

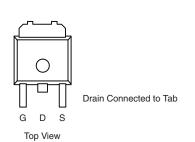
Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Vishay/Siliconix SUD50N10-18P-E3

For any questions, you can email us directly: sales@integrated-circuit.com



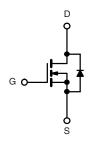
Vishay Siliconix

N-Channel 100 V (D-S), 175 °C MOSFET

PRODUCT SUMMARY				
V _{DS} (V)	$R_{DS(on)}(\Omega)$	I _D (A) ^a	Q _g (Typ.)	
100	0.0185 at V _{GS} = 10 V	50	48 nC	

TO-252

Ordering Information: SUD50N10-18P-E3 (Lead (Pb)-free)


FEATURES

- TrenchFET® Power MOSFET
- 100 % R_q and UIS Tested
- Material categorization: For definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS

- Primary Side Switch
- Isolated DC/DC Converter

N-Channel MOSFET

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	100	V	
Gate-Source Voltage		V _{GS}		
	T _C = 25 °C		50 ^a	
Continuous Proin Courant /T 150 °C)	T _C = 100 °C		39	7
Continuous Drain Current (T _J = 150 °C)	T _A = 25 °C	I _D	8.2 ^b	
	T _A = 100 °C		5.8 ^b	_
Pulsed Drain Current		I _{DM}	100	A
Continuous Source-Drain Diode Current	T _C = 25 °C	1	50 ^a	
Continuous Source-Diam Diode Current	T _A = 25 °C	I _S	2 ^b	
Single Pulse Avalanche Current	ngle Pulse Avalanche Current		45	
Avalanche Energy L = 0.1 mH		E _{AS}	101	mJ
	T _C = 25 °C		136.4	
Maximum Power Dissipation	T _C = 100 °C	P _D	68.2	w
	T _A = 25 °C	rD	3 ^b	
	T _A = 100 °C		1.5 ^b	
Operating Junction and Storage Temperature R	T _J , T _{stg}	- 55 to 175	°C	

THERMAL RESISTANCE RATINGS					
Parameter		Symbol	Typical	Maximum	Unit
Maximum Junction-to-Ambient ^b	Steady State	R _{thJA}	40	50	°C/W
Maximum Junction-to-Case	Sleady State	R _{thJC}	0.85	1.1	C/VV

- a. Package limited.
- b. Surface mounted on 1" x 1" FR4 board.

Document Number: 69846 S12-1958-Rev. D, 13-Aug-12

For technical questions, contact: pmostechsupport@vishay.com

www.vishay.com

Datasheet of SUD50N10-18P-E3 - MOSFET N-CH 100V 8.2A TO252

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

SUD50N10-18P

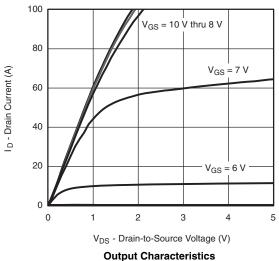
Vishay Siliconix

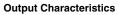
Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit	
Static							
Drain-Source Breakdown Voltage	V _{DS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	100			V	
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	J 050 A		110		mV/°C	
V _{GS(th)} Temperature Coefficient	$\Delta V_{GS(th)}/T_J$	I _D = 250 μA		- 12.5			
Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 250 \mu A$	2.5		5	V	
Gate-Source Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			± 100	nA	
7 0.1. 1/11 5 0	I _{DSS}	V _{DS} = 100 V, V _{GS} = 0 V			1	μА	
Zero Gate Voltage Drain Current		V _{DS} = 100 V, V _{GS} = 0 V, T _J = 125 °C			50		
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$	50			Α	
Drain-Source On-State Resistance ^a	R _{DS(on)}	V _{GS} = 10 V, I _D = 15 A		0.015	0.0185	Ω	
Forward Transconductance ^a	9 _{fs}	V _{DS} = 15 V, I _D = 15 A		33		S	
Dynamic ^b					•		
Input Capacitance	C _{iss}			2600		pF	
Output Capacitance	C _{oss}	$V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$		230			
Reverse Transfer Capacitance	C _{rss}			80			
Total Gate Charge	Q _g			48	75	nC	
Gate-Source Charge	Q _{gs}	$V_{DS} = 50 \text{ V}, V_{GS} = 10 \text{ V}, I_{D} = 50 \text{ A}$		16			
Gate-Drain Charge	Q _{gd}			13			
Gate Resistance	R _g	f = 1 MHz		1.6	2.5	Ω	
Turn-On Delay Time	t _{d(on)}			12	20		
Rise Time	t _r	$V_{DD} = 50 \text{ V, R}_{1} = 1 \Omega$		10	20	ns	
Turn-Off Delay Time	t _{d(off)}	$I_D \cong 50 \text{ A}, V_{GEN} = 10 \text{ V}, R_g = 1 \Omega$		18	35		
Fall Time	t _f			8	15		
Drain-Source Body Diode Characteris	tics				•		
Continuous Source-Drain Diode	I _S	T _C = 25 °C			50		
Pulse Diode Forward Current ^a	I _{SM}				100	A	
Body Diode Voltage	V _{SD}	I _S = 15 A		0.85	1.5	٧	
Body Diode Reverse Recovery Time	t _{rr}			80	120	ns	
Body Diode Reverse Recovery Charge	Q _{rr}	$I_F = 50 \text{ A, dI/dt} = 100 \text{ A/}\mu\text{s, T}_J = 25 ^{\circ}\text{C}$		160	240	nC	
Reverse Recovery Fall Time	t _a			57		ns	
Reverse Recovery Rise Time	t _b			23			

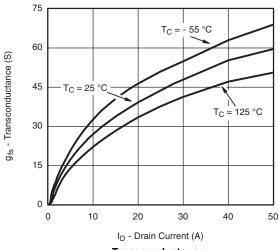
Notes:

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

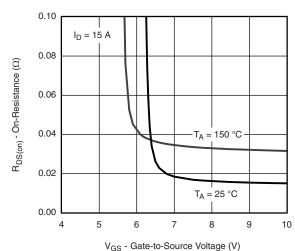
a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2 %.

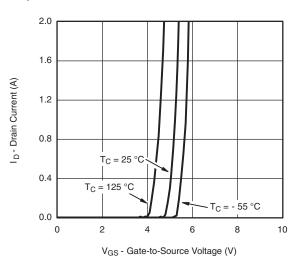

b. Guaranteed by design, not subject to production testing.

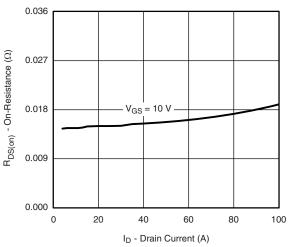




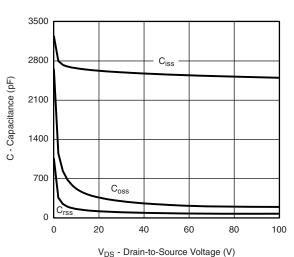
Vishay Siliconix


TYPICAL CHARACTERISTICS (25 °C, unless otherwise note)


Transconductance


On-Resistance vs. Gate-to-Source Voltage

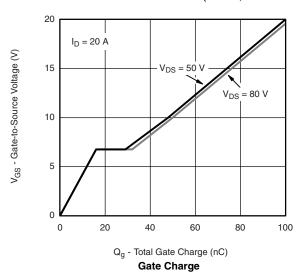
Document Number: 69846

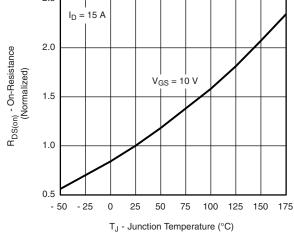

S12-1958-Rev. D, 13-Aug-12

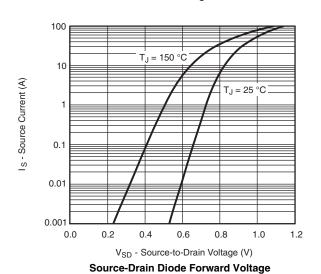
Transfer Characteristics

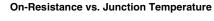
On-Resistance vs. Drain Current

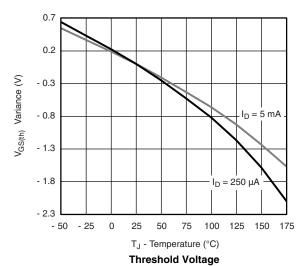
Capacitance

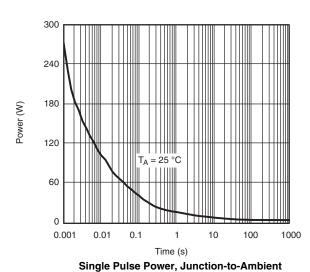

www.vishay.com

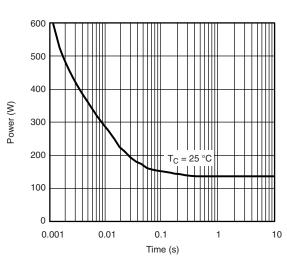



Vishay Siliconix


TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)



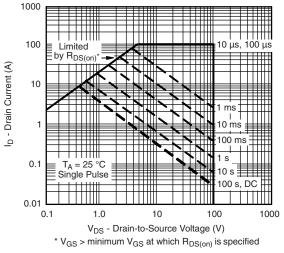


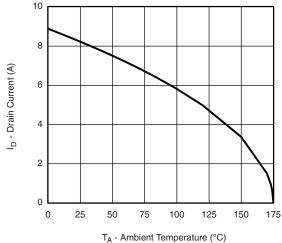


Single Pulse Power, Junction-to-Case

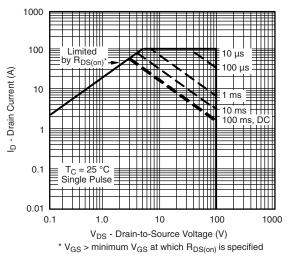
Document Number: 69846 S12-1958-Rev. D, 13-Aug-12

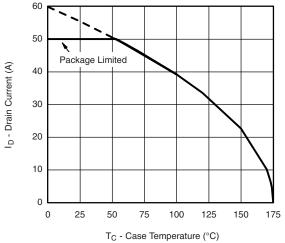
For technical questions, contact: pmostechsupport@vishay.com


www.vishay.com



Vishay Siliconix


TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)



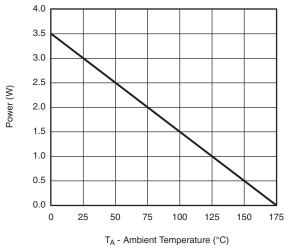
Current Derating**, Junction-to-Ambient

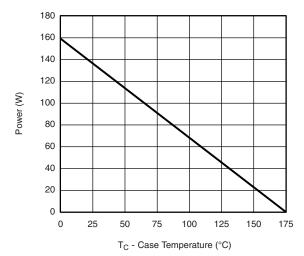
Safe Operating Area, Junction-to-Case

Current Derating**, Junction-to-Case

^{**} The power dissipation P_D is based on $T_{J(max.)} = 175$ °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

Datasheet of SUD50N10-18P-E3 - MOSFET N-CH 100V 8.2A TO252


Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com


SUD50N10-18P

Vishay Siliconix

VISHAY

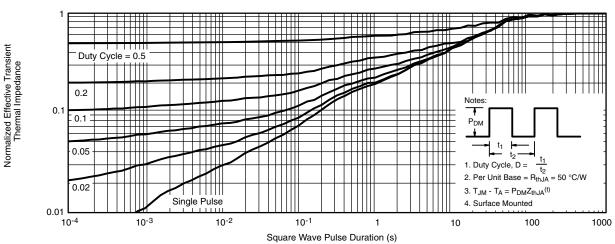
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

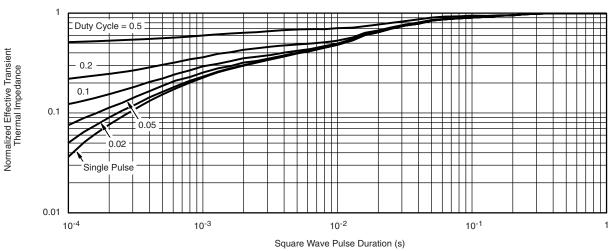
Power Derating**, Junction-to-Ambient

Power Derating**, Junction-to-Case

^{**} The power dissipation P_D is based on $T_{J(max)}$ = 175 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

Datasheet of SUD50N10-18P-E3 - MOSFET N-CH 100V 8.2A TO252


Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com


SUD50N10-18P

Vishay Siliconix

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Normalized Thermal Transient Impedance, Junction-to-Ambient

Normalized Thermal Transient Impedance, Junction-to-Case

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?69846.

Datasheet of SUD50N10-18P-E3 - MOSFET N-CH 100V 8.2A TO252

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

www.vishay.com

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Revision: 13-Jun-16 1 Document Number: 91000