>10           | nA   |
| Channel-On Leakage Current          | I <sub>COM(on)</sub>                                    | V+ = 3.3 V, V <sub>NO</sub> , V <sub>NC</sub> = V <sub>COM</sub> = 0.3 V/3 V               | Room<br>Full       | - 1<br>- 10                |                   | 1<br>10           | I    |
| Digital Control                     |                                                         |                                                                                            |                    | -                          |                   | -                 |      |
| Input High Voltage                  | V <sub>INH</sub>                                        |                                                                                            | Full               | 1.4                        |                   |                   | v    |
| Input Low Voltage                   | V <sub>INL</sub>                                        |                                                                                            | Full               |                            |                   | 0.5               | v    |
| Input Capacitance <sup>d</sup>      | C <sub>in</sub>                                         |                                                                                            | Full               |                            | 5                 |                   | pF   |
| Input Current <sup>f</sup>          | $I_{\rm INL}$ or $I_{\rm INH}$                          | $V_{IN} = 0 \text{ or } V+$                                                                | Full               | - 1                        |                   | 1                 | μA   |
| Dynamic Characteristics             |                                                         |                                                                                            |                    |                            |                   | -                 |      |
| Turn-On Time                        | t <sub>ON</sub>                                         | V <sub>NO</sub> or V <sub>NC</sub> = 1.5 V, R <sub>L</sub> = 300 Ω, C <sub>L</sub> = 35 pF | Room<br>Full       |                            | 25                | 46<br>48          |      |
| Turn-Off Time                       | t <sub>OFF</sub>                                        | figures 1 and 2                                                                            | Room<br>Full       |                            | 14                | 38<br>40          | ns   |
| Break-Before-Make Time              | t <sub>d</sub>                                          |                                                                                            | Room               | 1                          |                   |                   |      |
| Charge Injection <sup>d</sup>       | Q <sub>INJ</sub>                                        | $C_L$ = 1 nF, $V_{GEN}$ = 0 V, $R_{GEN}$ = 0 $\Omega$ , figure 3                           | Room               |                            | 28                |                   | pC   |
| Off-Isolation <sup>d</sup>          | OIRR                                                    | $R_1 = 50 \Omega, C_1 = 5 pF, f = 1 MHz$                                                   | Room               |                            | - 56              |                   | dB   |
| Crosstalk <sup>d</sup>              | X <sub>TALK</sub>                                       | 11 - 3032, 0 - 300, 1 - 10002                                                              | Room               |                            | - 56              |                   | uD   |
| NO, NC Off Capacitance <sup>d</sup> | C <sub>NO(off)</sub><br>C <sub>NC(off)</sub>            | V <sub>IN</sub> = 0 or V+, f = 1 MHz                                                       | Room               |                            | 70                |                   | pF   |
| Channel-On Capacitance <sup>d</sup> | C <sub>ON</sub>                                         |                                                                                            | Room               |                            | 163               |                   | 1    |
| Power Supply                        |                                                         |                                                                                            |                    |                            |                   |                   |      |
| Power Supply Range                  | V+                                                      |                                                                                            |                    | 1.6                        |                   | 3.6               | V    |
| Power Supply Current                | I+                                                      | V+ = 3.6 V, V <sub>IN</sub> = 0 or V+                                                      |                    |                            | 0.01              | 1.0               | μA   |

Notes:

a. Room = 25 °C, full = as determined by the operating suffix.

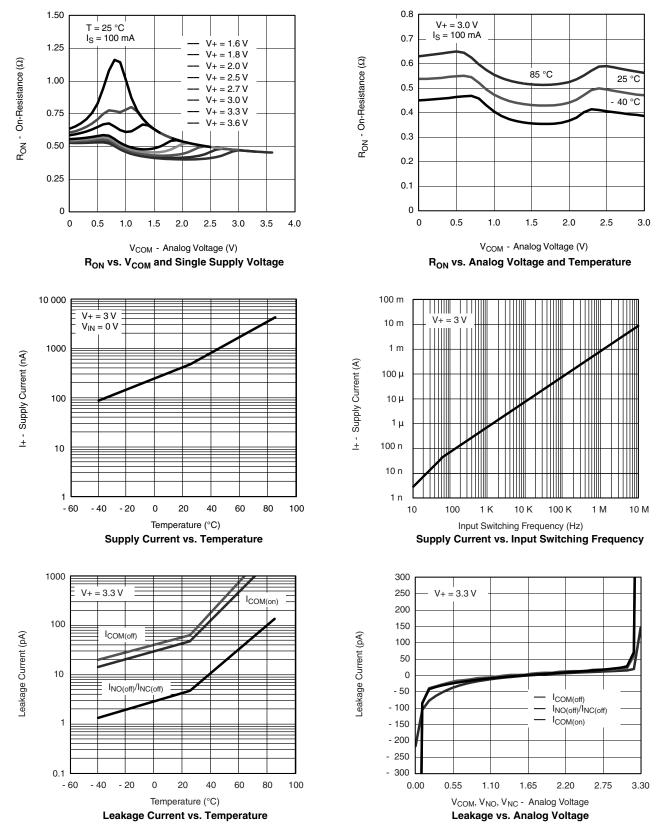
b. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.

c. Typical values are for design aid only, not guaranteed nor subject to production testing.

d. Guarantee by design, nor subjected to production test.

e.  $V_{IN}$  = input voltage to perform proper function.

f. Guaranteed by 3 V leakage testing, not production tested.




# DG2711





### TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)



Document Number: 73200 S10-2403-Rev. C, 25-Oct-10





### DG2711 Vishay Siliconix

XTALI

10 M

Frequency (Hz)

Frequency

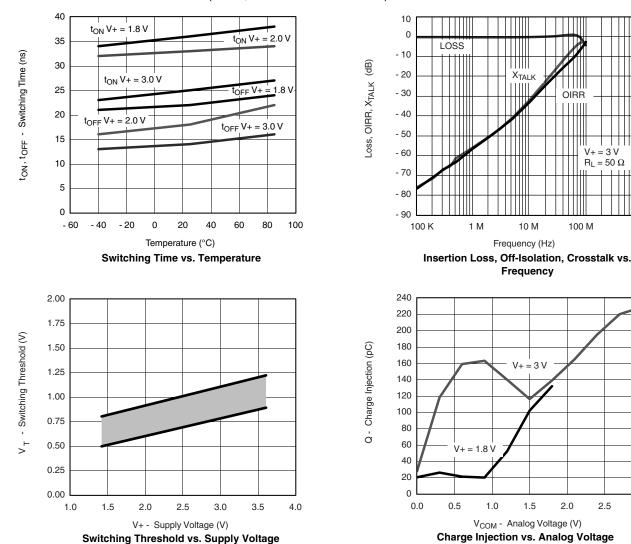
V+ = 3 V

15

2.0

OIRR 

> V+ = 3 V


100 M

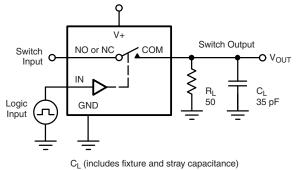
 $R_L = 50 \ \Omega$ 

2.5

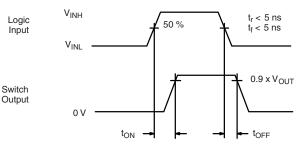
3.0

1 G




### TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

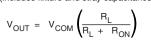



### DG2711

Vishay Siliconix

### **TEST CIRCUITS**




V+

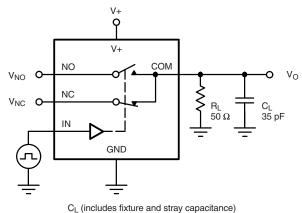


VISHAY

t<sub>r</sub> < 5 ns

Logic "1" = Switch On Logic input waveforms inverted for switches that have the opposite logic sense.






Logic

Input

Switch

VINH



 $t_f < 5 \text{ ns}$ VINL  $V_{NC} = V_{NO}$ Vo 90 % 0 V Output t<sub>D</sub> tD



#### V+ Q $\Delta V_{OUT}$ V+ R<sub>gen</sub> NC or NO VOUT COM O VOUT IN IN $C_1 = 1 \text{ nF}$ On On Off GND $Q = \Delta V_{OUT} \times C_L$ 0 IN depends on switch configuration: input polarity determined by sense of switch.

Figure 3. Charge Injection





DG2711 Vishay Siliconix

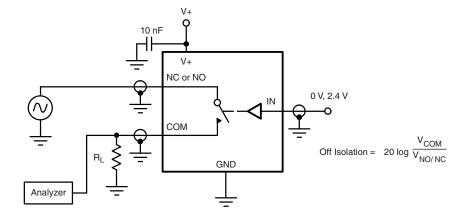



Figure 4. Off-Isolation

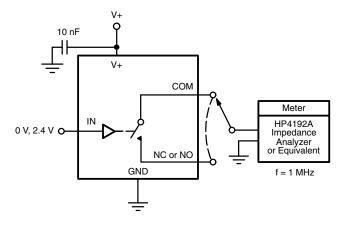
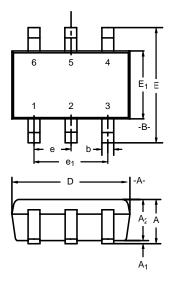
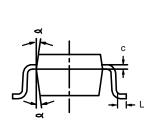



Figure 5. Channel Off/On Capacitance


Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see <a href="http://www.vishay.com/ppg?73200">www.vishay.com/ppg?73200</a>.






# Package Information Vishay Siliconix

### SC-70: 6-LEADS





|                                             | MIL   | LIMET   | ERS  | INCHES |          |       |  |
|---------------------------------------------|-------|---------|------|--------|----------|-------|--|
| Dim                                         | Min   | Nom     | Max  | Min    | Nom      | Max   |  |
| Α                                           | 0.90  | -       | 1.10 | 0.035  | -        | 0.043 |  |
| A <sub>1</sub>                              | Ι     | -       | 0.10 | -      | -        | 0.004 |  |
| A <sub>2</sub>                              | 0.80  | -       | 1.00 | 0.031  | -        | 0.039 |  |
| b                                           | 0.15  | -       | 0.30 | 0.006  | -        | 0.012 |  |
| С                                           | 0.10  | -       | 0.25 | 0.004  | -        | 0.010 |  |
| D                                           | 1.80  | 2.00    | 2.20 | 0.071  | 0.079    | 0.087 |  |
| E                                           | 1.80  | 2.10    | 2.40 | 0.071  | 0.083    | 0.094 |  |
| E <sub>1</sub>                              | 1.15  | 1.25    | 1.35 | 0.045  | 0.049    | 0.053 |  |
| е                                           |       | 0.65BSC |      |        | 0.026BSC | ;     |  |
| e <sub>1</sub>                              | 1.20  | 1.30    | 1.40 | 0.047  | 0.051    | 0.055 |  |
| L                                           | 0.10  | 0.20    | 0.30 | 0.004  | 0.008    | 0.012 |  |
| q                                           | 7°Nom |         |      |        | 7°Nom    |       |  |
| ECN: S-03946—Rev. B, 09-Jul-01<br>DWG: 5550 |       |         |      |        |          |       |  |





www.vishay.com

**Legal Disclaimer Notice** 

Vishay

### Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.