Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor 2N5830

For any questions, you can email us directly: sales@integrated-circuit.com

Discrete POWER & Signal **Technologies**

2N5830

NPN General Purpose Amplifier

This device is designed for general purpose high voltage amplifiers and gas discharge display driving. Sourced from Process 16. See 2N5551 for characteristics.

Absolute Maximum Ratings*

TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V_{CEO}	Collector-Emitter Voltage	100	V
V _{CBO}	Collector-Base Voltage	120	V
V _{EBO}	Emitter-Base Voltage	5.0	V
I _C	Collector Current - Continuous	200	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

Thermal Characteristics TA = 25°C unless otherwise noted

Symbol	Characteristic	Max	Units
		2N5830	1
P _D	Total Device Dissipation Derate above 25°C	625 5.0	mW mW/°C
R _{eJC}	Thermal Resistance, Junction to Case	83.3	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	200	°C/W

NOTES:

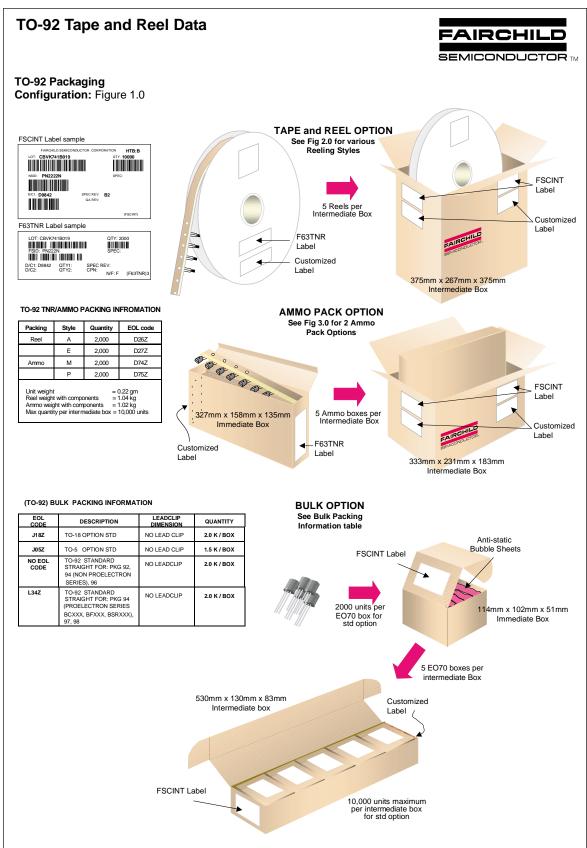
1) These ratings are based on a maximum junction temperature of 150 degrees C.

2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

NPN General Purpose Amplifier

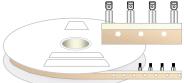
(continued)


Symbol	Parameter	Test Conditions	Min	Max	Units
OFF CHA	RACTERISTICS				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage*	$I_C = 1.0 \text{ mA}, I_B = 0$	100		V
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_C = 100 \mu A, I_E = 0$	120		V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_E = 10 \mu A, I_C = 0$	5.0		V
I _{CBO}	Collector Cutoff Current	$V_{CB} = 100 \text{ V}, I_{E} = 0$		50	nA
I _{EBO}	Emitter Cutoff Current	$V_{CB} = 100 \text{ V}, I_{E} = 0, T_{A} = 100 ^{\circ}\text{C}$ $V_{EB} = 4.0 \text{ V}, I_{C} = 0$		25 50	μA nA
h _{FE}	DC Current Gain	$V_{CE} = 5.0 \text{ V}, I_{C} = 1.0 \text{ mA}$ $V_{CF} = 5.0 \text{ V}, I_{C} = 10 \text{ mA}$	60 80	500	
		02		000	
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$V_{CE} = 5.0 \text{ V}, I_{C} = 50 \text{ mA}$ $I_{C} = 1.0 \text{ mA}, I_{B} = 0.1 \text{ mA}$ $I_{C} = 10 \text{ mA}, I_{B} = 1.0 \text{ mA}$	80	0.15 0.2	V
V _{CE} (sat)	Collector-Emitter Saturation Voltage Base-Emitter Saturation Voltage	$\begin{split} &V_{CE} = 5.0 \text{ V, } I_{C} = 50 \text{ mA} \\ &I_{C} = 1.0 \text{ mA, } I_{B} = 0.1 \text{ mA} \\ &I_{C} = 10 \text{ mA, } I_{B} = 1.0 \text{ mA} \\ &I_{C} = 50 \text{ mA, } I_{B} = 5.0 \text{ mA} \\ &I_{C} = 1.0 \text{ mA, } I_{B} = 0.1 \text{ mA} \\ &I_{C} = 10 \text{ mA, } I_{B} = 1.0 \text{ mA} \end{split}$	80	0.15	
	· ·	$\begin{split} &V_{CE} = 5.0 \text{ V, } I_{C} = 50 \text{ mA} \\ &I_{C} = 1.0 \text{ mA, } I_{B} = 0.1 \text{ mA} \\ &I_{C} = 10 \text{ mA, } I_{B} = 1.0 \text{ mA} \\ &I_{C} = 50 \text{ mA, } I_{B} = 5.0 \text{ mA} \\ &I_{C} = 1.0 \text{ mA, } I_{B} = 0.1 \text{ mA} \end{split}$	80	0.15 0.2 0.25 0.8 1.0	V V V
V _{BE(sat)}	Base-Emitter Saturation Voltage	$\begin{split} &V_{CE} = 5.0 \text{ V, } I_{C} = 50 \text{ mA} \\ &I_{C} = 1.0 \text{ mA, } I_{B} = 0.1 \text{ mA} \\ &I_{C} = 10 \text{ mA, } I_{B} = 1.0 \text{ mA} \\ &I_{C} = 50 \text{ mA, } I_{B} = 5.0 \text{ mA} \\ &I_{C} = 1.0 \text{ mA, } I_{B} = 0.1 \text{ mA} \\ &I_{C} = 10 \text{ mA, } I_{B} = 1.0 \text{ mA} \\ &I_{C} = 50 \text{ mA, } I_{B} = 5.0 \text{ mA} \end{split}$	1.0	0.15 0.2 0.25 0.8 1.0 1.0	V V V V
V _{BE(sat)} V _{BE(on)} SMALL SI C _{cb} D _{fe}	Base-Emitter Saturation Voltage Base-Emitter On Voltage GNAL CHARACTERISTICS Output Capacitance Small-Signal Current Gain	$\begin{split} &V_{CE} = 5.0 \text{ V, } I_C = 50 \text{ mA} \\ &I_C = 1.0 \text{ mA, } I_B = 0.1 \text{ mA} \\ &I_C = 10 \text{ mA, } I_B = 1.0 \text{ mA} \\ &I_C = 50 \text{ mA, } I_B = 5.0 \text{ mA} \\ &I_C = 50 \text{ mA, } I_B = 5.0 \text{ mA} \\ &I_C = 1.0 \text{ mA, } I_B = 0.1 \text{ mA} \\ &I_C = 10 \text{ mA, } I_B = 1.0 \text{ mA} \\ &I_C = 50 \text{ mA, } I_B = 5.0 \text{ mA} \\ &V_{CE} = 5.0 \text{ V, } I_C = 1.0 \text{ mA} \\ \end{split}$		0.15 0.2 0.25 0.8 1.0 1.0 0.8	V V V V V V PF
V _{BE(sat)} V _{BE(on)} SMALL SI	Base-Emitter Saturation Voltage Base-Emitter On Voltage IGNAL CHARACTERISTICS Output Capacitance	$\begin{split} &V_{CE} = 5.0 \text{ V, } I_C = 50 \text{ mA} \\ &I_C = 1.0 \text{ mA, } I_B = 0.1 \text{ mA} \\ &I_C = 10 \text{ mA, } I_B = 1.0 \text{ mA} \\ &I_C = 50 \text{ mA, } I_B = 5.0 \text{ mA} \\ &I_C = 50 \text{ mA, } I_B = 0.1 \text{ mA} \\ &I_C = 1.0 \text{ mA, } I_B = 0.1 \text{ mA} \\ &I_C = 10 \text{ mA, } I_B = 1.0 \text{ mA} \\ &I_C = 50 \text{ mA, } I_B = 5.0 \text{ mA} \\ &V_{CE} = 5.0 \text{ V, } I_C = 1.0 \text{ mA} \\ \end{split}$		0.15 0.2 0.25 0.8 1.0 1.0 0.8	V V V V V

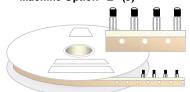
^{*}Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%

Distributor of Fairchild Semiconductor: Excellent Integrated System Limited

Datasheet of 2N5830 - TRANS NPN 100V 0.2A TO-92


Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

TO-92 Tape and Reel Data, continued


TO-92 Reeling Style Configuration: Figure 2.0

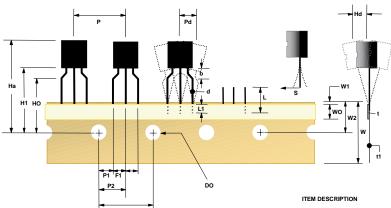
Style "A", D26Z, D70Z (s/h)

Machine Option "E" (J)

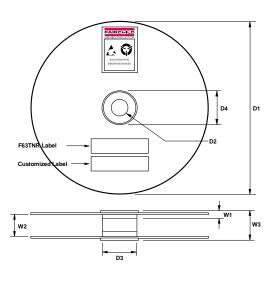
Style "E", D27Z, D71Z (s/h)

TO-92 Radial Ammo Packaging Configuration: Figure 3.0

ADHESIVE TAPE IS ON BOTTOM SIDE FLAT OF TRANSISTOR IS ON BOTTOM



FIRST WIRE OFF IS COLLECTOR (ON PKG. 92) ADHESIVE TAPE IS ON BOTTOM SIDE FLAT OF TRANSISTOR IS ON TOP

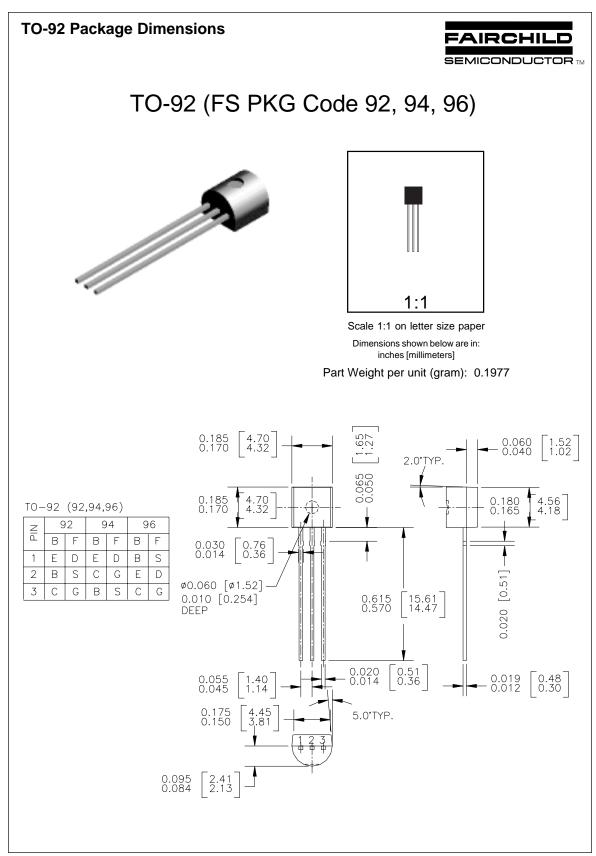

TO-92 Tape and Reel Data, continued

TO-92 Tape and Reel Taping Dimension Configuration: Figure 4.0

User Direction of Feed

TO-92 Reel Configuration: Figure 5.0

ITEM DESCRIPTION	SYMBOL	DIMENSION
Base of Package to Lead Bend	b	0.098 (max)
Component Height	Ha	0.928 (+/- 0.025)
Lead Clinch Height	HO	0.630 (+/- 0.020)
Component Base Height	H1	0.748 (+/- 0.020)
Component Alignment (side/side)	Pd	0.040 (max)
Component Alignment (front/back)	Hd	0.031 (max)
Component Pitch	P	0.500 (+/- 0.020)
Feed Hole Pitch	PO	0.500 (+/- 0.008)
Hole Center to First Lead	P1	0.150 (+0.009, -0.010)
Hole Center to Component Center	P2	0.247 (+/- 0.007)
Lead Spread	F1/F2	0.104 (+/- 0 .010)
Lead Thickness	d	0.018 (+0.002, -0.003)
Cut Lead Length	L	0.429 (max)
Taped Lead Length	L1	0.209 (+0.051, -0.052)
Taped Lead Thickness	t	0.032 (+/- 0.006)
Carrier Tape Thickness	t1	0.021 (+/- 0.006)
Carrier Tape Width	W	0.708 (+0.020, -0.019)
Hold - down Tape Width	WO	0.236 (+/- 0.012)
Hold - down Tape position	W1	0.035 (max)
Feed Hole Position	W2	0.360 (+/- 0.025)
Sprocket Hole Diameter	DO	0.157 (+0.008, -0.007)
Lead Spring Out	s	0.004 (max)


Note : All dimensions are in inches

5

Note: All dimensions are inches

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

Distributor of Fairchild Semiconductor: Excellent Integrated System Limited

Datasheet of 2N5830 - TRANS NPN 100V 0.2A TO-92

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

SyncFET™ $ACEx^{TM}$ FASTr™ PowerTrench® TinyLogic™ **QFET™** Bottomless™ GlobalOptoisolator™ QSTM UHC™ $\mathsf{G}\mathsf{T}\mathsf{O}^{\mathsf{TM}}$ CoolFET™ **VCX**TM QT Optoelectronics™ $CROSSVOLT^{TM}$ HiSeC™ DOME™ ISOPLANAR™ Quiet Series™

E²CMOSTM MICROWIRETM SILENT SWITCHER®
EnSignaTM OPTOLOGICTM SMART STARTTM
FACTTM OPTOPLANARTM SuperSOTTM-3
FACT Quiet SeriesTM PACMANTM SuperSOTTM-6
FAST® POPTM SuperSOTTM-8

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. G