

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor DM7476N

For any questions, you can email us directly: <u>sales@integrated-circuit.com</u>

FAIRCHILD

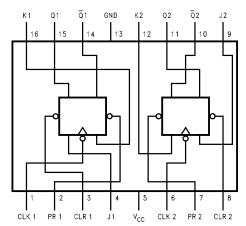
SEMICONDUCTOR

DM7476

Dual Master-Slave J-K Flip-Flops with Clear, Preset, and Complementary Outputs

General Description

This device contains two independent positive pulse triggered J-K flip-flops with complementary outputs. The J and K data is processed by the flip-flop after a complete clock pulse. While the clock is LOW the slave is isolated from the master. On the positive transition of the clock, the data from the J and K inputs is transferred to the master. While the clock is HIGH the J and K inputs are disabled. On the negative transition of the clock, the data from the master is transferred to the slave. The logic state of J and K inputs must not be allowed to change while the clock is HIGH. The data is transferred to the outputs on the falling edge of the clock pulse. A LOW logic level on the preset or clear inputs will set or reset the outputs regardless of the logic levels of the other inputs.


September 1986

Revised February 2000

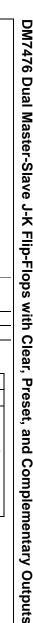
Ordering Code:

Order Number	Package Number	Package Description
DM7476N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Connection Diagram

		Inputs				
PR	CLR	CLK	J	к	Q	Q
L	Н	Х	Х	Х	Н	L
н	L	х	х	Х	L	Н
L	L	Х	Х	х	H (Note 1)	H (Note 1)
н	Н	л	L	L	Q ₀	\overline{Q}_0
н	н	л	н	L	н	L
н	Н	л	L	Н	L	н
н	Н	л	Н	Н	Тор	gle

H = HIGH Logic Leve L = LOW Logic Level


X = Either LOW or HIGH Logic Level

Function Table

 $Q_0 =$ The output logic level before the indicated input conditions were established.

Toggle = Each output changes to the complement of its previous level on each complete active HIGH level clock pulse.

Note 1: This configuration is nonstable; that is, it will not persist when the preset and/or clear inputs return to their inactive (HIGH) level.

DM7476

Absolute Maximum Ratings(Note 2)

Supply Voltage	
Input Voltage	5
Operating Free Air Temperature Range	0°C to +70
Storage Temperature Range	-65°C to +150

Note 2: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings.
70°C The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Pa	rameter	Min	Nom	Max	Units
V _{CC}	Supply Voltage		4.75	5	5.25	V
V _{IH}	HIGH Level Inpu	ut Voltage	2			V
V _{IL}	LOW Level Inpu	t Voltage			0.8	V
I _{ОН}	HIGH Level Out	put Current			-0.4	mA
I _{OL}	LOW Level Out	out Current			16	mA
f _{CLK}	Clock Frequenc	y (Note 3)	0		15	MHz
t _W	Pulse Width	Clock HIGH	20			
	(Note 3)	Clock LOW	47			ns
		Preset LOW	25			115
		Clear LOW	25			
t _{SU}	Input Setup Tim	e (Note 3)(Note 4)	0↑			ns
t _H	Input Hold Time	(Note 3)(Note 4)	0↓			ns
T _A	Free Air Operati	ng Temperature	0		70	°C

Note 3: $T_A = 25^\circ C$ and $V_{CC} = 5 V.$

Note 4: The symbol (\uparrow, \downarrow) indicates the edge of the clock pulse is used for reference (\uparrow) for rising edge, (\downarrow) for falling edge.

Electrical Characteristics

Symbol	Parameter	Conditio	ons	Min	Typ (Note 5)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -12 \text{ mA}$				-1.5	V
V _{он}	HIGH Level	V _{CC} = Min, I _{OH} = Max		2.4	3.4		v
	Output Voltage	V _{IL} = Max, V _{IH} = Min		2.4	3.4		v
V _{OL}	LOW Level	V _{CC} = Min, I _{OL} = Max		0.2	0.4	v	
	Output Voltage	V _{IH} = Min, V _{IL} = Max			0.2	0.4	v
l _l	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 5.5V$				1	mA
IIH	HIGH Level	V _{CC} = Max	J, K			40	
	Input Current	$V_I = 2.4V$	Clock			80	
			Clear			80	μA
			Preset			80	
IIL	LOW Level	V _{CC} = Max	J, K			-1.6	
Input Current	Input Current	$V_I = 0.4V$	Clock			-3.2	
		(Note 6)	Clear			-3.2	mA
			Preset			-3.2	
los	Short Circuit Output Current	V _{CC} = Max (Note 7)		-18		-55	mA
Icc	Supply Current	V _{CC} = Max (Note 8)			18	34	mA

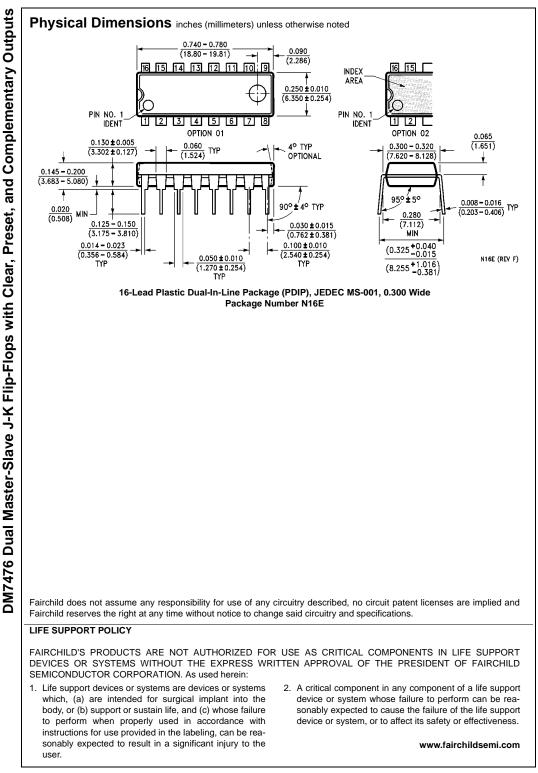
Note 5: All typicals are at V_{CC} = 5V, T_A = 25^{\circ}C.

Note 6: Clear is measured with preset HIGH and preset is measured with clear HIGH.

Note 7: Not more than one output should be shorted at a time.

Note 8: With all outputs OPEN, I_{CC} is measured with the Q and Q outputs HIGH in turn. At the time of measurement the clock input is grounded.

www.fairchildsemi.com



Symbol	Parameter	From (Input)	R _L = 400Ω	Units	
	Faranieter	To (Output)	Min	Max	Units
f _{MAX}	Maximum Clock Frequency		15		MHz
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	Preset to Q		40	ns
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	Preset to Q		25	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	Clear to Q		40	ns
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	Clear to \overline{Q}		25	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	Clock to Q or \overline{Q}		40	ns
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	Clock to Q or \overline{Q}		25	ns

DM7476

www.fairchildsemi.com

www.fairchildsemi.com