

Excellent Integrated System Limited

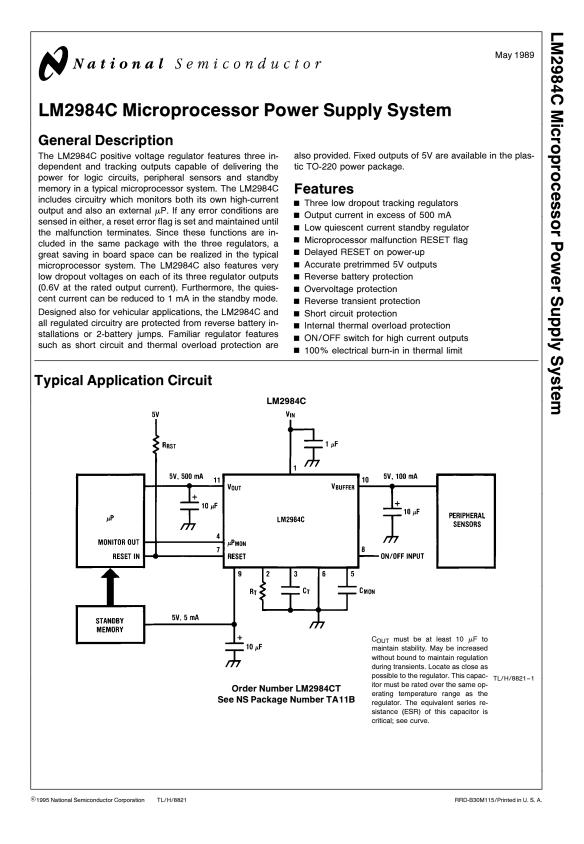
Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Texas Instruments LM2984CT/NOPB

For any questions, you can email us directly: <u>sales@integrated-circuit.com</u>

LM2984C


LM2984C Microprocessor Power Supply System

Literature Number: SNVS768

Distributor of Texas Instruments: Excellent Integrated System Limited Datasheet of LM2984CT/NOPB - IC CONV MICROPROCESSOR TO220-11 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Input Voltage Survival Voltage (<100 ms) 35V

Electrical Characteristics

Operational Voltage

 V_{IN} = 14V, I_{OUT} = 5 mA, C_{OUT} = 10 $\mu\text{F},$ T_{j} = 25°C (Note 6) unless otherwise indicated

26V

Parameter	Conditions	Typical	Tested Limit (Note 2)	Design Limit (Note 3)	Units
V _{OUT} (Pin 11)					
Output Voltage	$\begin{array}{l} 5 \text{ mA} \leq I_{\text{O}} \leq 500 \text{ mA} \\ 6 \text{V} \leq \text{V}_{\text{IN}} \leq 26 \text{V} \end{array}$	5.00	4.85 5.15	4.75 5.25	V _{min} V _{max}
Line Regulation	$9V \le V_{IN} \le 16V$	2	25		mV _{max}
	$7V \le V_{IN} \le 26V$	5	50		mV _{max}
Load Regulation	$5 \text{ mA} \leq I_{OUT} \leq 500 \text{ mA}$	12	50		mV _{max}
Output Impedance	250 mA _{dc} and 10 mA _{rms} , $f_0 = 120$ Hz	24			mΩ
Quiescent Current	I _{OUT} = 500 mA	38	100		mA _{max}
	I _{OUT} = 250 mA	14	50		mA _{max}
Output Noise Voltage	10 Hz–100 kHz, I _{OUT} = 100 mA	100			μV
Long Term Stability		20			mV/1000 hr
Ripple Rejection	f _o = 120 Hz	70	60		dB _{min}
Dropout Voltage	I _{OUT} = 500 mA	0.53	0.80	1.00	V _{max}
	$I_{OUT} = 250 \text{ mA}$	0.28	0.50	0.60	V _{max}
Current Limit		0.92	0.75		A _{min}
Maximum Operational Input Voltage	Continuous DC	32	26	26	V _{min}
Maximum Line Transient	$V_{OUT} \le 6V, R_{OUT} = 100\Omega$	45	35	35	V _{min}
Reverse Polarity Input Voltage DC	$V_{OUT} \geq -0.6V, R_{OUT} = 100\Omega$	-30	-15	-15	V _{min}
Reverse Polarity Input Voltage Transient	$T \leq 100 \text{ ms}, \text{R}_{OUT} = 100 \Omega$	-55	-35	-35	V _{min}

Parameter	Conditions	Typical	Tested Limit (Note 2)	Design Limit (Note 3)	Units
_{uffer} (Pin 10)					
Output Voltage	$\begin{array}{l} 5 \text{ mA} \leq I_0 \leq 100 \text{ mA} \\ 6 V \leq V_{IN} \leq 26 V \end{array}$	5.00	4.85 5.15	4.75 5.25	V _{min} V _{max}
Line Regulation	$9V \leq V_{IN} \leq 16V$	2	25		mV _{max}
	$7V \le V_{IN} \le 26V$	5	50		mV _{max}
Load Regulation	$5 \text{ mA} \le I_{buf} \le 100 \text{ mA}$	15	50		mV _{max}
Output Impedance	50 mA _{dc} and 10 mA _{rms} ,	200			mΩ
Quiescent Current	$I_{buf} = 100 \text{ mA}$	8.0	15.0		mA _{max}
Output Noise Voltage	10 Hz–100 kHz, I _{OUT} = 100 mA	100			μV
Long Term Stability		20			mV/1000 h
Ripple Rejection	f _o = 120 Hz	70	60		dB _{min}
Dropout Voltage	$I_{buf} = 100 \text{ mA}$	0.35	0.50	0.60	V _{max}
Current Limit		0.23	0.15		A _{min}
Maximum Operational Input Voltage	Continuous DC	32	26	26	V _{min}
Maximum Line Transient	$V_{buf} \leq 6V, R_{buf} = 100 \Omega$	45	35	35	V _{min}
Reverse Polarity Input Voltage DC	$V_{buf} \geq -0.6V, R_{buf} = 100\Omega$	-30	-15	-15	V _{min}
Reverse Polarity Input Voltage Transient	$T \leq 100 \text{ ms, } \text{R}_{\text{buf}} = 100 \Omega$	-55	-35	-35	V _{min}
Electrical Chara $V_{IN} = 14V$, $I_{stby} = 1$ mA,	acteristics $C_{stby} = 10 \ \mu\text{F}, T_j = 25^{\circ}\text{C}$ (Note 6) unle	ss otherwise in	dicated		
Parameter	Conditions	Typical	Tested Limit (Note 2)	Design Limit (Note 3)	Units

	$\leq I_{o} \leq 7.5 \text{ mA}$		4.05		
	$\leq I_0 \leq 7.5 \text{ mA}$		4.05		
01 3 1	$V_{\rm IN} \le 26 V$	5.00	4.85 5.15	4.75 5.25	V _{min} V _{max}
Line Regulation $9V \le V$	$I_{\rm IN} \leq 16 V$	2	25		mV _{max}
$7V \le V$	$V_{\rm IN} \le 26 V$	5	50		mV _{max}
Load Regulation 0.5 mA	$h \leq I_{stby} \leq 7.5 \text{ mA}$	6	50		mV _{max}
Output Impedance 5 mA _{de}	, and 1 mA _{rms} , $f_0 = 120 \text{ Hz}$	0.9			Ω
Quiescent Current Istby =	7.5 mA	1.2	2.0		mA _{max}
I _{stby} =	2 mA	0.9	1.5		mA _{max}

Electrical Characteristics (Continued)

Parameter	Conditions	Typical	Tested Limit (Note 2)	Design Limit (Note 3)	Units
tandby (Continued)					
Output Noise Voltage	10 Hz–100 kHz, I _{stby} = 1 mA	100			μV
Long Term Stability		20			mV/1000 hr
Ripple Rejection	$f_0 = 120 \text{ Hz}$	70	60		dB _{min}
Dropout Voltage	I _{stby} = 1 mA	0.26	0.50	0.50	V _{max}
Dropout Voltage	$I_{stby} = 7.5 \text{ mA}$	0.38	0.60	0.70	V _{max}
Current Limit		15	12		mA _{min}
Maximum Operational Input Voltage	$\begin{array}{l} \text{4.5V} \leq \text{V}_{\text{stby}} \leq \text{6V} \\ \text{R}_{\text{stby}} = 1000 \Omega \end{array}$	45	35	35	V _{min}
Maximum Line Transient	$V_{stby} \le 6V, \ R_{stby} = 1000 \Omega$	45	35	35	V _{min}
Reverse Polarity Input Voltage DC	$V_{stby} \ge -0.6V,$ $R_{stby} = 1000\Omega$	-30	- 15	- 15	V _{min}
Reverse Polarity Input Voltage Transient	$T \leq$ 100 ms, $R_{stby} =$ 1000 Ω	-55	-35	-35	V _{min}

Electrical Characteristics

 $V_{IN}=$ 14V, T_{j}= 25°C (Note 6) C_{OUT}= 10 $\mu\text{F},$ C_{buf}= 10 $\mu\text{F},$ C_{stby}= 10 μF unless otherwise specified

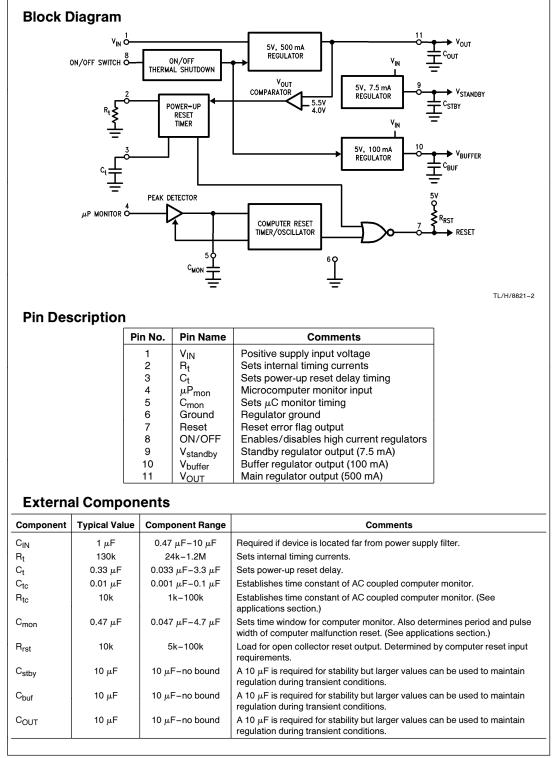
Parameter	Conditions	Typical	Tested Limit (Note 2)	Design Limit (Note 3)	Units
acking and Isolation			•		
Tracking V _{OUT} -V _{stby}	$I_{OUT} \leq 500$ mA, $I_{buf} = 5$ mA, $I_{stby} \leq 7.5$ mA	±30	±100		mV _{max}
Tracking V _{buf} -V _{stby}	$I_{OUT}=$ 5 mA, $I_{buf} \leq$ 100 mA, $I_{stby} \leq$ 7.5 mA	± 30	±100		mV _{max}
Tracking V _{OUT} -V _{buf}	$I_{OUT} \leq$ 500 mA, $I_{buf} \leq$ 100 mA, $I_{stby} =$ 1 mA	± 30	±100		mV _{max}
Isolation* V _{buf} from V _{OUT}	$R_{OUT}=1\Omega,I_{buf}\leq100\;\text{mA}$	5.00	4.50 5.50		V _{min} V _{max}
Isolation* V _{stby} from V _{OUT}	$R_{OUT}=1\Omega, I_{stby} \leq 7.5 \; mA$	5.00	4.50 5.50		V _{min} V _{max}
Isolation* V _{OUT} from V _{buf}	$R_{buf}=1\Omega,I_{OUT}\leq500\text{mA}$	5.00	4.50 5.50		V _{min} V _{max}
Isolation* V _{stby} from V _{buf}	$R_{buf}=1\Omega,I_{stby}\leq7.5\text{mA}$	5.00	4.50 5.50		V _{min} V _{max}

4

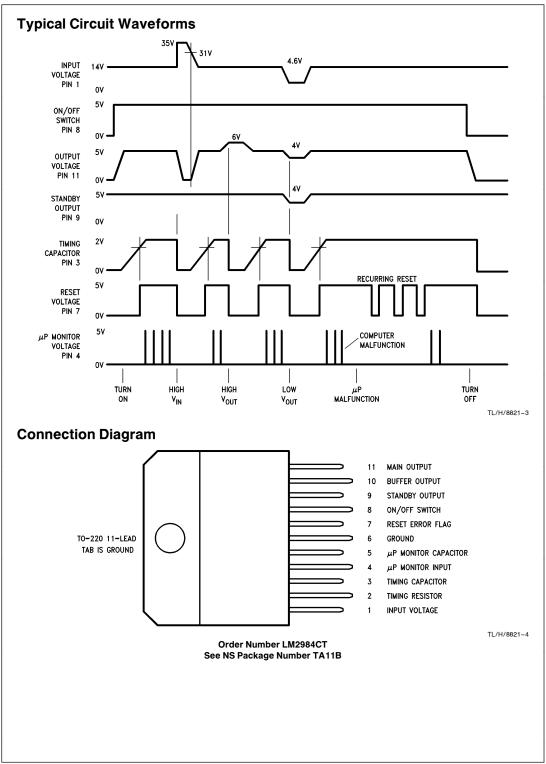
on refers to the ability of the specified output to remain within the tested limits when the other output is shorted to ground.

Parameter	Conditions	Typical	Tested Limit (Note 2)	Design Limit (Note 3)	Units
nputer Monitor/Reset F	unctions				
I _{reset} Low	$V_{IN} = 4V, V_{rst} = 0.4V$	5	2	1	mA _{mir}
V _{reset} Low	$V_{IN} = 4V$, $I_{rst} = 1 \text{ mA}$	0.10	0.40		V _{max}
R _{t voltage}	(Pin 2)	1.22	1.15		V _{min}
		1.22	1.30		V _{max}
Power On Reset	$V\mu P_{mon} = 5V$	50	45		ms _{mir}
Delay	$(T_{dly} = 1.2 R_{t} C_{t})$	50	55		ms _{max}
V _{OUT} Low	(Note 4)	4.00	3.60		V _{min}
Reset Threshold		4.00	4.40		V _{max}
V _{OUT} High Reset Threshold	(Note 4)	5.50	5.25		V _{min}
		5.50	6.00		V _{max}
Reset Output Leakage	$V\mu P_{mon} = 5V, V_{rst} = 12V$	0.01	1		μA _{ma}
μP _{mon} Input Current (Pin 4)	$V\mu P_{mon} = 2.4V$	7.5	25		μA _{ma}
	$V\mu P_{mon} = 0.4V$	0.01	10		μA _{ma}
μP _{mon} Input Threshold Voltage		1.22	0.80	0.80	V _{min}
		1.22	2.00	2.00	V _{max}
μP Monitor Reset	$V_{\mu}P_{mon} = 0V$ (T _{window} = 0.82 R _t C _{mon})	50	45		ms _{mir}
Oscillator Period		50	55		ms _{max}
μP Monitor Reset	$V\mu P_{mon} = 0V$	1.0	0.7	0.5	ms _{mir}
Oscillator Pulse Width	$(\text{RESET}_{pw} = 2000 \text{ C}_{mon})$	1.0	1.3	2.0	ms _{max}
Minimum µP Monitor Input Pulse Width	(Note 5)	2			μs _{ma} ,
Reset Fall Time	${\sf R}_{rst}=$ 10k, ${\sf V}_{rst}=$ 5V, ${\sf C}_{rst}\leq$ 10 pF	0.20	1.00		μs _{max}
Reset Rise Time	$R_{rst}=10k,V_{rst}=5V,C_{rst}\leq10pF$	0.60	1.00		μs _{max}
On/Off Switch Input	$V_{ON} = 2.4V$	7.5	25		μA _{ma}
Current (Pin 8)	$V_{ON} = 0.4V$	0.01	10		μA _{ma:}
On/Off Switch Input		1.22	0.80	0.80	V _{min}
Threshold Voltage		1.22	2.00	2.00	V _{max}

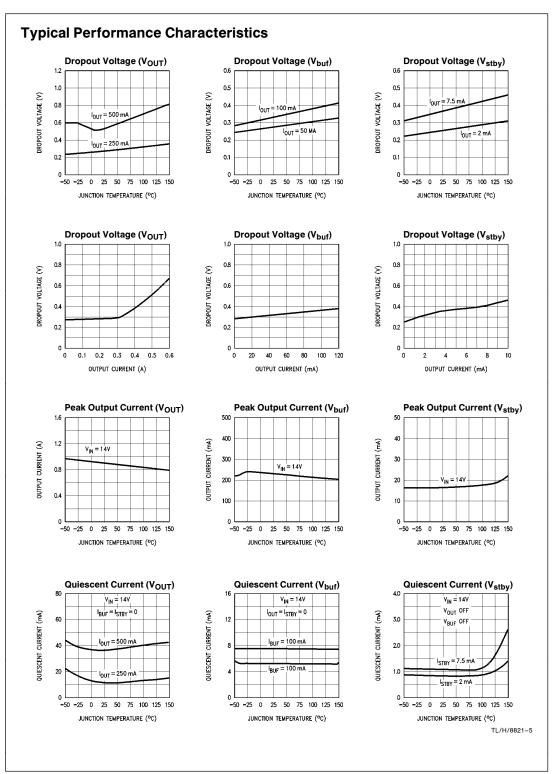
Note 2: Tested Limits are guaranteed and 100% production tested.

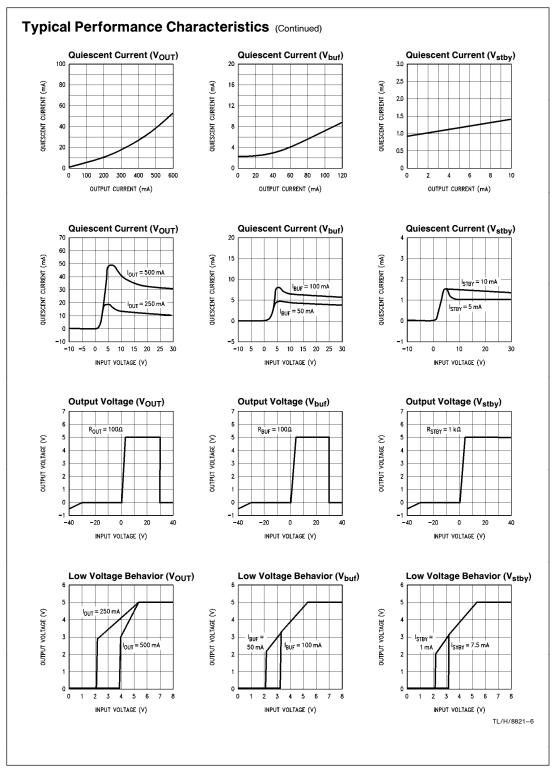

Note 3: Design Limits are guaranteed (but not 100% production tested) over the indicated temperature and supply voltage range. These limits are not used to calculate outgoing quality levels.

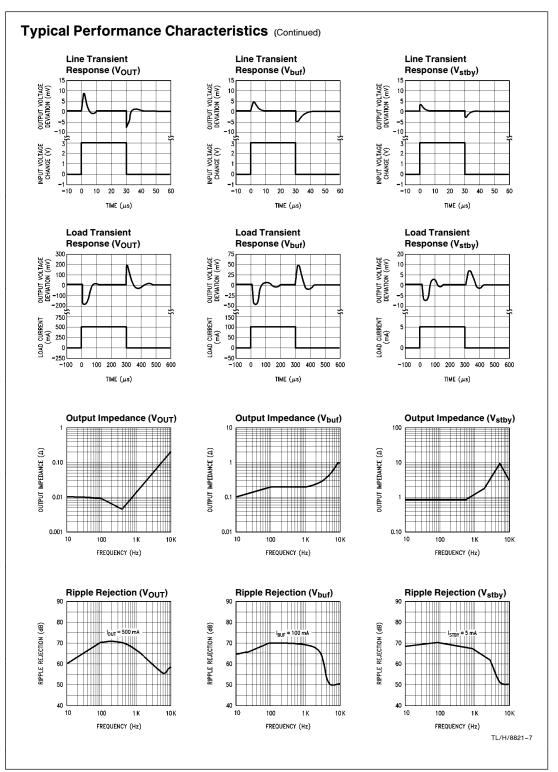
Note 4: An internal comparator detects when the main regulator output (V_{OUT}) drops below 4.0V or rises above 5.5V. If either condition exists at the output, the Reset Error Flag is held low until the error condition has terminated. The Reset Error Flag is then allowed to go high again after a delay set by Rt and Ct. (See Applications Section.)

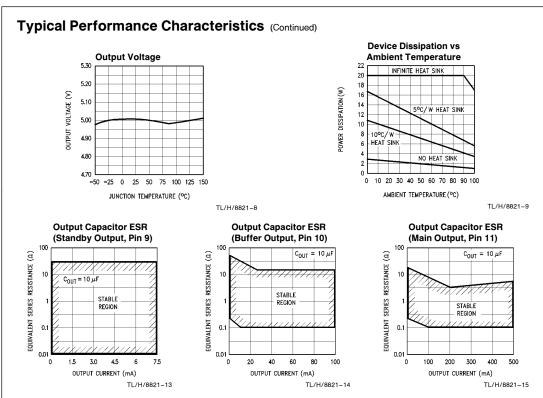

Note 5: This parameter is a measure of how short a pulse can be detected at the μ P Monitor Input. This parameter is primarily influenced by the value of C_{mon}. (See Typical Performance Characteristics and Applications Section.)

Note 6: To ensure constant junction temperature, low duty cycle pulse testing is used.








Distributor of Texas Instruments: Excellent Integrated System Limited Datasheet of LM2984CT/NOPB - IC CONV MICROPROCESSOR TO220-11 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

Application Hints

OUTPUT CAPACITORS

The LM2984C output capacitors are required for stability. Without them, the regulator outputs will oscillate, sometimes by many volts. Though the 10 μF shown are the minimum recommended values, actual size and type may vary depending upon the application load and temperature range. Capacitor effective series resistance (ESR) also affects the IC stability. Since ESR varies from one brand to the next, some bench work may be required to determine the minimum capacitor value to use in production. Worst case is usually determined at the minimum ambient temperature and the maximum load expected.

Output capacitors can be increased in size to any desired value above the minimum. One possible purpose of this would be to maintain the output voltages during brief conditions of negative input transients that might be characteristic of a particular system.

Capacitors must also be rated at all ambient temperatures expected in the system. Many aluminum type electrolytics will freeze at temperatures less than -30° C, reducing their effective capacitance to zero. To maintain regulator stability down to -40° C, capacitors rated at that temperature (such as tantalums) must be used.

Each output **must** be terminated by a capacitor, even if it is not used.

STANDBY OUTPUT

The standby output is intended for use in systems requiring standby memory circuits. While the high current regulator

outputs are controlled with the ON/OFF pin described later, the standby output remains on under all conditions as long as sufficient input voltage is supplied to the IC. Thus, memory and other circuits powered by this output remain unaffected by positive line transients, thermal shutdown, etc.

The standby regulator circuit is designed so that the quiescent current to the IC is very low (<1.5 mA) when the other regulator outputs are off.

The capacitor on the output of this regulator can be increased without bound. This will help maintain the output voltage during negative input transients and will also help to reduce the noise on all three outputs. Because the other two track the standby output: therefore any noise reduction here will also reduce the other two noise voltages.

BUFFER OUTPUT

The buffer output is designed to drive peripheral sensor circuitry in a μ P system. It will track the standby and main regulator within a few millivolts in normal operation. Therefore, a peripheral sensor can be powered off this supply and have the same operating voltage as the μ P system. This is important if a ratiometric sensor system is being used.

The buffer output can be short circuited while the other two outputs are in normal operation. This protects the μ P system from disruption of power when a sensor wire, etc. is temporarily shorted to ground, i.e. only the sensor signal would be interrupted, while the μ P and memory circuits would remain operational.

The buffer output is similar to the main output in that it is controlled by the ON/OFF switch in order to save power in

Application Hints (Continued)

the standby mode. It is also fault protected against overvoltage and thermal overload. If the input voltage rises above approximately 30V (e.g. load dump), this output will automatically shut down. This protects the internal circuitry and enables the IC to survive higher voltage transients than would otherwise be expected. Thermal shutdown is necessary since this output is one of the dominant sources of power dissipation in the IC.

MAIN OUTPUT

The main output is designed to power relatively large loads, i.e. approximately 500 mA. It is therefore also protected against overvoltage and thermal overload.

This output will track the other two within a few millivolts in normal operation. It can therefore be used as a reference voltage for any signal derived from circuitry powered off the standby or buffer outputs. This is important in a ratiometric sensor system or any system requiring accurate matching of power supply voltages.

ON/OFF SWITCH

The ON/OFF switch controls the main output and the buffer output. The threshold voltage is compatible with most logic families and has about 20 mV of hysteresis to insure 'clean' switching from the standby mode to the active mode and vice versa. This pin can be tied to the input voltage through a 10 k Ω resistor if the regulator is to be powered continuously.

POWER DOWN OVERRIDE

Another possible approach is to use a diode in series with the ON/OFF signal and another in series with the main output in order to maintain power for some period of time after the ON/OFF signal has been removed (see *Figure 1*). When the ON/OFF switch is initially pulled high through diode D1, the main output will turn on and supply power through diode D2 to the ON/OFF switch effectively latching the main output. An open collector transistor Q1 is connected to the ON/OFF pin along with the two diodes and forces the regulators off after a period of time determined by the μ P. In this way, the μ P can override a power down command and store data, do housekeeping, etc. before reverting back to the standby mode.

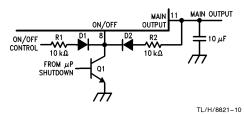


FIGURE 1. Power Down Override

RESET OUTPUT

This output is an open collector NPN transistor which is forced low whenever an error condition is present at the main output or when a μP error is sensed (see μP Monitor section). If the main output voltage drops below 4V or rises above 5.5V, the RESET output is forced low and held low for a period of time set by two external components, R_t and C_t. There is a slight amount of hysteresis in these two threshold voltages so that the RESET output has a fast rise and fall time compatible with the requirements of most μP RESET inputs.

DELAYED RESET

Resistor R_t and capacitor C_t set the period of time that the RESET output is held low after a main output error condition has been sensed. The delay is given by the formula:

$T_{dly} = 1.2 R_t C_t$ (seconds)

The delayed RESET will be initiated any time the main output is outside the 4V to 5.5V window, i.e. during power-up, short circuit, overvoltage, low line, thermal shutdown or power-down. The μ P is therefore RESET whenever the output voltage is out of regulation. (It is important to note that a RESET is only initiated when the main output is in error. The buffer and standby outputs are not directly monitored for error conditions.)

μP MONITOR RESET

There are two distinct and independent error monitoring systems in the LM2984C. The one described above monitors the main regulator output and initiates a delayed RE-SET whenever this output is in error. The other error monitoring system is the μ P watchdog. These two systems are OR'd together internally and both force the RESET output low when either type of error occurs.

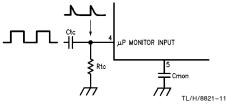
This watchdog circuitry continuously monitors a pin on the μP that generates a positive going pulse during normal operation. The period of this pulse is typically on the order of milliseconds and the pulse width is typically on the order of 10's of microseconds. If this pulse ever disappears, the watchdog circuitry will time out and a RESET low will be sent to the μP . The time out period is determined by two external components, R_t and C_{mon} , according to the formu-

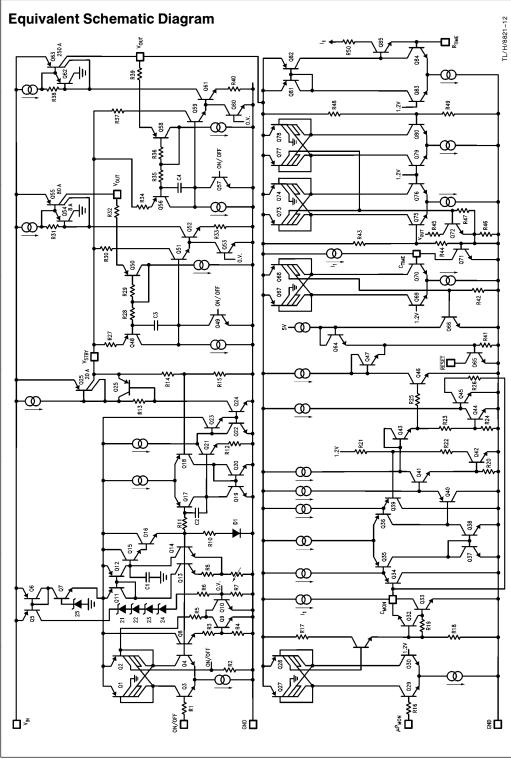
$T_{window} = 0.82 R_t C_{mon}$ (seconds)

The width of the RESET pulse is set by C_{mon} and an internal resistor according to the following:

$RESET_{pw} = 2000 C_{mon}$ (seconds)

A square wave signal can also be monitored for errors by filtering the C_{mon} input such that only the positive edges of the signal are detected. *Figure 2* is a schematic diagram of a typical circuit used to differentiate the input signal. Resistor R_{tc} and capacitor C_{tc} pass only the rising edge of the square wave and create a short positive pulse suitable for the μP monitor input. If the incoming signal continues in a high state or in a low state for too long a period of time, a RESET low will be generated.

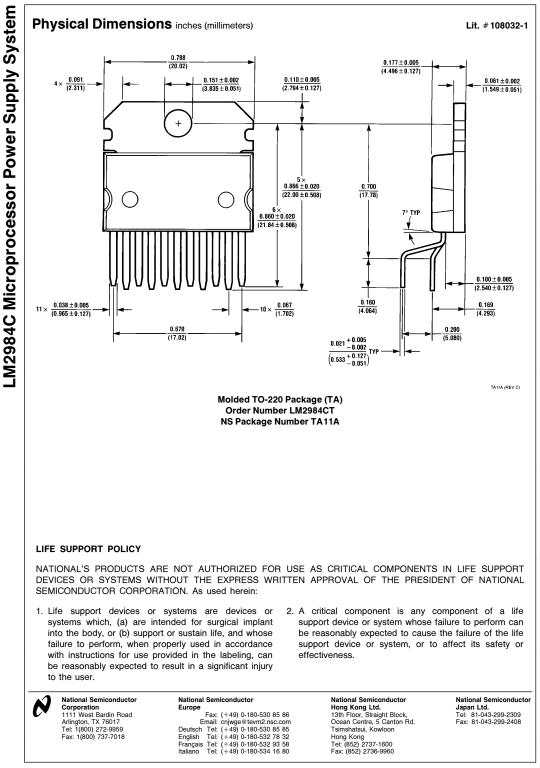



FIGURE 2. Monitoring Square Wave μ P Signals

The threshold voltage and input characteristics of this pin are compatible with nearly all logic families.

There is a limit on the width of a pulse that can be reliably detected by the watchdog circuit. This is due to the output resistance of the transistor which discharges C_{mon} when a high state is detected at the input. The minimum detectable pulse width can be determined by the following formula:

 $PW_{min} = 20 C_{mon}$ (seconds)



13

Distributor of Texas Instruments: Excellent Integrated System Limited Datasheet of LM2984CT/NOPB - IC CONV MICROPROCESSOR TO220-11 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		
	TI E2E Communi	hy Homo Dogo	olo ti com

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated