

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

[Texas Instruments](#)
[BQ294592DRV](#)

For any questions, you can email us directly:

sales@integrated-circuit.com

bq2945xx Overvoltage Protection For 2-Series and 3-Series Cell Li-Ion Batteries

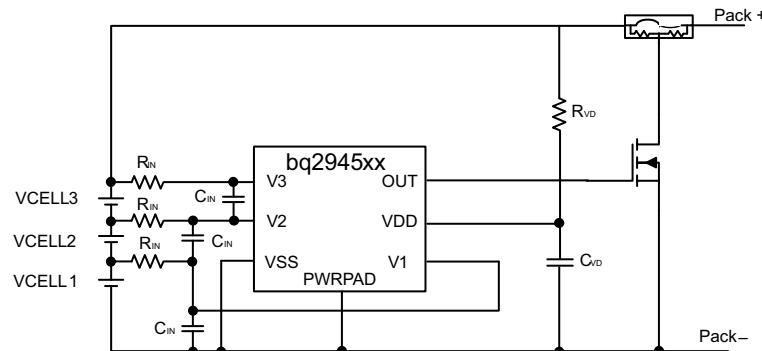
1 Features

- 2-Series and 3-Series Cell Overvoltage Monitor for Secondary Protection
- Fixed Programmable Delay Timer
- Fixed OVP Threshold
 - Available Range From 3.85 V to 4.6 V
- Fixed OVP Delay Option: 4 s or 6.5 s
- High-Accuracy Overvoltage Protection: ± 10 mV
- Low Power Consumption $I_{CC} \approx 1 \mu A$ ($V_{CELL(ALL)} < V_{PROTECT}$)
- Low Leakage Current per Cell Input < 100 nA
- Small Package Footprint
 - 6-Pin SON

2 Applications

- Second-Level Protection in Li-Ion Battery Packs in:
 - Tablets
 - Slates
 - Power Tools
 - Notebook Computers
 - Portable Equipment and Instrumentation

3 Description


The bq2945xx family of products is a secondary-level voltage monitor and protector for Li-Ion battery pack systems. Each cell is monitored independently for an overvoltage condition. Based on the configuration, an output is triggered after a fixed delay if any of the two or three cells has an overvoltage condition. This output is triggered into a high state after an overvoltage condition satisfies the specified delay timer.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
bq2945xx	SON (6)	2.00 mm x 2.00 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Simplified Schematic

An **IMPORTANT NOTICE** at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. UNLESS OTHERWISE NOTED, this document contains **PRODUCTION DATA**.

**bq294502, bq294504, bq294512, bq294514
bq294515, bq294522, bq294524, bq294532
bq294562, bq294572, bq294582, bq294592**

SLUSAJ3D – SEPTEMBER 2011 – REVISED JULY 2015

Table of Contents

1 Features	1	8.4 Device Functional Modes.....	10
2 Applications	1	9 Application and Implementation	12
3 Description	1	9.1 Application Information.....	12
4 Revision History	2	9.2 Typical Application	12
5 Device Options	4	9.3 System Examples	13
6 Pin Configuration and Functions	4	10 Power Supply Recommendations	14
7 Specifications	5	11 Layout	14
7.1 Absolute Maximum Ratings	5	11.1 Layout Guidelines	14
7.2 ESD Ratings.....	5	11.2 Layout Example	14
7.3 Recommended Operating Conditions	5	12 Device and Documentation Support	15
7.4 Thermal Information	5	12.1 Device Support.....	15
7.5 Electrical Characteristics.....	6	12.2 Related Links	15
7.6 Typical Characteristics	8	12.3 Community Resources.....	15
8 Detailed Description	9	12.4 Trademarks	15
8.1 Overview	9	12.5 Electrostatic Discharge Caution	15
8.2 Functional Block Diagram	9	12.6 Glossary	15
8.3 Feature Description.....	9	13 Mechanical, Packaging, and Orderable Information	16

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision C (May 2012) to Revision D	Page
• Added <i>ESD Ratings</i> table, <i>Feature Description</i> section, <i>Device Functional Modes</i> , <i>Application and Implementation</i> section, <i>Power Supply Recommendations</i> section, <i>Layout</i> section, <i>Device and Documentation Support</i> section, and <i>Mechanical, Packaging, and Orderable Information</i> section	1
• Added Overvoltage to description	1
• Changed bullets to consolidate feature item	1
• Added the bq294514 Device	1
• Added Fixed OVP Delay Option to Features	1
• Changed Absolute Maximum Ratings	5
• Changed format of graphs.....	8

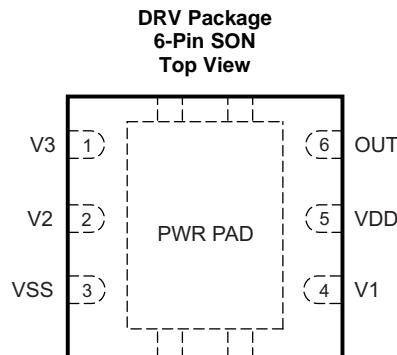
Changes from Revision B (February 2012) to Revision C	Page
• Added the bq294515 Device to Production Data	4
• Added the bq294524 Device to Production Data	4
• Added the bq294532 Device to Production Data	4
• Added the bq294572 Device to Production Data	4
• Changed Overvoltage Detection Hysteresis.....	6
• Added Output Voltage Versus Output Current graphic	8
• Changed Timing for Customer Test Mode figure	11

Changes from Revision A (November 2011) to Revision B**Page**

• Changed the bq294504 Device to Production Data	1
• Added the bq294512 Device	1
• Added the bq294592 Device	1
• Added a second I_{CC} Test Condition	6
• Changed Fault Detection Delay Time in bq2945x4 Test Mode Specifications	7

Changes from Original (September 2011) to Revision A**Page**

• Added the bq294582 Device to Production Data	4
--	---


**bq294502, bq294504, bq294512, bq294514
bq294515, bq294522, bq294524, bq294532
bq294562, bq294572, bq294582, bq294592**
SLUSAJ3D – SEPTEMBER 2011 – REVISED JULY 2015

5 Device Options

T _A	PART NUMBER	OVP (V)	DELAY TIME (s)
-40°C to +110°C	bq294502	4.35	4
	bq294504	4.35	6.5
	bq294512	4.4	4
	bq294514	4.4	6.5
	bq294515	4.425	4
	bq294522	4.45	4
	bq294524	4.45	6.5
	bq294532	4.5	4
	bq294562	4.25	4
	bq294572	4	4
	bq294582	4.225	4
	bq294584 ⁽¹⁾	4.225	6.5
	bq294592	4.3	4

(1) Product Preview only

6 Pin Configuration and Functions

Pin Functions

PIN		I/O	DESCRIPTION
NAME	NO.		
OUT	6	OA	Output drive for external N-channel FET.
PWRPAD	—	—	VSS pin to be connected to the PWRPAD on the printed-circuit-board (PCB) for proper operation.
V1	4	IA	Sense input for positive voltage of the lowest cell in the stack.
V2	2	IA	Sense input for positive voltage of the second cell from the bottom of the stack.
V3	1	IA	Sense input for positive voltage of the third cell from the bottom of the stack.
VDD	5	P	Power supply
VSS	3	P	Electrically connected to IC ground and negative terminal of the lowest cell in the stack.

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾⁽²⁾

		MIN	MAX	UNIT
Supply voltage	VDD–VSS	–0.3	30	V
Input voltage	V1–VSS or V2–VSS or V3–VSS+	–0.3	30	V
	V3–V2 or V2–V1	–0.3	8	V
Output voltage	OUT–VSS	–0.3	30	V
Continuous total power dissipation, P_{TOT}		See <i>Thermal Information</i>		
Lead temperature (soldering, 10 s), T_{SOLDER}		300		
Storage temperature, T_{stg}		–65	150	°C

(1) Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions*. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) See [Figure 8](#).

7.2 ESD Ratings

		VALUE	UNIT
V _(ESD)	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	V
	Charged device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±500	

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

	MIN	NOM	MAX	UNIT
Supply voltage, V_{DD} ⁽¹⁾	3	25		V
Input voltage V3–V2 or V2–V1 or V1–VSS	0	5		V
Operating ambient temperature, T_A	–40	110		°C

(1) See [Typical Application](#).

7.4 Thermal Information

	THERMAL METRIC ⁽¹⁾	bq2945xx	UNIT
		DRV (SON)	
		6 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	186.4	°C/W
$R_{\theta JC(\text{top})}$	Junction-to-case(top) thermal resistance	90.4	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	110.7	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	96.7	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	90	°C/W
$R_{\theta JC(\text{bot})}$	Junction-to-case(bottom) thermal resistance	N/A	°C/W

(1) For more information about traditional and new thermal metrics, see the *Semiconductor and IC Package Thermal Metrics* application report, [SPRA953](#).

**bq294502, bq294504, bq294512, bq294514
bq294515, bq294522, bq294524, bq294532
bq294562, bq294572, bq294582, bq294592**

SLUSAJ3D – SEPTEMBER 2011 – REVISED JULY 2015

www.ti.com

7.5 Electrical Characteristics

Typical values stated where $T_A = 25^\circ\text{C}$ and $VDD = 10.8\text{ V}$, MIN/MAX values stated where $T_A = -40^\circ\text{C}$ to $+110^\circ\text{C}$ and $VDD = 3\text{ V}$ to 15 V (unless otherwise noted).

TEST NO.	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
VOLTAGE PROTECTION THRESHOLD VCx						
1.0	V_{OV} V _(PROTECT) – Overvoltage Detection	bq294502, fixed delay 4 s	4.35			V
1.1		bq294504, fixed delay 6.5 s	4.35			
1.2		bq294512, fixed delay 4 s	4.4			
1.3		bq294514, fixed delay 6.5 s	4.4			
1.4		bq294515, fixed delay 4 s	4.425			
1.5		bq294522, fixed delay 4 s	4.45			
1.6		bq294524, fixed delay 6.5 s	4.45			
1.7		bq294532, fixed delay 4 s	4.5			
1.8		bq294562, fixed delay 4 s	4.25			
1.9		bq294572, fixed delay 4 s	4			
1.10		bq294582, fixed delay 4 s	4.225			
1.11		bq294584, fixed delay 6.5 s ⁽¹⁾	4.225			
1.12		bq294592, fixed delay 4 s	4.3			
1.13	V_{HYS}	Overvoltage Detection Hysteresis	250	300	400	mV
1.14	V_{OA}	OV Detection Accuracy	$T_A = 25^\circ\text{C}$	-10	10	mV
1.15	V_{OA_DRIFT}	OV Detection Accuracy due to Temperature	$T_A = -40^\circ\text{C}$ $T_A = 0^\circ\text{C}$ $T_A = 60^\circ\text{C}$ $T_A = 110^\circ\text{C}$	-40 -20 -24 -54	44 20 24 54	mV
SUPPLY AND LEAKAGE CURRENT						
1.16	I_{CC}	Supply Current	$(V3-V2) = (V2-V1) = (V1-VSS) = 4\text{ V}$ (See Figure 8 for reference)	1	2	μA
			$(V3-V2) = (V2-V1) = (V1-VSS) = 2.8\text{ V}$ with $T_A = -40^\circ\text{C}$ to 60°C		1.25	
1.17	I_{IN}	Input Current at V_x Pins	Measured at V_3 , V_2 , and $V_1 = 4\text{ V}$ $(V2-V1) = (V1-VSS) = 4\text{ V}$ $T_A = 0^\circ\text{C}$ to 60°C (See Figure 8 for reference.)	-0.1	0.1	μA
OUTPUT DRIVE OUT						
1.18	V_{OUT}	Output Drive Voltage	$(V3-V2)$ or $(V2-V1)$ or $(V1-VSS) > V_{OV}$ $V_{DD} = 7.2\text{ V}$, $I_{OH} = 100\text{ }\mu\text{A}$, $T_A = -40^\circ\text{C}$ to 110°C	6		V
1.19			Two of the three cells are short circuit and only one cell is powered $(V3-V2)$ or $(V2-V1)$ or $(V1-VSS) > V_{OV}$ $V_{DD} = V_x$ (Cell voltage), $I_{OH} = 100\text{ }\mu\text{A}$, $T_A = -40^\circ\text{C}$ to 110°C		$V_{DD} - 0.2$	V
1.20			$(V3-V2)$, $(V2-V1)$, and $(V1-VSS) < V_{OV}$, $I_{OL} = 100\text{ }\mu\text{A}$, $T_A = 25^\circ\text{C}$ $T_A = -40^\circ\text{C}$ to 110°C		250	400
1.21	$I_{OUT(Short)}$	OUT Short Circuit Current	$OUT = 0\text{ V}$ ($V3-V2$) or ($V2-V1$) or ($V1-VSS$) > V_{OV}		4.5	mA
1.22	t_R	Output Rise Time	$CL = 1\text{ nF}$, $V_{OH(OUT)} = 0\text{ V}$ to 5 V ⁽²⁾		5	μs
1.23	Z_O	Output Impedance			2	$\text{k}\Omega$

(1) Product Preview only.

(2) Specified by design. Not 100% tested in production.

Electrical Characteristics (continued)

Typical values stated where $T_A = 25^\circ\text{C}$ and $V_{DD} = 10.8\text{ V}$, MIN/MAX values stated where $T_A = -40^\circ\text{C}$ to $+110^\circ\text{C}$ and $V_{DD} = 3\text{ V}$ to 15 V (unless otherwise noted).

TEST NO.	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
FIXED DELAY TIMER						
1.24	t_{DELAY}	Fault Detection	3.2	4	4.8	s
		Delay Time	5.2	6.5	7.8	
1.25	$t_{\text{DELAY_CTM}}$	Fault Detection Delay Time in Test Mode	Fixed Delay (Internal settings)		15	ms

**bq294502, bq294504, bq294512, bq294514
bq294515, bq294522, bq294524, bq294532
bq294562, bq294572, bq294582, bq294592**

SLUSAJ3D – SEPTEMBER 2011 – REVISED JULY 2015

7.6 Typical Characteristics

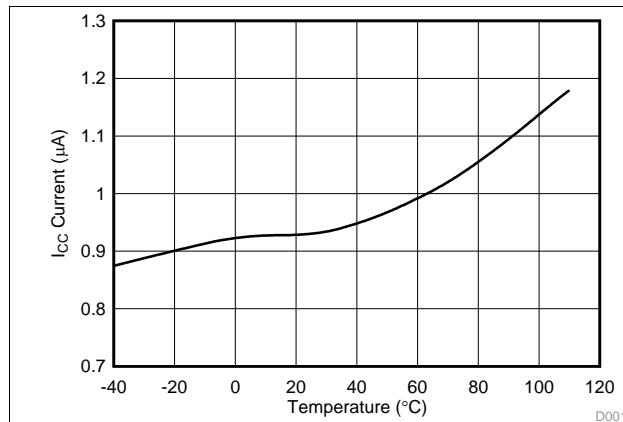


Figure 1. I_{CC} Current Consumption vs Temperature

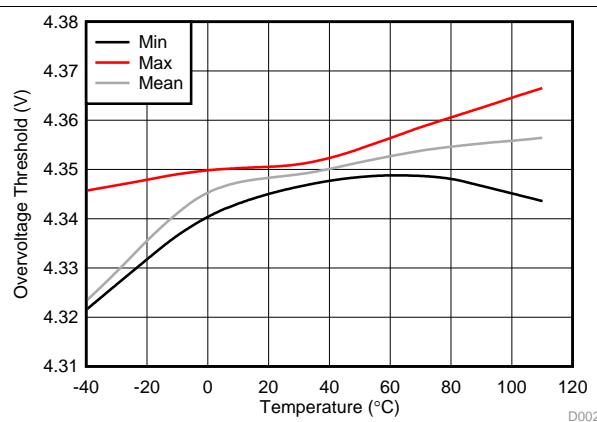


Figure 2. bq294502 Overvoltage Threshold (OVT) vs Temperature

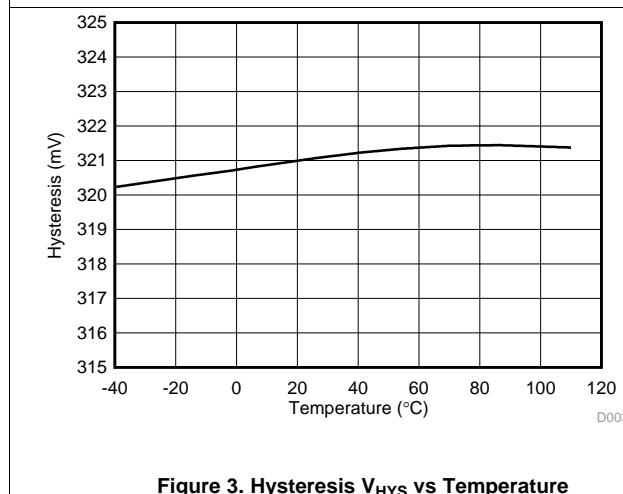


Figure 3. Hysteresis V_{HYS} vs Temperature

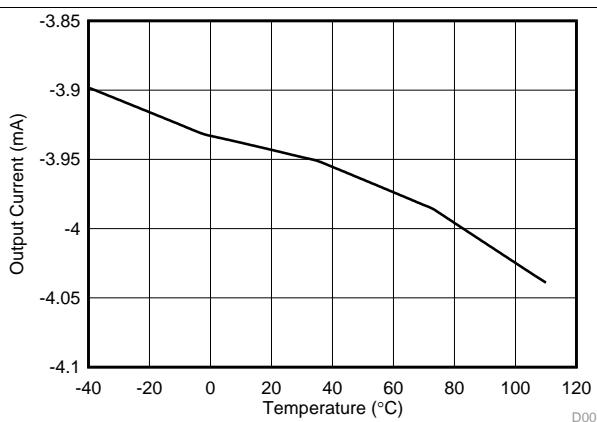
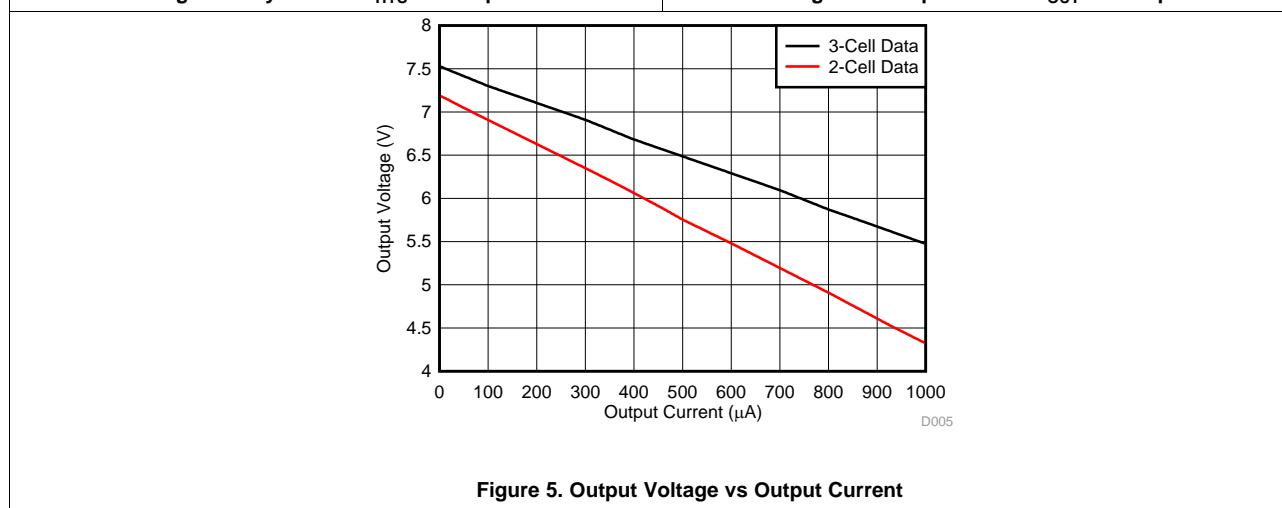
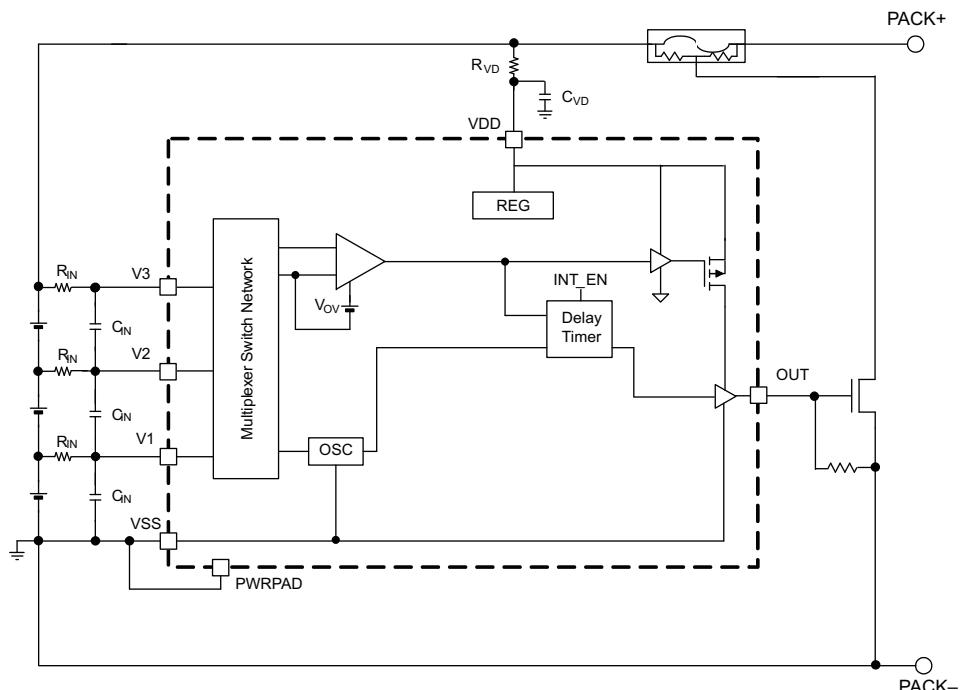


Figure 4. Output Current I_{OUT} vs Temperature



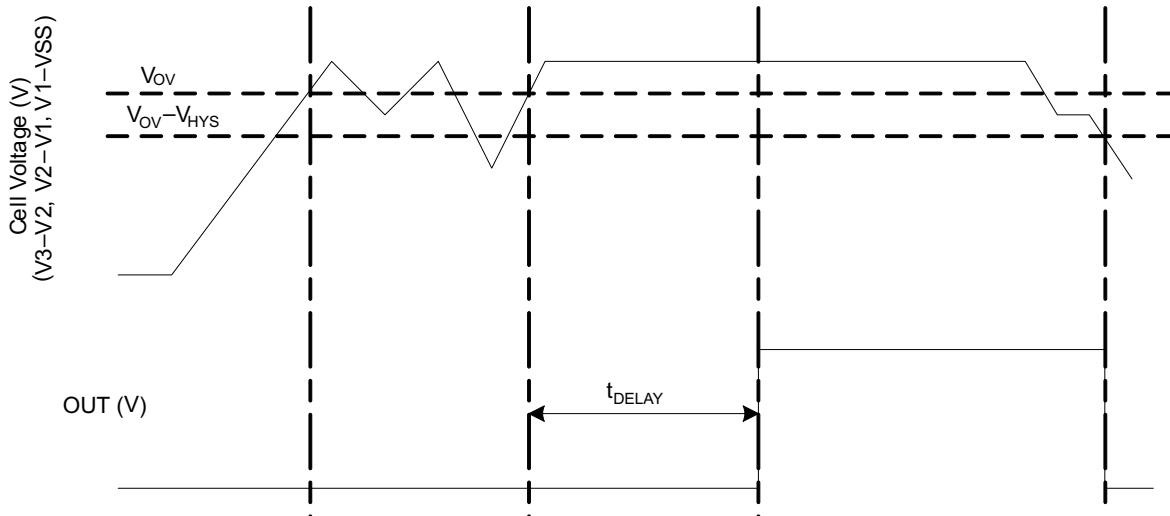

Figure 5. Output Voltage vs Output Current

8 Detailed Description

8.1 Overview

The bq2945xx is a second-level overvoltage (OV) protector. Each cell is monitored independently by comparing the actual cell voltage to a protection voltage threshold, V_{OV} . The protection threshold is preprogrammed at the factory with a range from 3.85 V to 4.65 V.

8.2 Functional Block Diagram


8.3 Feature Description

The voltage sensing for each cell is done independently using a multiplexer. The method of overvoltage detection is comparing the voltage to an overvoltage protection voltage V_{OV} . Once the voltage exceeds the programmed fixed value, the delay timer circuit is activated. This delay (t_{DELAY}) is fixed for either a 4-s or 6.5-s delay. When these conditions are satisfied, the OUT terminal is transitioned to a high level. This output (OUT) is released to a low condition if all of the cell inputs (Vx) are below the OVP threshold minus the V_{hys}.

**bq294502, bq294504, bq294512, bq294514
bq294515, bq294522, bq294524, bq294532
bq294562, bq294572, bq294582, bq294592**

SLUSAJ3D – SEPTEMBER 2011 – REVISED JULY 2015

Feature Description (continued)

Figure 6. Timing for Overvoltage Sensing

8.3.1 Sense Positive Input for VX

This is an input to sense each single battery cell voltage. A series resistor and a capacitor across the cell for each input is required for noise filtering and stable voltage monitoring.

8.3.2 Output Drive, OUT

The gate of an external N-channel MOSFET is connected to this terminal. This output transitions to a high level when an overvoltage condition is detected and after the programmed delay timer. OUT will reset to a low level if the cell voltage falls below the V_{OV} threshold before the fixed delay timer expires.

8.3.3 Supply Input, VDD

This terminal is the unregulated input power source for the IC. A series resistor is connected to limit the current, and a capacitor is connected to ground for noise filtering.

8.3.4 Thermal Pad, PWRPAD

For correct operation, the power pad (PWRPAD) is connected to the V_{SS} terminal on the PCB.

8.4 Device Functional Modes

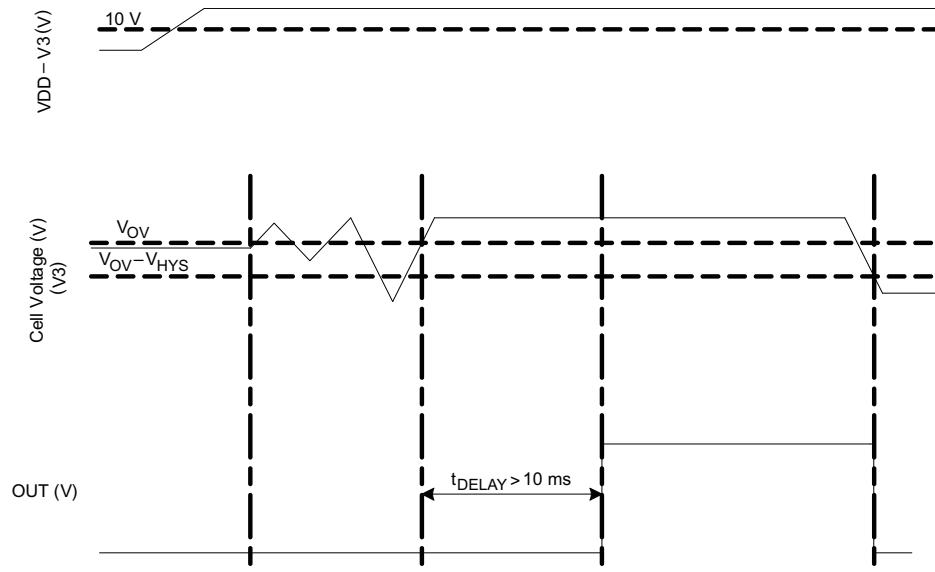
8.4.1 NORMAL Mode

When all of the cell voltages are below the overvoltage threshold, V_{OV} , the device operates in NORMAL mode. The device monitors the differential cell voltages connected across $(V1-VSS)$, $(V2-V1)$ and $(V3-V2)$. The OUT pin is inactive in this mode.

8.4.2 OVERVOLTAGE Mode

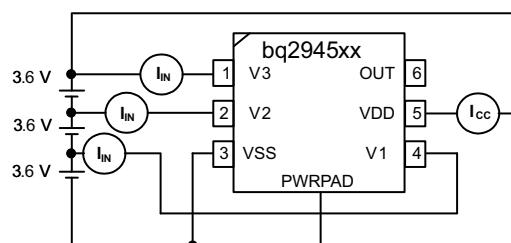
OVERVOLTAGE mode is detected if any of the cell voltages exceeds the overvoltage threshold, V_{OV} for the configured OV delay time, t_{DELAY} . The OUT pin will pull high internally. An external FET then turns on, shorting the fuse to ground, which allows the battery and/or charger power to blow the fuse. When all of the cell voltages fall below $(V_{OV}-V_{HYS})$, the device returns to NORMAL mode.

Device Functional Modes (continued)


8.4.3 Customer Test Mode

Customer Test Mode (CTM) helps to reduce test time for checking the overvoltage delay timer parameter once the circuit is implemented in the battery pack. To enter CTM, VDD should be set to at least 10 V higher than V3 (see [Figure 7](#)). The delay timer is greater than 10 ms, but considerably shorter than the timer delay in normal operation. To exit CTM, remove the VDD to VC3 voltage differential of 10 V so that the decrease in this value automatically causes an exit.

CAUTION


Avoid exceeding any Absolute Maximum Voltages on any pins when placing the part into CTM. Also avoid exceeding Absolute Maximum Voltages for the individual cell voltages (V3–V2), (V2–V1), and (V1–VSS). Stressing the pins beyond the rated limits may cause permanent damage to the device.

[Figure 7](#) shows the timing for CTM.

Figure 7. Timing for Customer Test Mode

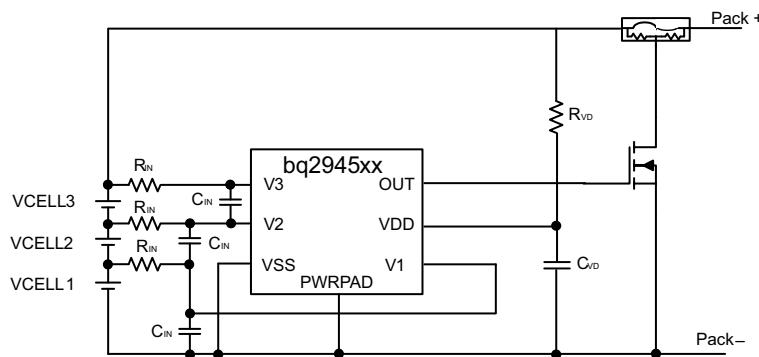
[Figure 8](#) shows the measurement for current consumption for the product for both VDD and Vx.

Figure 8. Configuration for IC Current Consumption Test

bq294502, bq294504, bq294512, bq294514
 bq294515, bq294522, bq294524, bq294532
 bq294562, bq294572, bq294582, bq294592

SLUSAJ3D – SEPTEMBER 2011 – REVISED JULY 2015

9 Application and Implementation


NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The bq2945xx devices are a family of second-level protectors used for overvoltage protection of the battery pack in the application. The device, when configuring the OUT pin with active high, drives a NMOS FET that connects the fuse to ground in the event of a fault condition. This provides a shorted path to use the battery and/or charger power to blow the fuse and cut the power path.

9.2 Typical Application

Figure 9. Application Configuration Schematic

9.2.1 Design Requirements

Changes to the ranges stated in [Table 1](#) will impact the accuracy of the cell measurements. [Figure 9](#) shows each external component.

Table 1. Parameters

PARAMETER	EXTERNAL COMPONENT	MIN	TYP	MAX	UNIT
Voltage monitor filter resistance	RIN	900	1000	1100	Ω
Voltage monitor filter capacitance	CIN	0.01		0.1	μF
Supply voltage filter resistance	RVD	100		1K	Ω
Supply voltage filter capacitance	CVD		0.1		μF

9.2.2 Detailed Design Procedure

1. Determine the overvoltage threshold and delay time. Select the proper device from the table in [Device Options](#), or contact TI for a different configuration.
2. Determine the number of cell in series. The device supports 2-S to 3-S cell configuration. For 2-S configuration, V3 pin should be shorted to V2.
3. Follow the application configuration schematic (see [Figure 9](#)) to connect the device.

9.2.3 Application Curves

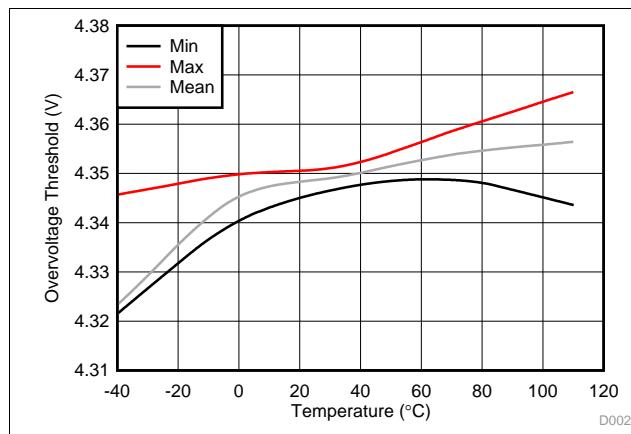


Figure 10. OVT vs Temperature

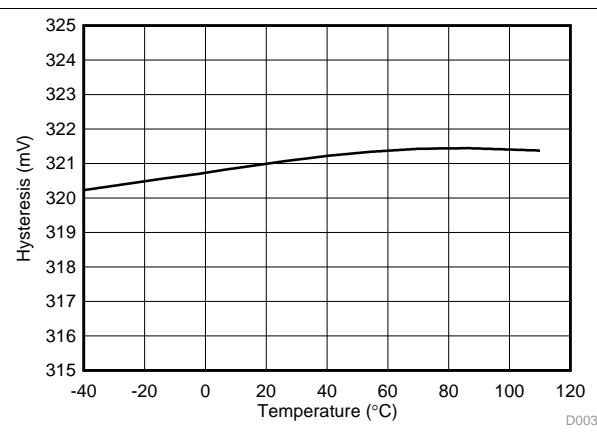


Figure 11. V_{HYS} vs Temperature

9.3 System Examples

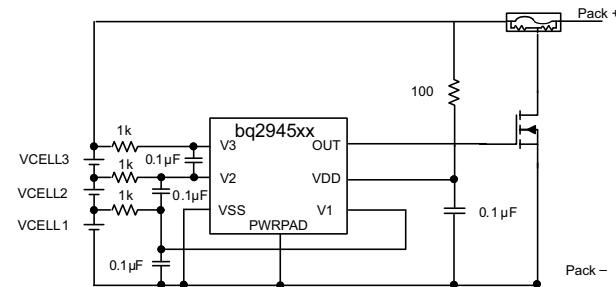


Figure 12. 3-Series Cell Configuration With Fixed Delay

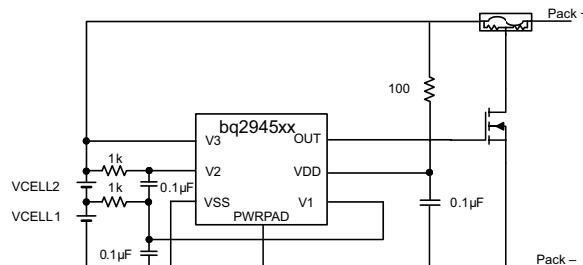


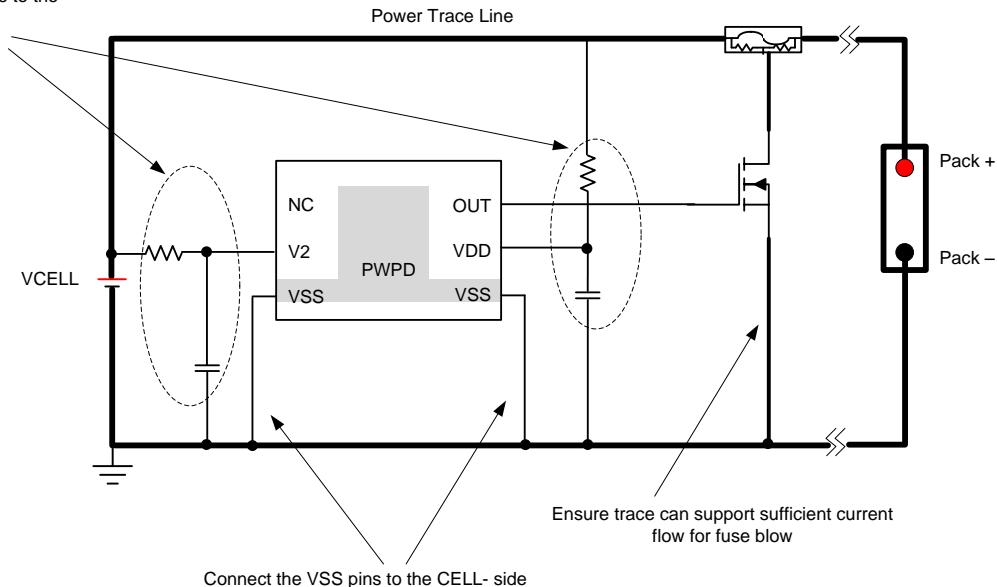
Figure 13. 2-Series Cell Configuration With Internal Fixed Delay

bq294502, bq294504, bq294512, bq294514
bq294515, bq294522, bq294524, bq294532
bq294562, bq294572, bq294582, bq294592

SLUSAJ3D – SEPTEMBER 2011 – REVISED JULY 2015

10 Power Supply Recommendations

The maximum power of this device is 25 V on VDD.


11 Layout

11.1 Layout Guidelines

- Ensure the RC filters for the V1 and VDD pins are placed as close as possible to the target terminal, reducing the tracing loop area.
- The VSS pin should be routed to the CELL- terminal.
- Ensure the trace connecting the fuse to the gate, source of the NFET to the Pack- is sufficient to withstand the current during a fuse blown event.

11.2 Layout Example

Place the RC filters close to the device terminals

Figure 14. Layout Schematic

12 Device and Documentation Support

12.1 Device Support

12.1.1 Third-Party Products Disclaimer

TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.

12.2 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 2. Related Links

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
bq294502	Click here				
bq294504	Click here				
bq294512	Click here				
bq294514	Click here				
bq294515	Click here				
bq294522	Click here				
bq294524	Click here				
bq294532	Click here				
bq294562	Click here				
bq294572	Click here				
bq294582	Click here				
bq294592	Click here				

12.3 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's [Terms of Use](#).

TI E2E™ Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.4 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

12.5 Electrostatic Discharge Caution

 These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

**bq294502, bq294504, bq294512, bq294514
bq294515, bq294522, bq294524, bq294532
bq294562, bq294572, bq294582, bq294592**

SLUSAJ3D – SEPTEMBER 2011 – REVISED JULY 2015

www.ti.com

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
BQ294502DRVR	ACTIVE	WSON	DRV	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	4502	Samples
BQ294502DRV	ACTIVE	WSON	DRV	6	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	4502	Samples
BQ294504DRVR	ACTIVE	WSON	DRV	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	4504	Samples
BQ294504DRV	ACTIVE	WSON	DRV	6	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	4504	Samples
BQ294512DRVR	ACTIVE	WSON	DRV	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	4512	Samples
BQ294512DRV	ACTIVE	WSON	DRV	6	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	4512	Samples
BQ294515DRVR	PREVIEW	WSON	DRV	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	4515	
BQ294515DRV	PREVIEW	WSON	DRV	6		Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	4515	
BQ294522DRVR	ACTIVE	WSON	DRV	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	4522	Samples
BQ294522DRV	ACTIVE	WSON	DRV	6	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	4522	Samples
BQ294524DRVR	ACTIVE	WSON	DRV	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	4524	Samples
BQ294524DRV	ACTIVE	WSON	DRV	6	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	4524	Samples
BQ294532DRVR	ACTIVE	WSON	DRV	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	4532	Samples
BQ294532DRV	ACTIVE	WSON	DRV	6	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	4532	Samples
BQ294582DRVR	ACTIVE	WSON	DRV	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	4582	Samples
BQ294582DRV	ACTIVE	WSON	DRV	6	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	4582	Samples
BQ294592DRVR	ACTIVE	WSON	DRV	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	4592	Samples

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
BQ294592DRV	ACTIVE	WSON	DRV	6	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	4592	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBsolete: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check <http://www.ti.com/productcontent> for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

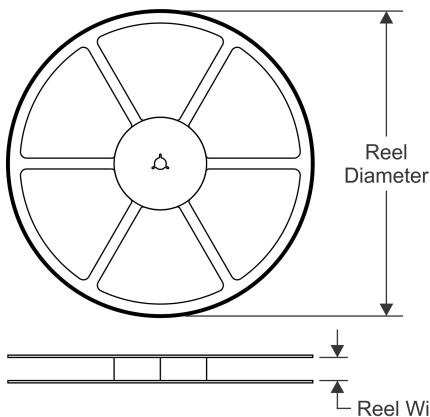
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

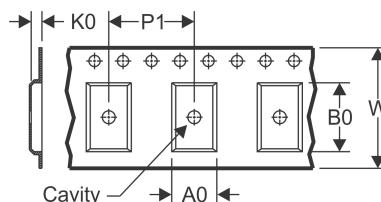
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

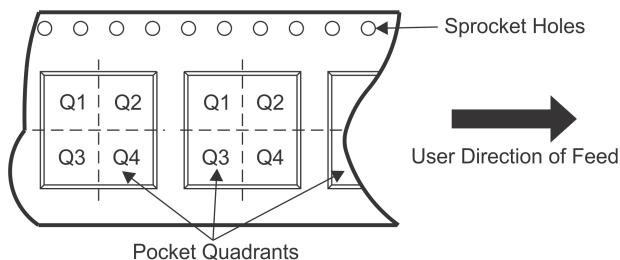

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

REEL DIMENSIONS



TAPE DIMENSIONS

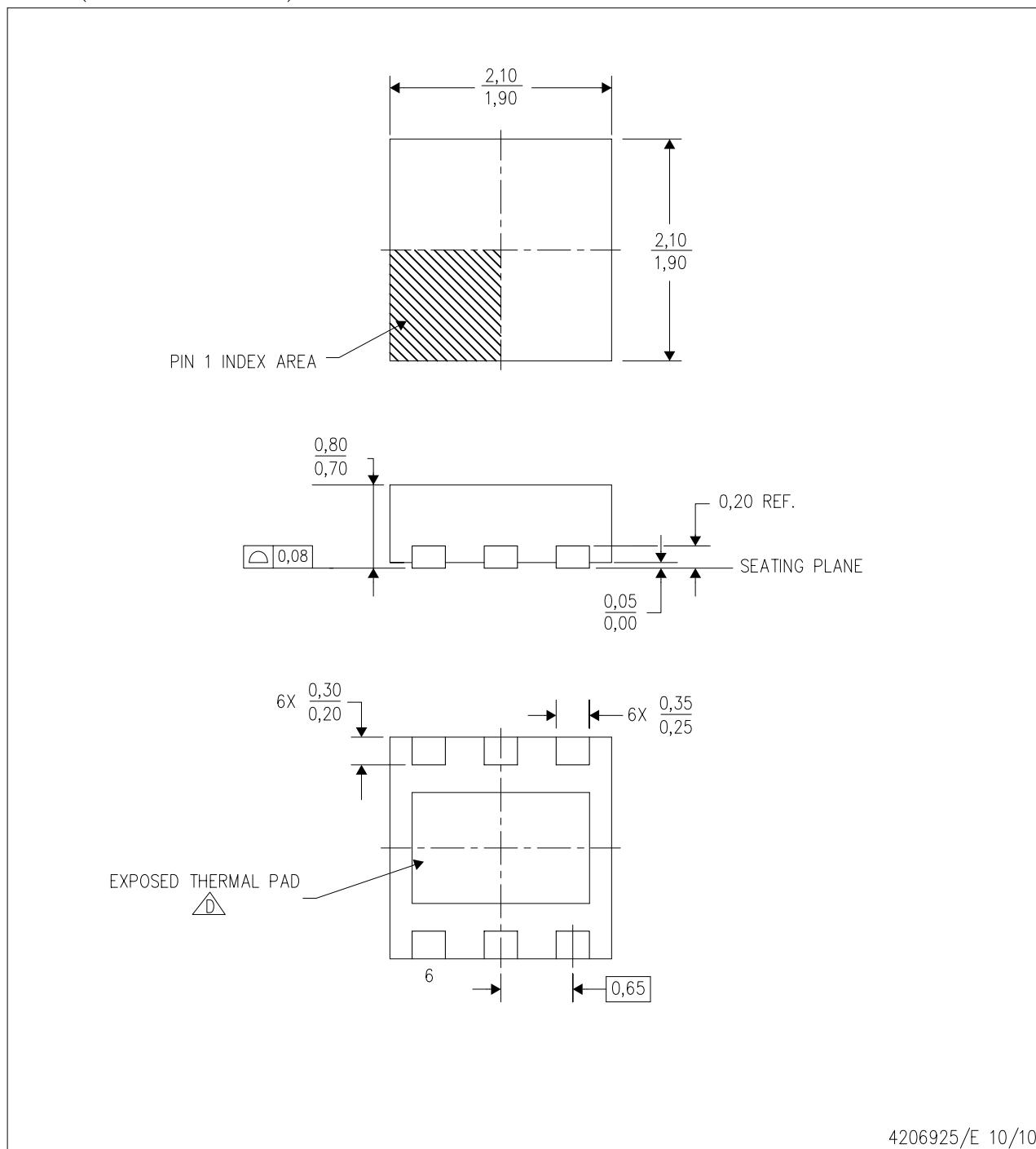
A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
BQ294502DRV	WSON	DRV	6	3000	180.0	8.4	2.3	2.3	1.15	4.0	8.0	Q2
BQ294502DRVT	WSON	DRV	6	250	180.0	8.4	2.3	2.3	1.15	4.0	8.0	Q2
BQ294504DRV	WSON	DRV	6	3000	180.0	8.4	2.3	2.3	1.15	4.0	8.0	Q2
BQ294504DRVT	WSON	DRV	6	250	180.0	8.4	2.3	2.3	1.15	4.0	8.0	Q2
BQ294512DRV	WSON	DRV	6	3000	180.0	8.4	2.3	2.3	1.15	4.0	8.0	Q2
BQ294512DRVT	WSON	DRV	6	250	180.0	8.4	2.3	2.3	1.15	4.0	8.0	Q2
BQ294515DRV	WSON	DRV	6	3000	180.0	8.4	2.3	2.3	1.15	4.0	8.0	Q2
BQ294515DRVT	WSON	DRV	6	0	180.0	8.4	2.3	2.3	1.15	4.0	8.0	Q2
BQ294522DRV	WSON	DRV	6	3000	180.0	8.4	2.3	2.3	1.15	4.0	8.0	Q2
BQ294522DRVT	WSON	DRV	6	250	180.0	8.4	2.3	2.3	1.15	4.0	8.0	Q2
BQ294524DRV	WSON	DRV	6	3000	180.0	8.4	2.3	2.3	1.15	4.0	8.0	Q2
BQ294524DRVT	WSON	DRV	6	250	180.0	8.4	2.3	2.3	1.15	4.0	8.0	Q2
BQ294532DRV	WSON	DRV	6	3000	180.0	8.4	2.3	2.3	1.15	4.0	8.0	Q2
BQ294532DRVT	WSON	DRV	6	250	180.0	8.4	2.3	2.3	1.15	4.0	8.0	Q2
BQ294582DRV	WSON	DRV	6	3000	180.0	8.4	2.3	2.3	1.15	4.0	8.0	Q2
BQ294582DRVT	WSON	DRV	6	250	180.0	8.4	2.3	2.3	1.15	4.0	8.0	Q2
BQ294592DRV	WSON	DRV	6	3000	180.0	8.4	2.3	2.3	1.15	4.0	8.0	Q2
BQ294592DRVT	WSON	DRV	6	250	180.0	8.4	2.3	2.3	1.15	4.0	8.0	Q2

TAPE AND REEL BOX DIMENSIONS


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
BQ294502DRV	WSON	DRV	6	3000	210.0	185.0	35.0
BQ294502DRV	WSON	DRV	6	250	210.0	185.0	35.0
BQ294504DRV	WSON	DRV	6	3000	210.0	185.0	35.0
BQ294504DRV	WSON	DRV	6	250	210.0	185.0	35.0
BQ294512DRV	WSON	DRV	6	3000	210.0	185.0	35.0
BQ294512DRV	WSON	DRV	6	250	210.0	185.0	35.0
BQ294515DRV	WSON	DRV	6	3000	210.0	185.0	35.0
BQ294515DRV	WSON	DRV	6	0	210.0	185.0	35.0
BQ294522DRV	WSON	DRV	6	3000	210.0	185.0	35.0
BQ294522DRV	WSON	DRV	6	250	210.0	185.0	35.0
BQ294524DRV	WSON	DRV	6	3000	210.0	185.0	35.0
BQ294524DRV	WSON	DRV	6	250	210.0	185.0	35.0
BQ294532DRV	WSON	DRV	6	3000	210.0	185.0	35.0
BQ294532DRV	WSON	DRV	6	250	210.0	185.0	35.0
BQ294582DRV	WSON	DRV	6	3000	210.0	185.0	35.0
BQ294582DRV	WSON	DRV	6	250	210.0	185.0	35.0
BQ294592DRV	WSON	DRV	6	3000	210.0	185.0	35.0
BQ294592DRV	WSON	DRV	6	250	210.0	185.0	35.0

MECHANICAL DATA

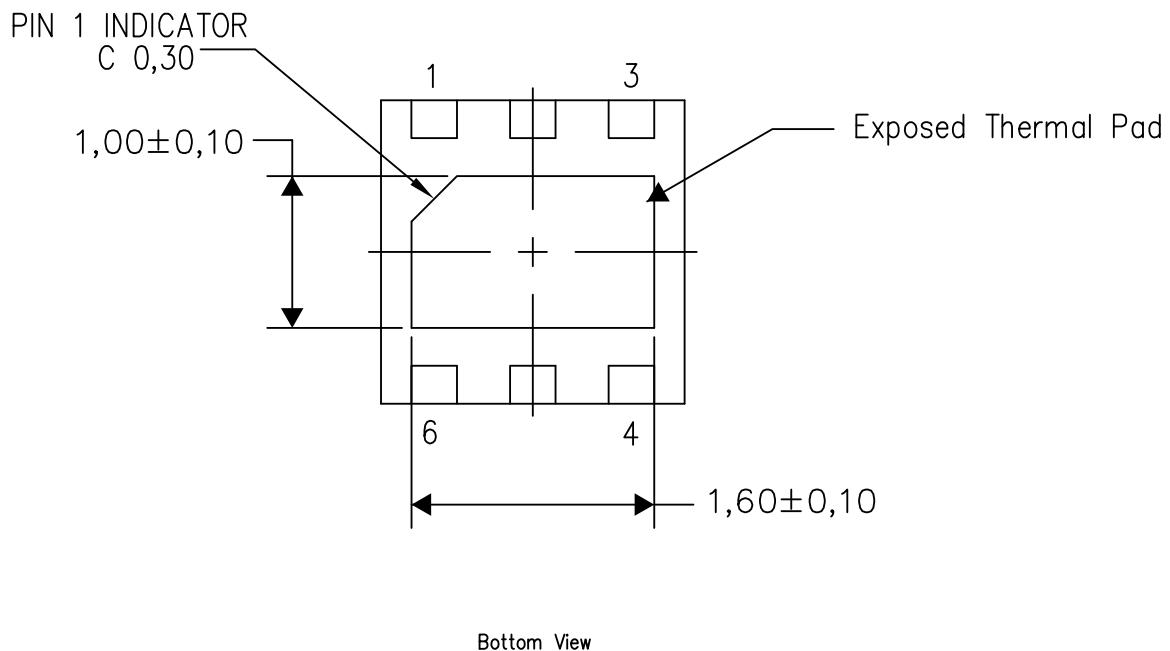
DRV (S-PWSON-N6)

PLASTIC SMALL OUTLINE NO-LEAD

4206925/E 10/10

NOTES:

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
- B. This drawing is subject to change without notice.
- C. Small Outline No-Lead (SON) package configuration.

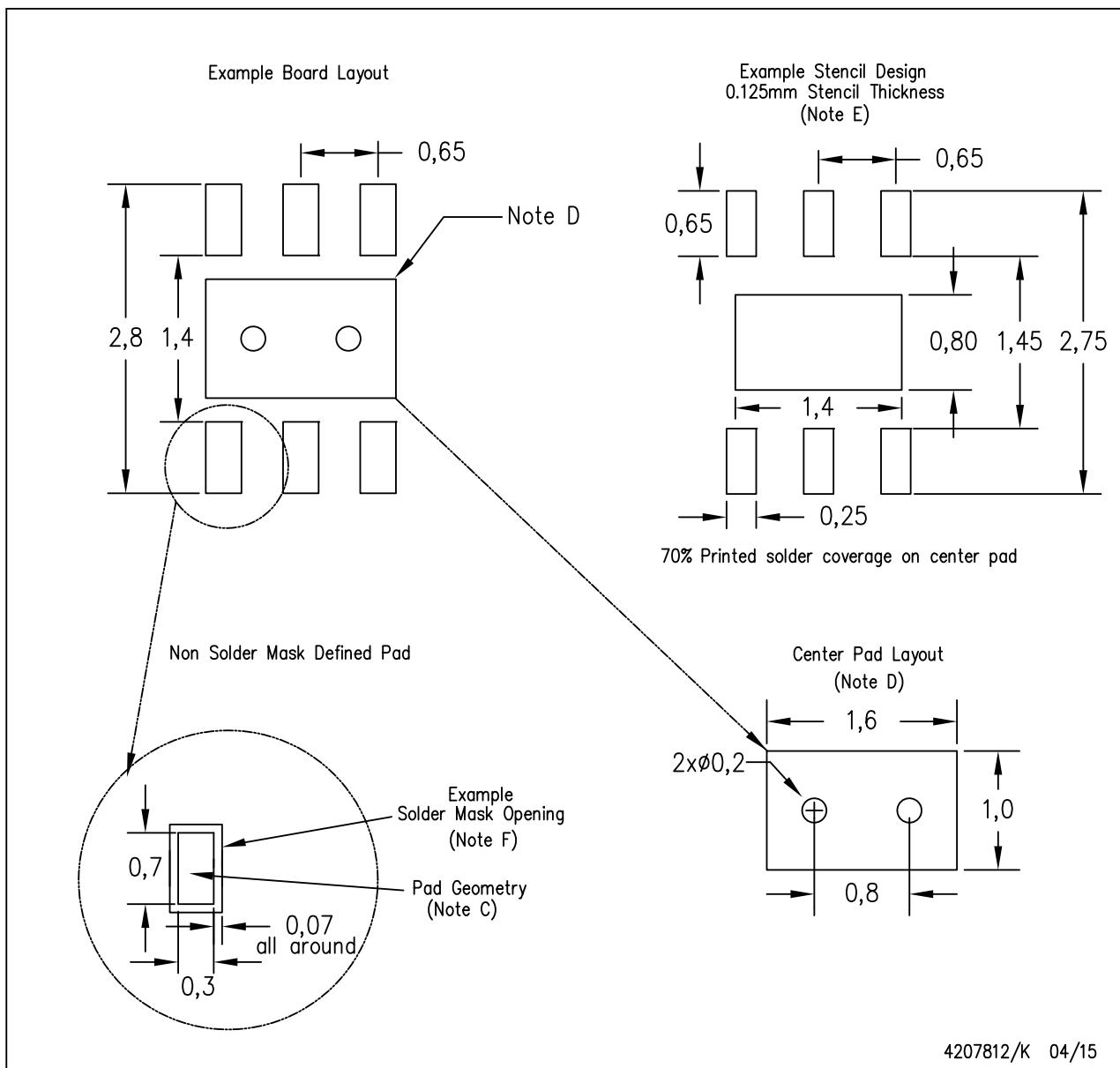

 The package thermal pad must be soldered to the board for thermal and mechanical performance. See the Product Data Sheet for details regarding the exposed thermal pad dimensions.

THERMAL PAD MECHANICAL DATA**DRV (S-PWSON-N6)****PLASTIC SMALL OUTLINE NO-LEAD****THERMAL INFORMATION**

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.


NOTE: All linear dimensions are in millimeters

4206926/Q 04/15

LAND PATTERN DATA

DRV (S-PWSON-N6)

PLASTIC SMALL OUTLINE NO-LEAD

NOTES:

- All linear dimensions are in millimeters.
- This drawing is subject to change without notice.
- Publication IPC-7351 is recommended for alternate designs.
- This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com <<http://www.ti.com>>.
- Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- Customers should contact their board fabrication site for solder mask tolerances.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have **not** been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

Audio	www.ti.com/audio
Amplifiers	amplifier.ti.com
Data Converters	dataconverter.ti.com
DLP® Products	www.dlp.com
DSP	dsp.ti.com
Clocks and Timers	www.ti.com/clocks
Interface	interface.ti.com
Logic	logic.ti.com
Power Mgmt	power.ti.com
Microcontrollers	microcontroller.ti.com
RFID	www.ti-rfid.com
OMAP Applications Processors	www.ti.com/omap
Wireless Connectivity	www.ti.com/wirelessconnectivity

Applications

Automotive and Transportation	www.ti.com/automotive
Communications and Telecom	www.ti.com/communications
Computers and Peripherals	www.ti.com/computers
Consumer Electronics	www.ti.com/consumer-apps
Energy and Lighting	www.ti.com/energy
Industrial	www.ti.com/industrial
Medical	www.ti.com/medical
Security	www.ti.com/security
Space, Avionics and Defense	www.ti.com/space-avionics-defense
Video and Imaging	www.ti.com/video

TI E2E Community

e2e.ti.com