

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

[Vishay/Siliconix](#)
[DG2747DN-T1-E4](#)

For any questions, you can email us directly:

sales@integrated-circuit.com

0.4- Ω , Low Voltage, Dual SPST Analog Switch

DESCRIPTION

The DG2747, DG2748, and DG2749 are high performance, low on-resistance analog switches of dual SPST configuration.

Built on Vishay Siliconix's sub-micro CMOS technology, the DG2747, DG2748, DG2749 achieve switch on-resistance of 0.4 Ω at 2.7 V V+ and 0.3 Ω at 4.3 V V+. It provides 0.1 Ω flatness at 2.7 V V+, and total harmonic distortion to 0.03 % (frequency range 20 Hz to 20 kHz). It achieves - 72 dB off-isolation and - 100 dB crosstalk at 100 kHz. Its - 3 dB bandwidth is up to 93 MHz.

It can switch signals with amplitudes of up to V_{CC} to be transmitted in either direction.

The select pins of the control logic can tolerate voltages above V+. Logic high is 1.4 V to make it compatible with many low voltage digital control circuits.

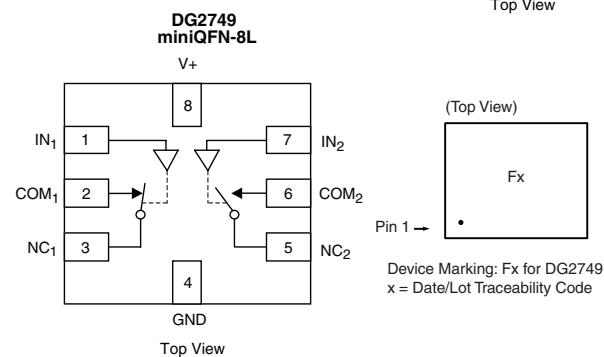
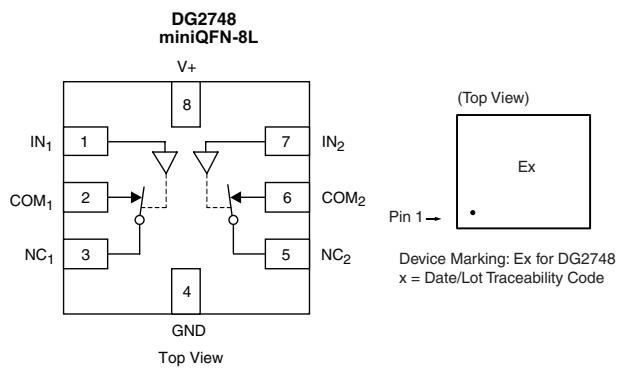
Combining wide operation voltage, low power, high speed, low on-resistance and small physical size, the DG2747, DG2748, DG2749 are ideal for portable and battery powered applications requiring high performance and efficient use of board space.

The DG2747, DG2748, DG2749 come in a small miniQFN-8 lead package (1.4 x 1.4 x 0.55 mm). As a committed partner to the community and the environment, Vishay Siliconix manufactures this product with the lead (Pb)-free device terminations and is 100 % RoHS compliant.

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

FEATURES

- Wide operation voltage range: 1.6 V to 4.3 V
- Low on-resistance: 0.4 Ω typ. at 2.7 V
- Low voltage logic threshold: V_{th(high)} = 1.4 V at V+ = 3 V
- 100 dB crosstalk at 100 kHz
- > 250 mA latch up current per JESD78
- Switch exceeds 7 kV ESD/HBM

BENEFITS

- Ultra small miniQFN8 package of 1.4 x 1.4 x 0.55 mm
- High fidelity audio switch
- Reed relay replacement
- Low power consumption

APPLICATIONS

- Cellular phones
- Portable media player
- GPS
- PCMCIA cards
- Medical and test equipment

DG2747, DG2748, DG2749

Vishay Siliconix

TRUTH TABLE

Logic	DG2747		DG2748		DG2749	
	COM ₁ and NO ₁	COM ₂ and NO ₂	COM ₁ and NC ₁	COM ₂ and NC ₂	COM ₁ and NC ₁	COM ₂ and NO ₂
Low	OFF	OFF	ON	ON	ON	OFF
High	ON	ON	OFF	OFF	OFF	ON

ORDERING INFORMATION

Temp. Range	Package	Part Number
- 40 °C to 85°C	miniQFN-8L	DG2747DN-T1-E4
		DG2748DN-T1-E4
		DG2749DN-T1-E4

ABSOLUTE MAXIMUM RATINGS T_A = 25 °C, unless otherwise noted

Parameter	Limit	Unit
Reference to GND	V+	V
	IN, COM, NC, NO ^a	
Current (Any terminal except NO, NC or COM)	30	mA
Continuous Current (NO, NC, or COM)	± 300	
Peak Current (Pulsed at 1 ms, 10 % duty cycle)	± 500	°C
Storage Temperature (D Suffix)	- 65 to 150	
Power Dissipation (Packages) ^b	190	mW
miniQFN-8L ^c		

Notes:

- a. Signals on NC, NO, or COM or IN exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
- b. All leads welded or soldered to PC board.
- c. Derate 2.4 mW/°C above 70 °C.

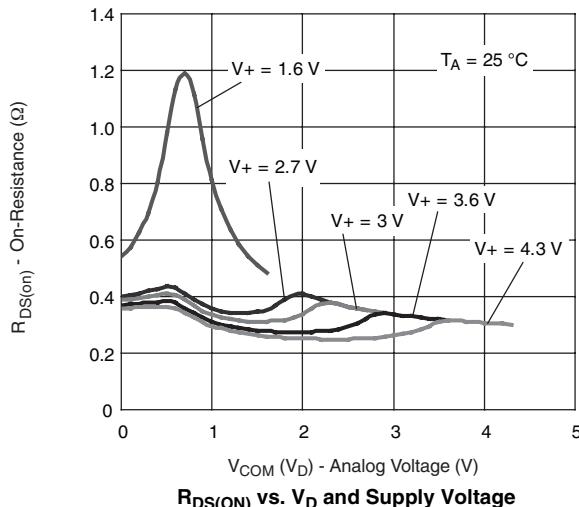
DG2747, DG2748, DG2749

Vishay Siliconix

SPECIFICATIONS $V_+ = 3$ V							
Parameter	Symbol	Test Conditions Unless Otherwise Specified $V_+ = 3$ V, $\pm 10\%$, $V_{IN} = 0.4$ V or 1.4 V ^e	Temp. ^a	Limits			Unit
				Min. ^b	Typ. ^c	Max. ^b	
Analog Switch							
Analog Signal Range ^d	V_{analog}	$R_{DS(on)}$	Full	0		V_+	V
On-Resistance	$R_{DS(on)}$	$V_+ = 2.7$ V, $I_{NO/NC} = 100$ mA, $V_{COM} = 0.5$ V	Room		0.4	0.6	Ω
		$V_+ = 2.7$ V, $I_{NO/NC} = 100$ mA, $V_{COM} = 1.5$ V	Full			0.7	
		$V_+ = 2.7$ V, $I_{NO/NC} = 100$ mA, $V_{COM} = 0.5$ V	Room			0.03	
		$V_+ = 2.7$ V, $I_{NO/NC} = 100$ mA, $V_{COM} = 1.5$ V	Room			0.2	
R_{ON} Match ^d	ΔR_{ON}	$V_+ = 2.7$ V, $I_{NO/NC} = 100$ mA, $V_{COM} = 0.5$ V, 1.5 V	Room			2	nA
R_{ON} Resistance Flatness ^d	R_{ON} flatness	$V_+ = 2.7$ V, $I_{NO/NC} = 100$ mA, $V_{COM} = 0.5$ V, 1.5 V	Room		0.1	10	
Switch Off Leakage Current	$I_{NO/NC(off)}$	$V_+ = 4.3$ V, $V_{NO/NC} = 1.0$ V/3.3 V, $V_{COM} = 3.3$ V/1.0 V	Room	- 2		2	
	Full		- 10		10		
	Room		- 2		2		
	Full		- 10		10		
Channel-On Leakage Current	$I_{COM(on)}$	$V_+ = 4.3$ V, $V_{NO/NC} = V_{COM} = 3.3$ V/1.0 V	Room	- 2		2	μ A
			Full	- 10		10	
Digital Control							
Input High Voltage	V_{INH}	$V_{IN} = 0$ or V_+	Full	1.4			V
Input Low Voltage	V_{INL}		Full			0.4	
Input Current	I_{INL} or I_{INH}	$V_{IN} = 0$ or V_+	Full	- 1		1	μ A
Dynamic Characteristics							
Turn-On Time ^e	t_{ON}	$V_+ = 2.7$ V to 3.6 V, V_{NO} or $V_{NC} = 1.5$ V, $R_L = 50$ Ω , $C_L = 35$ pF	Room		14	25	ns
Turn-Off Time ^e	t_{OFF}		Full			27	
Charge Injection ^d	Q		Room		12	25	
Off-Isolation ^d	O_{IRR}		Full			27	
Crosstalk ^d	X_{TALK}	$C_L = 1$ nF, $R_{GEN} = 0$ Ω , $V_{GEN} = 0$ V	Room		10		pC
		$R_L = 50$ Ω , $C_L = 5$ pF, $f = 1$ MHz	Room		- 52		dB
		$R_L = 50$ Ω , $C_L = 5$ pF, $f = 100$ kHz			- 72		
		$R_L = 50$ Ω , $C_L = 5$ pF, $f = 1$ MHz			- 90		
3 dB bandwidth ^d		$R_L = 50$ Ω , $C_L = 5$ pF, $f = 100$ kHz	Room		- 100		MHz
Source Off Capacitance ^d	$C_{NX(off)}$	$f = 1$ MHz, $V_{NX} = 0$ V	Room		93		
Drain Off Capacitance ^d	$C_{COM(off)}$	$f = 1$ MHz, $V_{COM} = 0$ V	Room		75		pF
Drain On Capacitance ^d	$C_{COM(on)}$	$f = 1$ MHz, $V_{COM} = V_{NX} = 0$ V	Room		55		
Total Harmonic Distortion ^d	THD	$V_+ = 2.7$ V to 3.6 V, $V_{IN} = 0.5$ Vp-p $f = 20$ Hz to 20 kHz	Room		100	0.03	%
Power Supply							
Power Supply Range	V_+	$V_{IN} = 0$ or V_+	Full		1.6	4.3	V
Power Supply Current	I_+		Full			1.0	μ A

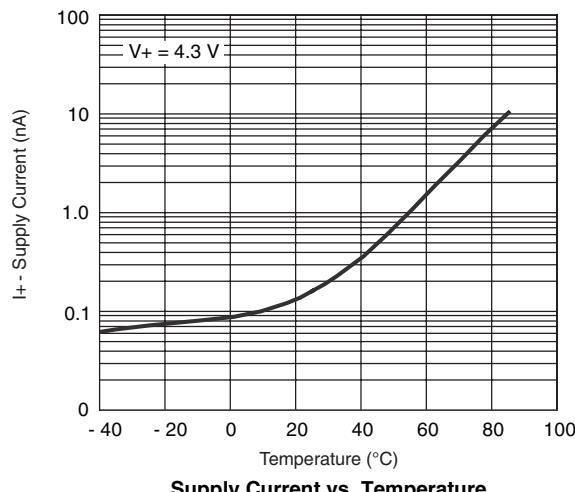
Notes:

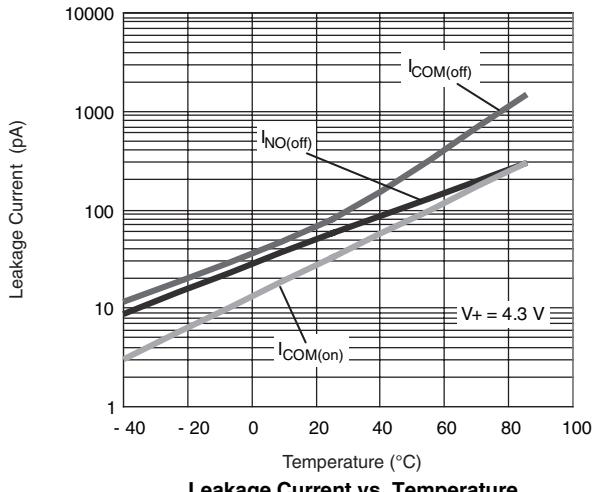
- Room = 25 °C, Full = as determined by the operating suffix.
- The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
- Typical values are for design aid only, not guaranteed nor subject to production testing.
- Guarantee by design, not subjected to production test.
- V_{IN} = input voltage to perform proper function.

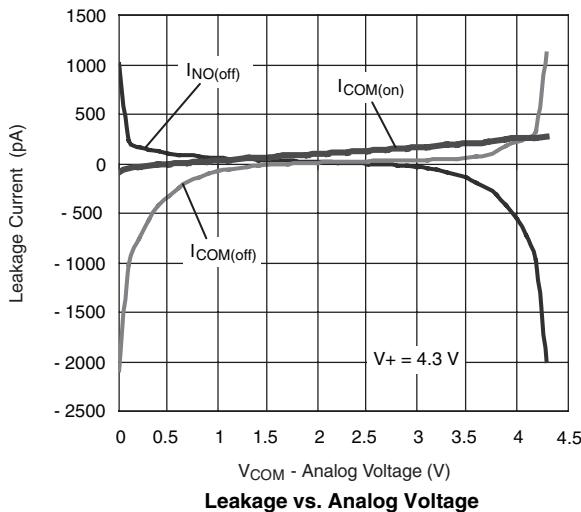

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

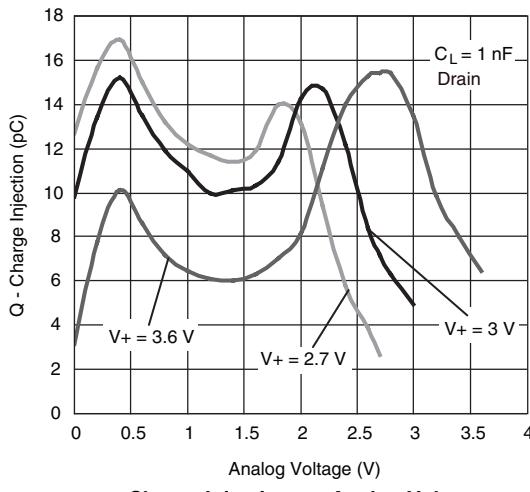
DG2747, DG2748, DG2749


Vishay Siliconix


TYPICAL CHARACTERISTICS $T_A = 25^\circ\text{C}$, unless otherwise noted

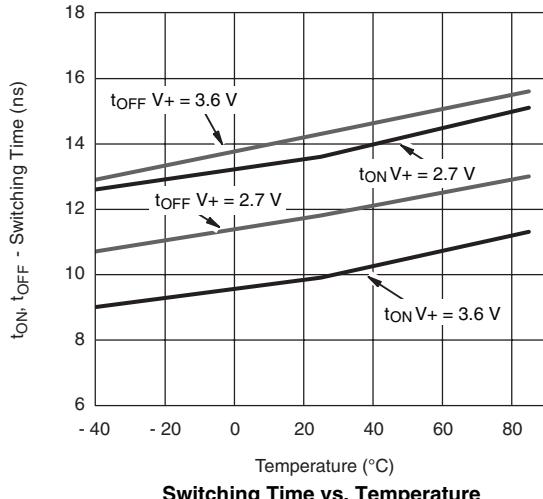

R_{DS(ON)} vs. V_D and Supply Voltage

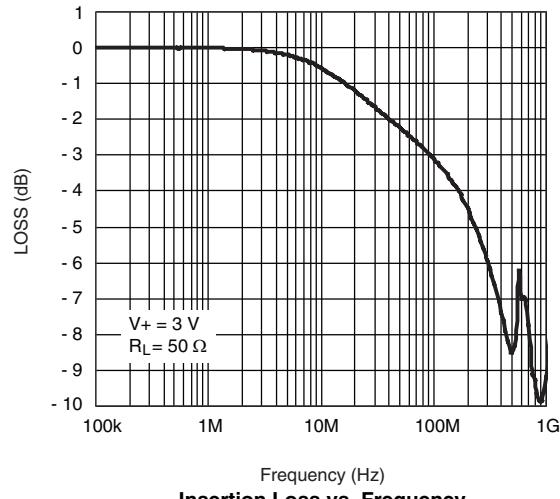

R_{DS(ON)} vs. V_D and Temperature


Supply Current vs. Temperature

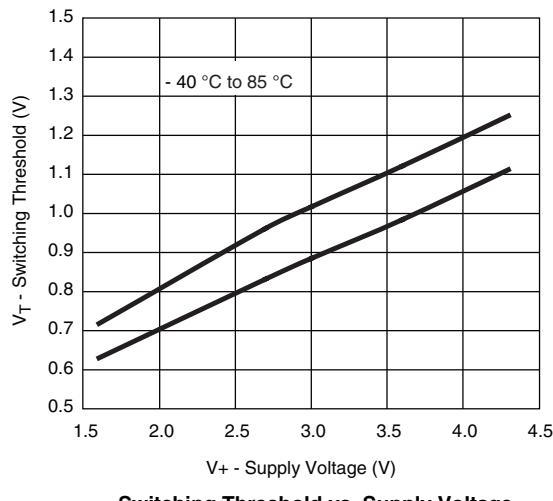
Leakage Current vs. Temperature

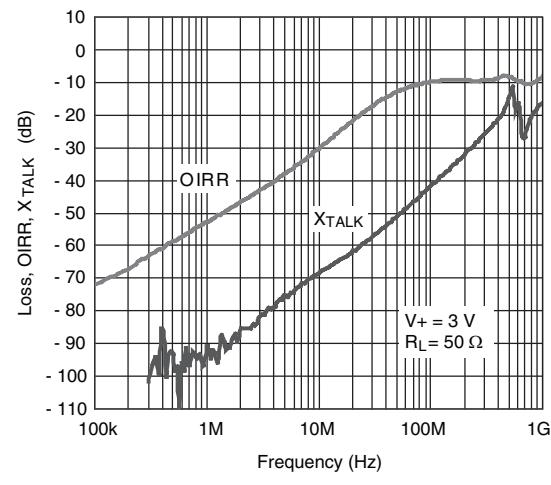
Leakage vs. Analog Voltage


Charge Injection vs. Analog Voltage


DG2747, DG2748, DG2749

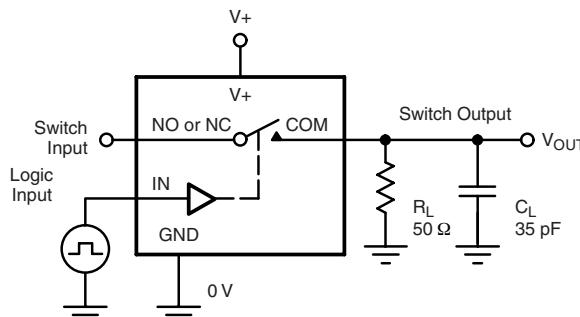
Vishay Siliconix


TYPICAL CHARACTERISTICS $T_A = 25^\circ\text{C}$, unless otherwise noted


Switching Time vs. Temperature

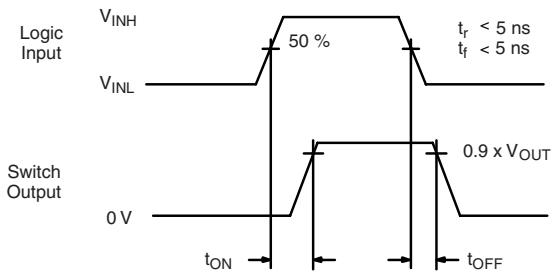
Insertion Loss vs. Frequency

Switching Threshold vs. Supply Voltage

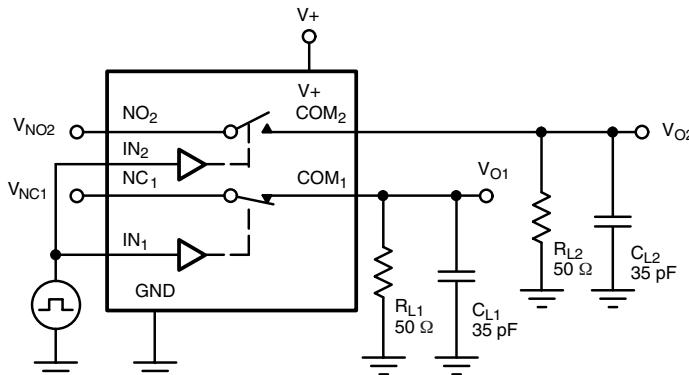

Off-Isolation and Crosstalk vs. Frequency

DG2747, DG2748, DG2749

Vishay Siliconix



TEST CIRCUITS


C_L (includes fixture and stray capacitance)

$$V_{OUT} = V_{COM} \left(\frac{R_L}{R_L + R_{ON}} \right)$$

Logic "1" = Switch On
Logic input waveforms inverted for switches that have the opposite logic sense.

Figure 1. Switching Time

C_L (includes fixture and stray capacitance)

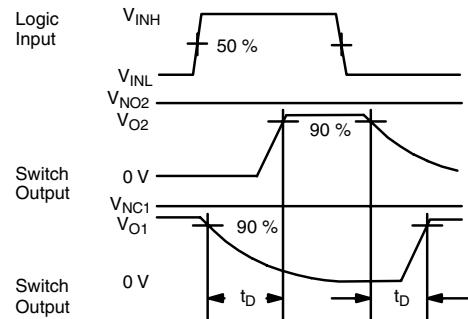


Figure 2. Break-Before-Make (DG2749)

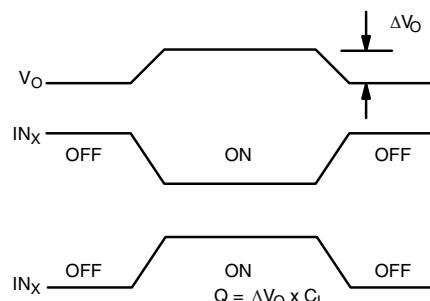
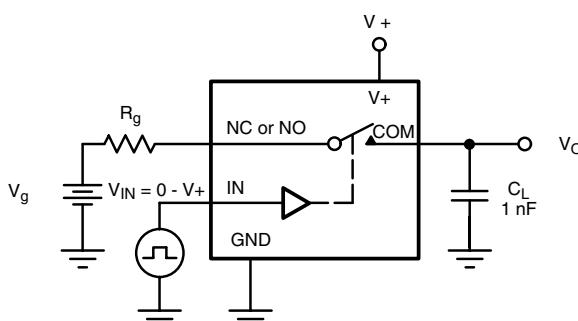



Figure 3. Charge Injection

DG2747, DG2748, DG2749

Vishay Siliconix

TEST CIRCUITS

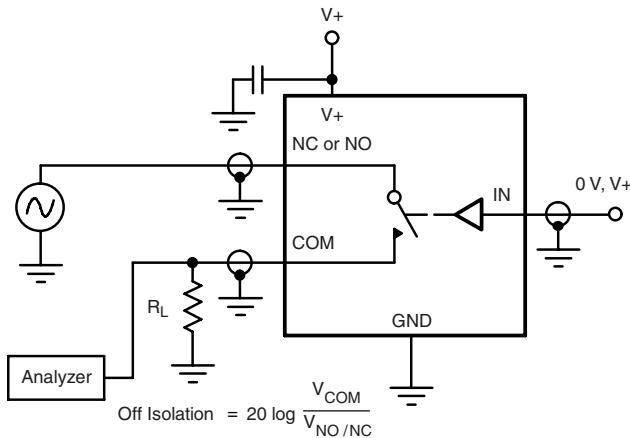


Figure 4. Off-Isolation

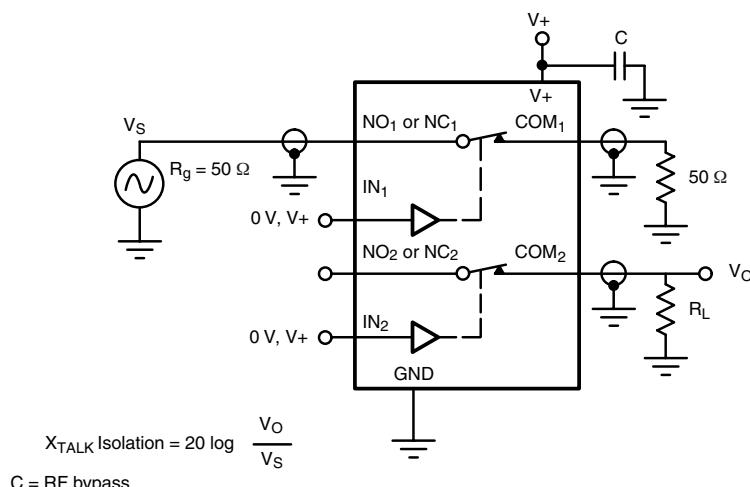


Figure 5. Crosstalk

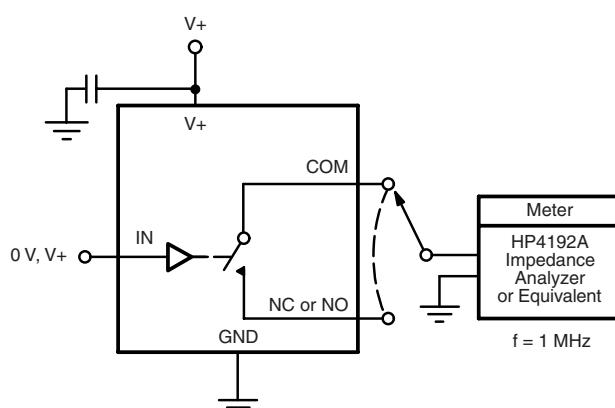
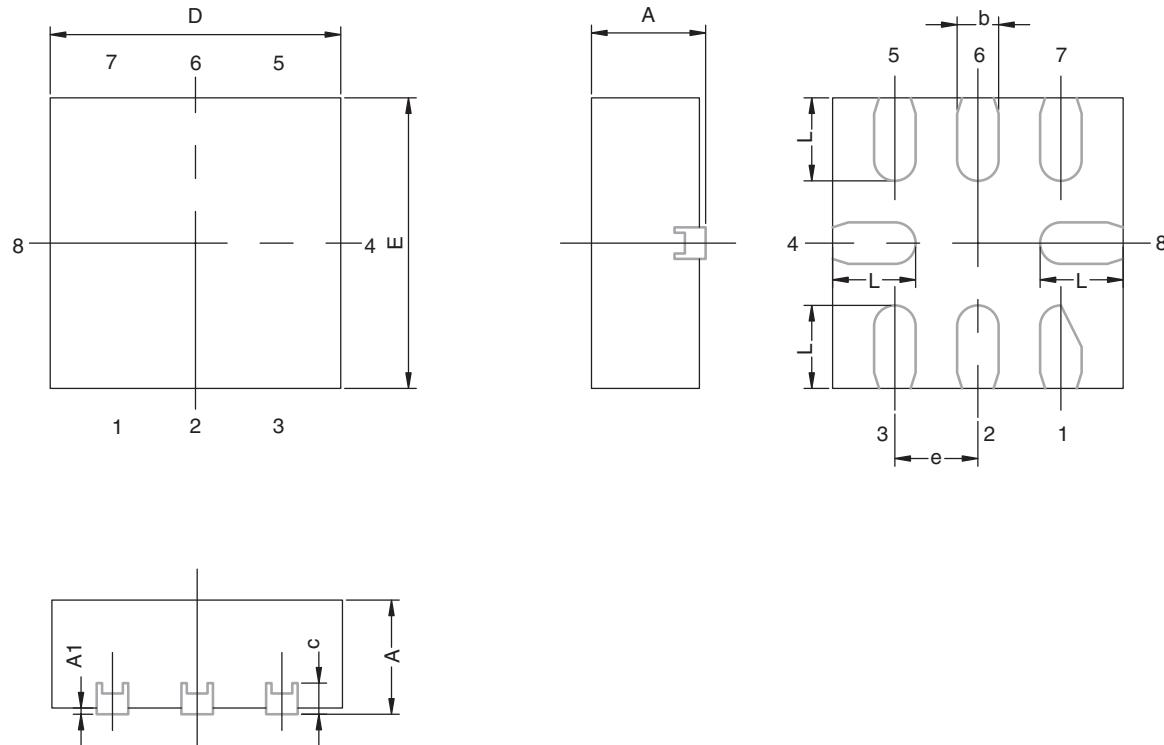
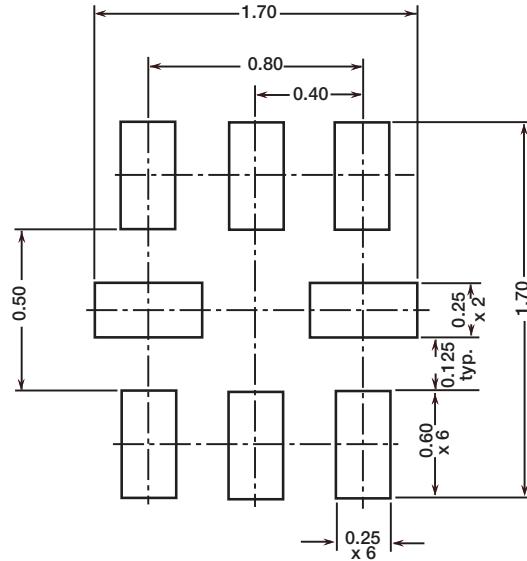


Figure 6. Channel Off/On Capacitance


Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?69977.

Package Information

Vishay Siliconix


MINIQFN-8L CASE OUTLINE

DIM	MILLIMETERS			INCHES		
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
A	0.50	0.55	0.60	0.0197	0.0217	0.0236
A1	0.00	-	0.05	0.000	-	0.002
b	0.15	0.20	0.25	0.006	0.008	0.010
c	0.15 REF			0.006 REF		
D	1.35	1.40	1.45	0.053	0.055	0.057
E	1.35	1.40	1.45	0.053	0.055	0.057
e	0.40 BSC			0.016 BSC		
L	0.35	0.40	0.45	0.014	0.016	0.018

ECN: C-08336-Rev. A, 05-May-08
DWG: 5964

RECOMMENDED MINIMUM PADS FOR MINI QFN 8L

**Suggested Minimum Pad
Dimensions in mm**

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.