

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Vishay/Siliconix SUD50N06-09L-E3

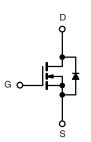
For any questions, you can email us directly: sales@integrated-circuit.com

SUD50N06-09L

Vishay Siliconix

N-Channel 60 V (D-S), 175 °C MOSFET, Logic Level

PRODUCT SUMMARY				
V _{DS} (V)	$R_{DS(on)}\left(\Omega\right)$	I _D (A) ^a		
60	0.0093 at V _{GS} = 10 V	50		
	$0.0122 \text{ at V}_{GS} = 4.5 \text{ V}$	50		


FEATURES

- 175 °C Junction Temperature
- TrenchFET® Power MOSFET
- Material categorization: For definitions of compliance please see www.vishay.com/doc?99912

Ordering Information: SUD50N06-09L-E3 (Lead (Pb)-free)

N-Channel MOSFET

ABSOLUTE MAXIMUM RATINGS (T _C = 25 °C, unless otherwise noted)						
Parameter	Symbol	Limit	Unit			
Gate-Source Voltage	V _{GS}	± 20	V			
Continuous Drain Correct /T 175 °C\b	T _C = 25 °C	I-	50			
Continuous Drain Current (T _J = 175 °C) ^b	T _C = 100 °C	l I _D	50 ^a			
Pulsed Drain Current	I _{DM}	100	A			
Continuous Source Current (Diode Conduction)	I _S	50 ^a				
Avalanche Current	I _{AS}	50				
Single Avalanche Energy (Duty Cycle ≤ 1 %)	L = 0.1 mH	E _{AS}	125	mJ		
Mayingun Dayar Discination	T _C = 25 °C	В	136	w		
Maximum Power Dissipation	T _A = 25 °C	P _D	3 ^b , 8.3 ^{b, c}			
Operating Junction and Storage Temperature Range	<u> </u>	T _J , T _{stg}	- 55 to 175	°C		

THERMAL RESISTANCE RATINGS						
Parameter		Symbol	Typical	Maximum	Unit	
Manifestore Lorentine to Amelianda	t ≤ 10 sec	- R _{thJA}	15	18	°C/W	
Maximum Junction-to-Ambient ^a	Steady State		40	50		
Maximum Junction-to-Case		R _{thJC}	0.85	1.1		

Notes:

- a. Package limited.
- b. Surface mounted on 1" x 1" FR4 board.
- c. $t \le 10 s$.

Document Number: 72004 S13-0298-Rev. F, 11-Feb-13 For technical questions, contact: pmostechsupport@vishay.com

www.vishay.com

Datasheet of SUD50N06-09L-E3 - MOSFET N-CH 60V 50A TO252

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

SUD50N06-09L

Vishay Siliconix

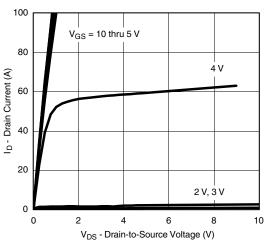
Parameter	Symbol	Test Conditions	Min.	Typ.a	Max.	Unit	
Static	,			.,,,,			
Drain-Source Breakdown Voltage	V _{DS}	V _{GS} = 0 V, I _D = 250 μA					
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 250 \mu\text{A}$	1	2	3	V	
Gate-Body Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			± 100	nA	
	1	V _{DS} = 60 V, V _{GS} = 0 V			1		
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 60 V, V _{GS} = 0 V, T _J = 125 °C			50	μΑ	
		V _{DS} = 60 V, V _{GS} = 0 V, T _J = 175 °C			250		
On-State Drain Current ^b	I _{D(on)}	V _{DS} = 5 V, V _{GS} = 10 V	50			Α	
		V _{GS} = 10 V, I _D = 20 A	0.0074		0.0093		
		V _{GS} = 10 V, I _D = 20 A, T _J = 125 °C			0.0160		
Drain-Source On-State Resistance ^b	R _{DS(on)}	V _{GS} = 10 V, I _D = 20 A, T _J = 175 °C			0.0200		
		$V_{GS} = 4.5 \text{ V}, I_D = 15 \text{ A}$			0.0122		
Forward Transconductance ^b	9 _{fs}	V _{DS} = 15 V, I _D = 20 A		60		S	
Dynamic	•						
Input Capacitance	C _{iss}			2650			
Output Capacitance	C _{oss}	$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$		470		pF	
Reverse Transfer Capacitance	C _{rss}			225			
Total Gate Charge ^c	Qg			47	70		
Gate-Source Charge ^c	Q _{gs}	$V_{DS} = 30 \text{ V}, V_{GS} = 10 \text{ V}, I_{D} = 50 \text{ A}$		10		nC	
Gate-Drain Charge ^c	Q_{gd}			12			
Turn-On Delay Time ^c	t _{d(on)}			10	20		
Rise Time ^c	t _r	$V_{DD} = 30 \text{ V}, R_{L} = 0.6 \Omega$		15	25	ns	
Turn-Off Delay Time ^c	t _{d(off)}	$I_D \cong 50 \text{ A}, V_{GEN} = 10 \text{ V}, R_g = 2.5 \Omega$		35	50		
Fall Time ^c	t _f			20	30		
Source-Drain Diode Ratings and Cha	aracteristics (T _C = 25 °C)					
Pulsed Current	I _{SM}				100	Α	
Diode Forward Voltage	V _{SD}	I _F = 20 A, V _{GS} = 0 V		1	1.5	V	
Reverse Recovery Time	t _{rr}	I _F = 20 A, di/dt = 100 A/μs		45	100	ns	

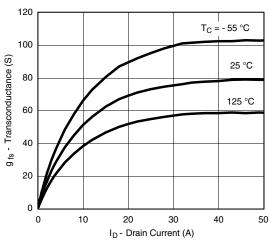
Notes:

- a. For design aid only; not subject to production testing.
- b. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2 %.
- c. Independent of operating temperature.

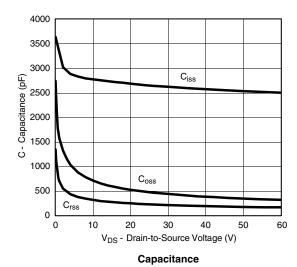
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

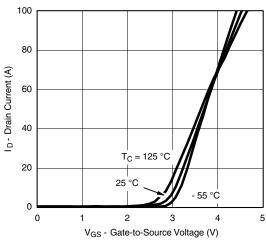
Document Number: 72004 S13-0298-Rev. F, 11-Feb-13



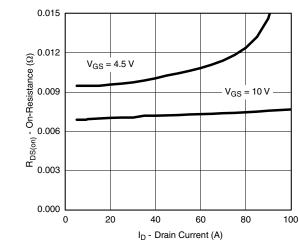

SUD50N06-09L

Vishay Siliconix

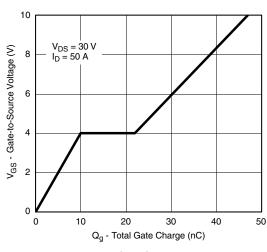

TYPICAL CHARACTERISTICS (25 °C unless noted)



Output Characteristics



Transconductance



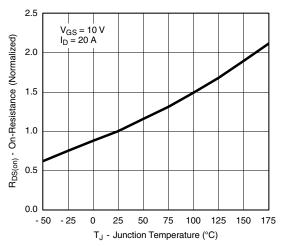
Transfer Characteristics

On-Resistance vs. Drain Current

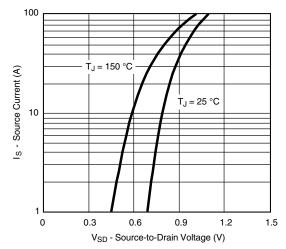
Gate Charge

Document Number: 72004 S13-0298-Rev. F, 11-Feb-13 For technical questions, contact: pmostechsupport@vishay.com

Datasheet of SUD50N06-09L-E3 - MOSFET N-CH 60V 50A TO252


Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

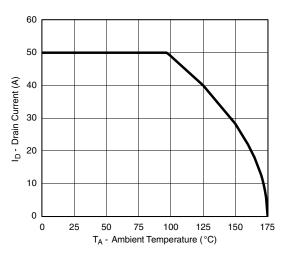
SUD50N06-09L


Vishay Siliconix

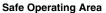
TYPICAL CHARACTERISTICS (25 °C unless noted)

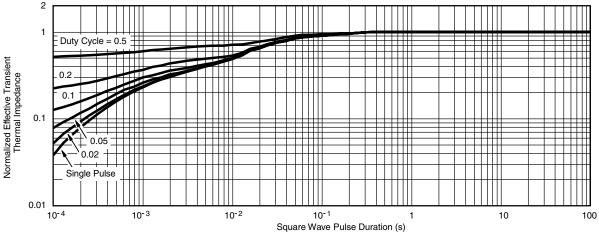
On-Resistance vs. Junction Temperature

Source-Drain Diode Forward Voltage



SUD50N06-09L


Vishay Siliconix


THERMAL RATINGS

1000 Limited by R_{DS(on)} 100 10 μs 100 μs I_D - Drain Current (A) 10 10 ms 100 ms T_C = 25 °C 0.1 Single Pulse 0.01 10 100 V_{DS} - Drain-to-Source Voltage (V) * V_{GS} > minimum V_{GS} at which $R_{DS(on)}$ is specified

Maximum Drain Current vs. Ambient Temperature

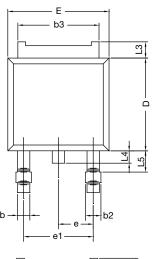
Normalized Thermal Transient Impedance, Junction-to-Case

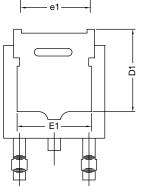
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?72004.

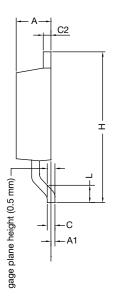
Document Number: 72004 S13-0298-Rev. F, 11-Feb-13

Datasheet of SUD50N06-09L-E3 - MOSFET N-CH 60V 50A TO252

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com




Package Information


www.vishay.com

Vishay Siliconix

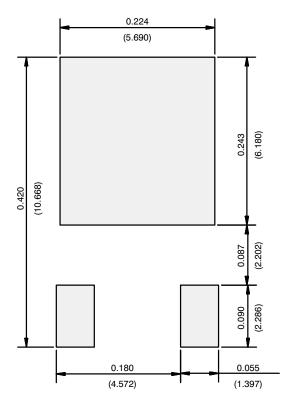
TO-252AA Case Outline

	MILLIMETERS		INC	INCHES	
DIM.	MIN.	MAX.	MIN.	MAX.	
Α	2.18	2.38	0.086	0.094	
A1	-	0.127	-	0.005	
b	0.64	0.88	0.025	0.035	
b2	0.76	1.14	0.030	0.045	
b3	4.95	5.46	0.195	0.215	
С	0.46	0.61	0.018	0.024	
C2	0.46	0.89	0.018	0.035	
D	5.97	6.22	0.235	0.245	
D1	4.10	-	0.161	-	
Е	6.35	6.73	0.250	0.265	
E1	4.32	ı	0.170	-	
Η	9.40	10.41	0.370	0.410	
е	2.28 BSC		0.090 BSC		
e1	4.56 BSC		0.180 BSC		
L	1.40	1.78	0.055	0.070	
L3	0.89	1.27	0.035	0.050	
L4	-	1.02	-	0.040	
L5	1.01	1.52	0.040	0.060	
ECN: T16-0236-Rev. P, 16-May-16 DWG: 5347					

Notes

• Dimension L3 is for reference only.

Revision: 16-May-16 Document Number: 71197



Application Note 826

Vishay Siliconix

RECOMMENDED MINIMUM PADS FOR DPAK (TO-252)

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

APPLICATION NOTE

Document Number: 72594 Revision: 21-Jan-08 www.vishay.com

Datasheet of SUD50N06-09L-E3 - MOSFET N-CH 60V 50A TO252

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Revision: 13-Jun-16 1 Document Number: 91000