

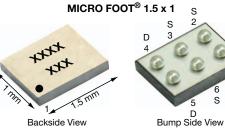
Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Vishay/Siliconix SI8497DB-T2-E1

For any questions, you can email us directly: <u>sales@integrated-circuit.com</u>


www.vishay.com

Si8497DB

Vishay Siliconix

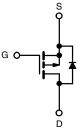
P-Channel 30 V (D-S) MOSFET

PRODUCT SUMMARY						
V _{DS} (V)	R _{DS(on)} (Ω) MAX.	I _D (A) ^d	Q _g (TYP.)			
	0.053 at V_{GS} = -4.5 V	-13				
-30	0.071 at V _{GS} = -2.5 V	-11	16.3 nC			
	0.120 at V _{GS} = -2 V	-5				

Marking Code: xxxx = 8497

xxx = Date / lot traceability code

Ordering Information:


Si8497DB-T2-E1 (Lead (Pb)-free and halogen-free)

FEATURES

- TrenchFET[®] power MOSFET
- Ultra-small 1.5 mm x 1 mm maximum outline
- Ultra-thin 0.59 mm maximum height
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS

- Low on-resistance load switch, charger switch, OVP switch and battery switch for portable devices
 - Low power consumption
 - Increased battery life
 - Space savings on PCB

P-Channel MOSFET

ABSOLUTE MAXIMUM RATINGS	SYMBOL	LIMIT	UNIT	
				UNIT
Drain-Source Voltage		V _{DS}	-30	v
Gate-Source Voltage		V _{GS}	± 12	v
	T _C = 25 °C		-13	
Continuous Durin Current (T. 150 °C)	T _C = 70 °C		-10	
Continuous Drain Current ($T_J = 150 \ ^{\circ}C$)	T _A = 25 °C	ID	-5.9 ^{a, b}	
	T _A = 70 °C		-4.7 ^{a, b}	A
Pulsed Drain Current (t = 300 µs)		I _{DM}	-20	
Cantinuaus Courses Durin Diada Current	T _C = 25 °C	1	-11	
Continuous Source-Drain Diode Current	T _A = 25 °C	I _S	-2.3 ^{a, b}	
	T _C = 25 °C		13	
Maximum Davies Diabination	T _C = 70 °C		8.4	
Maximum Power Dissipation	T _A = 25 °C	P _D	2.77 ^{a, b}	- W
	T _A = 70 °C		1.77 ^{a, b}	
Operating Junction and Storage Temperature Range		T _J , T _{stg}	-55 to 150	*0
Package Reflow Conditions ^c	IR/Convection		260	

THERMAL RESISTANCE RATINGS					
PARAMETER		SYMBOL	TYPICAL	MAXIMUM	UNIT
Maximum Junction-to-Ambient ^{a, e}		R _{thJA}	37	45	°C/W
Maximum Junction-to-Case (Drain) ^f	Steady State	R _{thJC}	7	9.5	0/11

Notes

a. Surface mounted on 1" x 1" FR4 board.

b. t = 10 s.

- c. Refer to IPC/JEDEC® (J-STD-020), no manual or hand soldering.
- d. Based on $T_C = 25$ °C.
- e. Maximum under steady state conditions is 85 °C/W.
- f. Case is defined as top surface of the package.

S15-0932-Rev. B, 20-Apr-15

1

RoHS

COMPLIANT

ISHA

www.vishay.com

Si8497DB

Vishay Siliconix

SPECIFICATIONS (T _J = 25 $^{\circ}$ C,	unless othe	erwise noted)					
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT	
Static							
Drain-Source Breakdown Voltage	V _{DS}	$V_{GS} = 0, I_D = -250 \ \mu A$	-30	-	-	V	
Temperature Coefficient $\Delta V_{DS}/T_J$		L 050A	-	-29	-	mV/°C	
V _{GS(th)} Temperature Coefficient	$\Delta V_{GS(th)}/T_J$	I _D = -250 μΑ	-	3.1	-	mv/°C	
Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = -250 \ \mu A$	-0.5	-	-1.1	V	
Gate-Source Leakage	I _{GSS}	$V_{DS} = 0 V, V_{GS} = \pm 12 V$	-	-	± 100	nA	
Zana Oata Malta da Ducia Orimont		$V_{DS} = -30 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$	-	-	-1	μA	
Zero Gate Voltage Drain Current	IDSS	V _{DS} = -30 V, V _{GS} = 0 V, T _J = 70 °C	-	-	-10		
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \leq -5 \text{ V}, \text{ V}_{GS} = -4.5 \text{ V}$	-5	-	-	А	
		V _{GS} = -4.5 V, I _D = -1.5 A	-	0.043	0.053		
Drain-Source On-State Resistance ^a	R _{DS(on)}	V _{GS} = -2.5 V, I _D = -1 A	-	0.058	0.071	Ω	
		V _{GS} = -2 V, I _D = -0.5 A	-	0.075	0.120		
Forward Transconductance ^a			-	10	-	S	
Dynamic ^b				•	1		
Input Capacitance	C _{iss}		-	1320	-		
Output Capacitance	C _{oss}	V _{DS} = -15 V, V _{GS} = 0 V, f = 1 MHz	-	121	-	pF	
Reverse Transfer Capacitance	C _{rss}		-	102	-		
		$V_{DS} = -15 \text{ V}, \text{ V}_{GS} = -10 \text{ V}, \text{ I}_{D} = -1.5 \text{ A}$	-	32.6	49		
Total Gate Charge	Q _g Q _{as}		-	16.3	25	nC	
Gate-Source Charge		V _{DS} = -15 V, V _{GS} = -4.5 V, I _D = -1.5 A	-	2.5	-		
Gate-Drain Charge	Q _{qd}		-	4.9	-		
Gate Resistance	R _a	V _{GS} = -0.1 V, f = 1 MHz	-	8	-	Ω	
Turn-On Delay Time	t _{d(on)}		-	17	35		
Rise Time	t _r	$V_{DD} = -15 \text{ V}, \text{ R}_{\text{L}} = 10 \Omega$	-	15	30	- - - ns	
Turn-Off Delay Time	t _{d(off)}	$I_D \cong -1.5 \text{ A}, V_{\text{GEN}} = -4.5 \text{ V}, R_g = 1 \Omega$	-	60	120		
Fall Time	t _f		-	25	50		
Turn-On Delay Time	t _{d(on)}		-	50	100		
Rise Time	t _r	$V_{DD} = -15 \text{ V}, \text{ R}_{\text{I}} = 10 \Omega$	-	10	20		
Turn-Off Delay Time	t _{d(off)}	$I_D \cong -1.5 \text{ A}, \text{ V}_{\text{GEN}} = -10 \text{ V}, \text{ R}_{\text{g}} = 1 \Omega$		75	150	1	
Fall Time	t _f	· · · ·	_	22	45	1	
Drain-Source Body Diode Characteris							
Continuous Source-Drain Diode Current	Is	T _C = 25 °C	-	-	-15		
Pulse Diode Forward Current	I _{SM}	~ ~ ~	-	-	-20	A	
Body Diode Voltage	V _{SD}	I _S = -1.5 A, V _{GS} = 0	-	-0.73	-1.2	V	
Body Diode Reverse Recovery Time	t _{rr}		-	21	40	ns	
Body Diode Reverse Recovery Charge	Q _{rr}	1	-	7	15	nC	
Reverse Recovery Fall Time	ta	I _F = -1.5 A, dl/dt = 100 A/μs, T _J = 25 °C	_	8	-	ns	
Reverse Recovery Rise Time	t _a	1 · · · · · · · · · · · · · · · · · · ·	_	13			

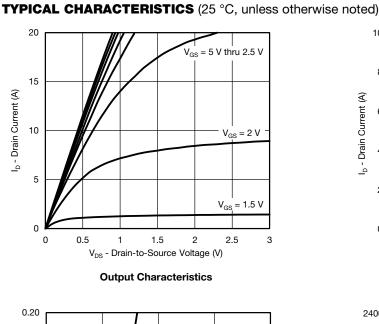
Notes

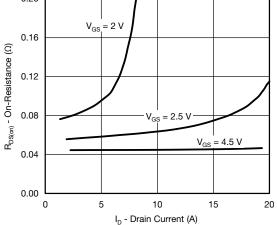
a. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2 %.

b. Guaranteed by design, not subject to production testing.

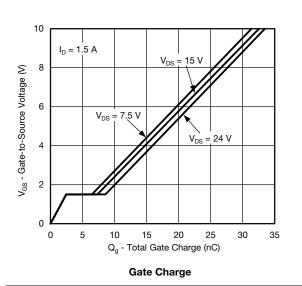
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

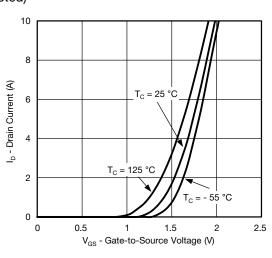
For technical questions, contact: pmostechsupport@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

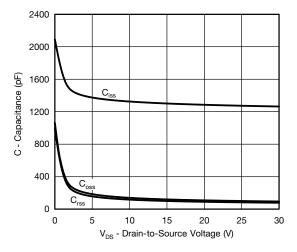



VISHAY.

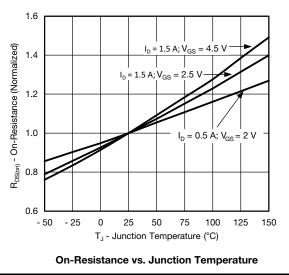
www.vishay.com


Si8497DB


Vishay Siliconix



On-Resistance vs. Drain Current and Gate Voltage

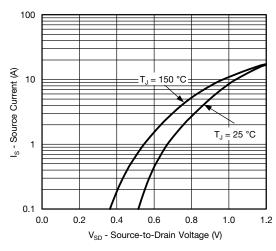


Transfer Characteristics

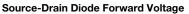
S15-0932-Rev. B, 20-Apr-15

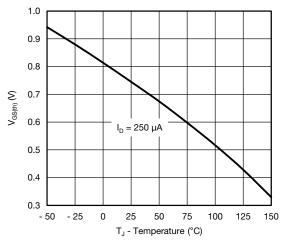
Document Number: 63355

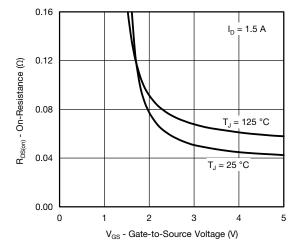
For technical questions, contact: <u>pmostechsupport@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>



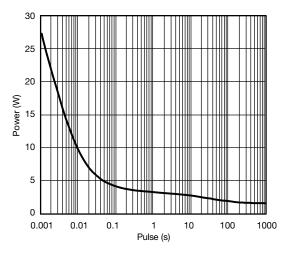
VISHAY.


Si8497DB

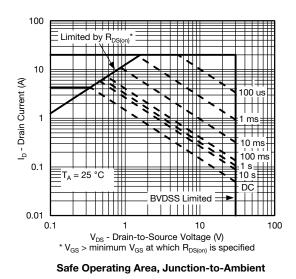

Vishay Siliconix



www.vishay.com



Threshold Voltage



On-Resistance vs. Gate-to-Source Voltage

Single Pulse Power, Junction-to-Ambient

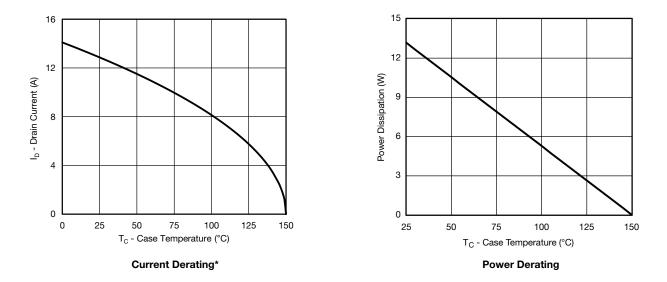
Document Number: 63355

S15-0932-Rev. B, 20-Apr-15

4 For technical questions, contact: <u>pmostechsupport@vishay.com</u>

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

VISHAY,


www.vishay.com

Si8497DB

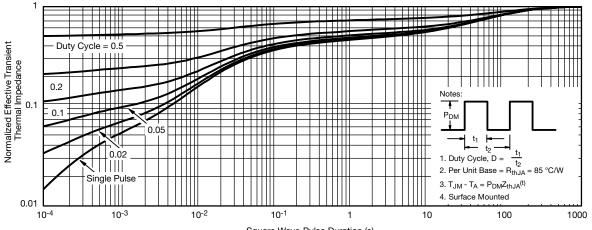
Vishay Siliconix

Document Number: 63355

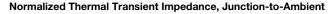
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

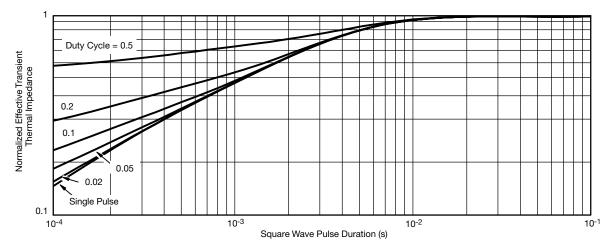
* The power dissipation P_D is based on $T_{J (max.)} = 150$ °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

5


VISHA

www.vishay.com


Si8497DB


Vishay Siliconix

Square Wave Pulse Duration (s)

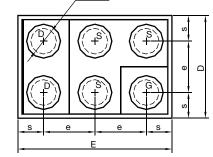
Normalized Thermal Transient Impedance, Junction-to-Case

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?63355.

S15-0932-Rev. B, 20-Apr-15

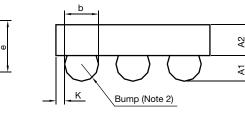
www.vishay.com

Package Information


Vishay Siliconix

MICRO FOOT®: 6-Bump (1.5 mm x 1 mm, 0.5 mm Pitch, 0.250 mm Bump Height)

Mark on Backside of Die


6x Ø 0.24 to 0.26 (Note 3) Solder mask ~ Ø 0.25

6x Ø b1

NOTE 5

Recommended Land Pattern

Notes

(unless otherwise specified)

1. Six (6) solder bumps are 95.5/3.8/0.7 Sn/Ag/Cu.

2. Backside surface is coated with a Ti/Ni/Ag layer.

3. Non-solder mask defined copper landing pad.

4. Laser marks on the silicon die back.

5. "b1" is the diameter of the solderable substrate surface, defined by an opening in the solder resist layer solder mask defined.

6. • is the location of pin 1

DIM.		MILLIMETERS			INCHES			
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.		
А	0.510	0.575	0.590	0.0201	0.0226	0.0232		
A ₁	0.220	0.250	0.280	0.0087	0.0098	0.0110		
A ₂	0.290	0.300	0.310	0.0114	0.0118	0.0122		
b	0.297	0.330	0.363	0.0116	0.0129	0.0143		
b1		0.250			0.0098			
е		0.500			0.0197			
S	0.210	0.230	0.250	0.0082	0.0090	0.0098		
D	0.920	0.960	1.000	0.0362	0.0378	0.0394		
E	1.420	1.460	1.500	0.0559	0.0575	0.0591		
К	0.028	0.065	0.102	0.0011	0.0025	0.0040		

Note

Use millimeters as the primary measurement. ٠

ECN: T15-0140-Rev. A, 20-Apr-15 DWG: 6035

Revison: 20-Apr-15

Document Number: 69426

For technical questions, contact: pmostechsupport@vishay.com

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

www.vishay.com

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.