

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

<u>Texas Instruments</u> <u>SN74AHC16244DGVR</u>

For any questions, you can email us directly: sales@integrated-circuit.com

Datasheet of SN74AHC16244DGVR - IC BUFF/DVR TRI-ST 16BIT 48TVSOP

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

SN54AHC16244, SN74AHC16244

SCLS327H-MARCH 1996-REVISED OCTOBER 2014

SNx4AHC16244 16-Bit Buffers/Drivers With 3-State Outputs

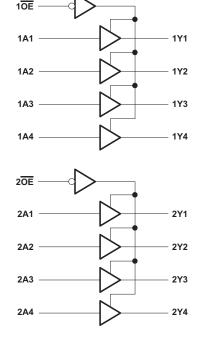
1 Features

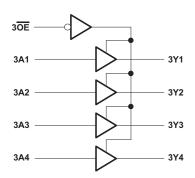
- Members of the Texas Instruments Widebus[™] Family
- EPIC[™] (Enhanced-Performance Implanted CMOS) Process
- Operating Range 2-V to 5.5-V V_{CC}
- Distributed V_{CC} and GND Pins Minimize High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)

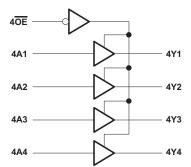
2 Applications

- Motor Drives
- · Wireless Infrastructures
- · Health and Fitness Wearables
- Telecom Infrastructures
- Electronic Points of Sale

3 Description


The SNx4AHC16244 devices are 16-bit buffers and line drivers designed specifically to improve the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters.


Device Information(1)


PART NUMBER	PACKAGE	BODY SIZE (NOM)			
	SSOP (48)	15.80 mm × 7.50 mm			
SNx4AHC16244	TSSOP (48)	12.50 mm 6.10 mm			
	TVSOP (48)	9.70 mm 4.40 mm			

(1) For all available packages, see the orderable addendum at the end of the data sheet.

4 Simplified Schematic

Datasheet of SN74AHC16244DGVR - IC BUFF/DVR TRI-ST 16BIT 48TVSOP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

SN54AHC16244, SN74AHC16244

SCLS327H - MARCH 1996 - REVISED OCTOBER 2014

www.ti.com

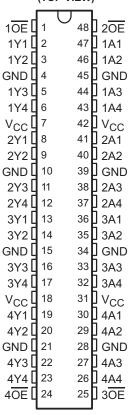
Table of Contents

1	Features 1	9	Detailed Description	10
2	Applications 1		9.1 Overview	10
3	Description 1		9.2 Functional Block Diagram	10
4	Simplified Schematic 1		9.3 Feature Description	11
5	Revision History2		9.4 Device Functional Modes	11
6	Pin Configuration and Functions	10	Application and Implementation	12
7	Specifications		10.1 Application Information	12
′	7.1 Absolute Maximum Ratings 5		10.2 Typical Application	12
	7.1 Absolute Maximum Ratings	11	Power Supply Recommendations	13
	7.3 Recommended Operating Conditions	12	Layout	13
	7.4 Thermal Information		12.1 Layout Guidelines	
	7.5 Electrical Characteristics 6		12.2 Layout Example	13
	7.6 Switching Characteristics, V _{CC} = 3.3 V ± 0.3 V 7	13	Device and Documentation Support	14
	7.7 Switching Characteristics, $V_{CC} = 5.0 \text{ V} \pm 0.5 \text{ V} \dots 7$		13.1 Related Links	
	7.8 Noise Characteristics		13.2 Trademarks	14
	7.9 Operating Characteristics8		13.3 Electrostatic Discharge Caution	14
	7.10 Typical Characteristics		13.4 Glossary	14
8	Parameter Measurement Information 9	14	Mechanical, Packaging, and Orderable Information	14

5 Revision History

С	hanges from Revision G (January 2000) to Revision H	Page
•	Updated document to new TI data sheet format	
•	Deleted Ordering Information table.	1
•	Added Applications	1
•	Added Pin Functions table	3
•	Added Pin Functions table	4
•	Added Handling Ratings table	5
•	Changed MAX operating temperature to 125°C in Recommended Operating Conditions table	5
•	Added Thermal Information table.	6
•	Added –40°C to 125°C range for SN74AHC16244 in Electrical Characteristics table	6
•	Added T _A = -40°C to 125°C for SN74AHC16244 in both Switching Characteristics tables.	
•	Added Typical Characteristics.	
•	Added Detailed Description section	10
•	Added Application and Implementation section	
•	Added Power Supply Recommendations and Layout sections.	

Datasheet of SN74AHC16244DGVR - IC BUFF/DVR TRI-ST 16BIT 48TVSOP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com


www.ti.com

SN54AHC16244, SN74AHC16244

SCLS327H - MARCH 1996-REVISED OCTOBER 2014

6 Pin Configuration and Functions

SN54AHC16244 . . . WD PACKAGE SN74AHC16244 . . . DGG, DGV, OR DL PACKAGE (TOP VIEW)

Pin Functions

	PIN	I/O	DESCRIPTION
NO.	NAME	1/0	DESCRIPTION
1	1 OE	I	Output Enable 1
2	1Y1	0	1Y1 Output
3	1Y2	0	1Y2 Output
4	GND	_	Ground Pin
5	1Y3	0	1Y3 Output
6	1Y4	0	1Y4 Output
7	V _{CC}	_	Power Pin
8	2Y1	0	2Y1 Output
9	2Y2	0	2Y2 Output
10	GND	_	Ground Pin
11	2Y3	0	2Y3 Output
12	2Y4	0	2Y4 Output
13	3Y1	0	3Y1 Output
14	3Y2	0	3Y2 Output
15	GND	_	Ground Pin
16	3Y3	0	3Y3 Output
17	3Y4	0	3Y4 Output
18	V _{CC}	_	Power Pin

Copyright © 1996–2014, Texas Instruments Incorporated

Submit Documentation Feedback

3

Datasheet of SN74AHC16244DGVR - IC BUFF/DVR TRI-ST 16BIT 48TVSOP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

SN54AHC16244, SN74AHC16244

SCLS327H-MARCH 1996-REVISED OCTOBER 2014

www.ti.com

Pin Functions (continued)

PIN		I/O	DESCRIPTION			
NO.	NAME	1/0	DESCRIPTION			
19	4Y1	0	4Y1 Output			
20	4Y2	0	4Y2 Output			
21	GND	_	Ground Pin			
22	4Y3	0	4Y3 Output			
23	4Y4	0	4Y4 Output			
24	4 OE	I	Output Enable 4			
25	3 OE	I	Output Enable 3			
26	4A4	I	4A4 Input			
27	4A3	I	4A3 Input			
28	GND	_	Ground Pin			
29	4A2	I	4A2 Input			
30	4A1	I	4A1 Input			
31	V _{CC}	_	Power Pin			
32	3A4	I	3A4 Input			
33	3A3	I	3A3 Input			
34	GND	_	Ground Pin			
35	3A2	I	3A2 Input			
36	3A1	I	3A1 Input			
37	2A4	I	2A4 Input			
38	2A3	I	2A3 Input			
39	GND	_	Ground Pin			
40	2A2	I	2A2 Input			
41	2A1	I	2A1 Input			
42	V _{CC}		Power Pin			
43	1A4	I	1A4 Input			
44	1A3	I	1A3 Input			
45	GND	_	Ground Pin			
46	1A2	I	1A2 Input			
47	1A1	I	1A1 Input			
48	2 OE	I	Output Enable 2			

Submit Documentation Feedback

Copyright © 1996–2014, Texas Instruments Incorporated

4

Product Folder Links: SN54AHC16244 SN74AHC16244

Datasheet of SN74AHC16244DGVR - IC BUFF/DVR TRI-ST 16BIT 48TVSOP

www.ti.com

SN54AHC16244, SN74AHC16244

SCLS327H-MARCH 1996-REVISED OCTOBER 2014

Specifications

7.1 Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{CC}	Supply voltage range		-0.5	7	٧
VI	V _I Input voltage range ⁽²⁾				V
Vo	Output voltage range (2)		-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V _I < 0		-20	mA
I _{OK}	Output clamp current	$V_O < 0$ or $V_O > V_{CC}$		±20	mA
Io	Continuous output current	$V_O = 0$ to V_{CC}		±25	mA
	Continuous current through V _{CC} or GND		±75	mA	

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 Handling Ratings

			MIN	MAX	UNIT
T _{stg}	Storage temperature rang	-65	150	°C	
V _(ESD)	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins (1)	0	2000	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(1)

			SN54AHC1	6244 ⁽²⁾	SN74AHC	UNIT		
			MIN	MAX	MIN	MAX	UNII	
V _{CC}	Supply voltage		2	5.5	2	5.5	V	
		V _{CC} = 2 V	1.5		1.5			
V_{IH}	High-level input voltage	$V_{CC} = 3 V$	2.1		2.1		V	
		V _{CC} = 5.5 V	3.85		3.85			
		V _{CC} = 2 V		0.5		0.5		
V_{IL}	Low-level input voltage	V _{CC} = 3 V		0.9		0.9	V	
		V _{CC} = 5.5 V		1.65		1.65		
VI	Input voltage	0	5.5	0	5.5	V		
Vo	Output voltage		0	V_{CC}	0	V _{CC}	V	
		V _{CC} = 2 V		-50		-50	μΑ	
I_{OH}	High-level output current	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		-4		-4	A	
		$V_{CC} = 5 V \pm 0.5 V$		-8		-8	mA	
		V _{CC} = 2 V		50		50	μΑ	
I_{OL}	Low-level output current	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		4		4	^	
		$V_{CC} = 5 \text{ V} \pm 0.5 \text{ V}$		8		8	mA	
44/4		$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		100		100	0/	
Δt/Δv	Input transition rise or fall rate	$V_{CC} = 5 \text{ V} \pm 0.5 \text{ V}$		20		20	ns/V	
T _A	Operating free-air temperature	-55	125	-40	125	°C		

All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs (SCBA004).

⁽²⁾ The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

Product Preview

Datasheet of SN74AHC16244DGVR - IC BUFF/DVR TRI-ST 16BIT 48TVSOP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

SN54AHC16244, SN74AHC16244

SCLS327H - MARCH 1996-REVISED OCTOBER 2014

www.ti.com

7.4 Thermal Information

	THERMAL METRIC ⁽¹⁾	DGV	DL	DGG	UNIT
		48 PINS	48 PINS	48 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	83.5	64.6	72.5	
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	35.7	34.5	26.8	
$R_{\theta JB}$	Junction-to-board thermal resistance	46.6	36.4	39.4	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	4.3	11.1	2.6	
Ψ_{JB}	Junction-to-board characterization parameter	46.0	36.1	39.1	

⁽¹⁾ For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report (SPRA953).

7.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V _{cc}	Т,	₄ = 25°C		SN54AHC1	6244 ⁽¹⁾	SN74AHC	16244	-40°C to 1 SN74AHC1		UNIT					
									MIN	TYP	MAX	MIN	MAX	MIN	MAX	MIN	MAX
	I _{OH} = -50 μA	2 V	1.9	2		1.9		1.9		1.9							
		3 V	2.9	3		2.9		2.9		2.9							
V _{OH}		4.5 V	4.4	4.5		4.4		4.4		4.4		V					
	I _{OH} = -4 mA	3 V	2.58			2.48		2.48		2.48							
	$I_{OH} = -8 \text{ mA}$	4.5 V	3.94			3.8		3.8		3.8							
	Ι _{ΟL} = 50 μΑ	2 V			0.1		0.1		0.1		0.1						
		3 V			0.1		0.1		0.1		0.1						
V _{OL}		4.5 V			0.1		0.1		0.1		0.1	V					
	I _{OL} = 4 mA	3 V			0.36		0.5		0.44		0.44						
	I _{OL} = 8 mA	4.5 V			0.36		0.5		0.44		0.44						
I _I	V _I = V _{CC} or GND	0 V to 5.5 V			±0.1		±1 ⁽²⁾		±1		±1	μA					
I _{OZ}	V _O = V _{CC} or GND	5.5 V			±0.25		±2.5		±2.5		±2.5	μΑ					
I _{CC}	$V_I = V_{CC}$ or GND, $I_O = 0$	5.5 V			4		40		40		40	μA					
C _i	V _I = V _{CC} or GND	5 V		2	10		10		10		10	pF					
Co	V _O = V _{CC} or GND	5 V		3.5								pF					

⁽¹⁾ Product Preview

Submit Documentation Feedback

Copyright © 1996–2014, Texas Instruments Incorporated

6

Product Folder Links: SN54AHC16244 SN74AHC16244

⁽²⁾ On products compliant to MIL-PRF-38535, this parameter is not production tested at $V_{CC} = 0 \text{ V}$.

Datasheet of SN74AHC16244DGVR - IC BUFF/DVR TRI-ST 16BIT 48TVSOP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

www.ti.com

SN54AHC16244, SN74AHC16244

SCLS327H - MARCH 1996-REVISED OCTOBER 2014

7.6 Switching Characteristics, $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	LOAD CAPACITANCE		T _A = 25°C		SN54AHC1	6244 ⁽¹⁾	SN74AH	C16244	T _A = -40°C to SN74AHC1		UNIT
	(INFUI)	(001701)	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{PLH}	A		0 45 - 5		5.8(2)	8.4(2)	1 (2)	10 ⁽²⁾	1	10	1	11	
t _{PHL}		A	Y	C _L = 15 pF		5.8(2)	8.4(2)	1 (2)	10 ⁽²⁾	1	10	1	11
t _{PZH}	- ŌE	Y	0 45 - 5		6.6(2)	10.6 ⁽²⁾	1 (2)	12.5 ⁽²⁾	1	12.5	1	13.5	
t _{PZL}		Y	C _L = 15 pF		6.6(2)	10.6 ⁽²⁾	1 ⁽²⁾	12.5 ⁽²⁾	1	12.5	1	13.5	ns
t _{PHZ}	ŌĒ	Υ	0 45 -5		5 ⁽²⁾	11.5 ⁽²⁾	1 (2)	12.5 ⁽²⁾	1	12.5	1	13.5	
t _{PLZ}	UE	Y	Y $C_L = 15 \text{ pF}$		5 ⁽²⁾	11.5 ⁽²⁾	1 (2)	12.5 ⁽²⁾	1	12.5	1	13.5	ns
t _{PLH}		Υ	0 50-5		8.3	11.9	1	13.5	1	13.5	1	14.5	
t _{PHL}	A	Y	C _L = 50 pF		8.3	11.9	1	13.5	1	13.5	1	14.5	ns
t _{PZH}	ŌĒ	Υ	0 50-5		9.1	14.1	1	16	1	16	1	17	
t _{PZL}	UE	Y	C _L = 50 pF		9.1	14.1	1	16	1	16	1	17	ns
t _{PHZ}	- ŌĒ	Υ	C = 50.55		10.3	14	1	16	1	16	1	17	
t _{PLZ}		Y	C _L = 50 pF		10.3	14	1	16	1	16	1	17	ns
t _{sk(o)}			C _L = 50 pF			1.5 ⁽³⁾				1.5		1.5	ns

- **Product Preview**
- On products compliant to MIL-PRF-38535, this parameter is not production tested. On products compliant to MIL-PRF-38535, this parameter does not apply.

7.7 Switching Characteristics, $V_{CC} = 5 \text{ V} \pm 0.5 \text{ V}$

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	LOAD CAPACITANCE	T _A = 25°C		SN54AH	C16244 ⁽¹⁾	SN74AHC	16244	T _A = -40°C to SN74AHC1		UNIT		
	(INFUT)	(OUTPUT)	CAPACITANCE	MIN TYP	MAX	MIN	MAX	MIN	MAX	MIN	MAX			
t _{PLH}	Δ.	Υ	0 45 -5	3.9(2)	6 ⁽²⁾	1 ⁽²⁾	7 ⁽²⁾	1	6.5	1	7			
t _{PHL}	Α	Y	į	Y	C _L = 15 pF	3.9(2)	6 ⁽²⁾	1 ⁽²⁾	7 ⁽²⁾	1	6.5	1	7	ns
t _{PZH}	ŌĒ	Y	0 45-5	4.7(2)	7.3(2)	1 ⁽²⁾	8.5 ⁽²⁾	1	8.5	1	9.5	ns		
t _{PZL}	OE .	Ī	C _L = 15 pF	4.7(2)	7.3(2)	1 ⁽²⁾	8.5 ⁽²⁾	1	8.5	1	9.5	ns		
t _{PHZ}	ŌĒ	Υ	0 45-5	5(2)	7.2(2)	1 ⁽²⁾	8.5 ⁽²⁾	1	8.5	1	9			
t _{PLZ}	OE .	Y	C _L = 15 pF	5(2)	7.2(2)	1 ⁽²⁾	8.5 ⁽²⁾	1	8.5	1	9	ns		
t _{PLH}	А	Υ	C ₁ = 50 pF	5.4	8	1	9	1	8.5	1	9			
t _{PHL}	A	Y	C _L = 50 pr	5.4	8	1	9	1	8.5	1	9	ns		
t _{PZH}	ŌĒ	Υ	0 50 5	6.2	9.3	1	10.5	1	10.5	1	11.5			
t _{PZL}	OE .	Y	$C_L = 50 \text{ pF}$	6.2	9.3	1	10.5	1	10.5	1	11.5	ns		
t _{PHZ}	ŌĒ	Y	0 50-5	6.7	9.2	1	10.5	1	10.5	1	11			
t _{PLZ}	OE .	Y	$C_L = 50 \text{ pF}$	6.7	9.2	1	10.5	1	10.5	1	11	ns		
t _{sk(o)}			C _L = 50 pF		1 ⁽³⁾				1		1	ns		

- **Product Preview**
- On products compliant to MIL-PRF-38535, this parameter is not production tested.
- On products compliant to MIL-PRF-38535, this parameter does not apply.

7.8 Noise Characteristics

 $V_{CC} = 5 \text{ V}, C_L = 50 \text{ pF}, T_A = 25^{\circ}\text{C}^{(1)}$

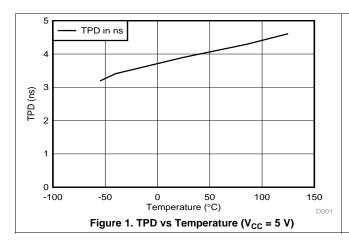
	PARAMETER	SN74	LINIT		
	PARAMETER	MIN	TYP	MAX	UNIT
$V_{OL(P)}$	Quiet output, maximum dynamic V _{OL}		0.5	0.8	V
$V_{OL(V)}$	Quiet output, minimum dynamic V _{OL}		-0.2	-0.8	V
$V_{OH(V)}$	Quiet output, minimum dynamic V _{OH}		4.8		V
$V_{IH(D)}$	High-level dynamic input voltage	3.5			V
$V_{IL(D)}$	Low-level dynamic input voltage			1.5	V

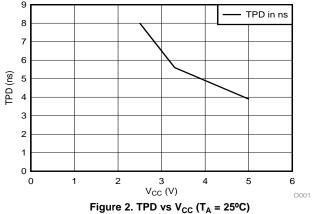
(1) Characteristics are for surface-mount packages only.

Datasheet of SN74AHC16244DGVR - IC BUFF/DVR TRI-ST 16BIT 48TVSOP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

SN54AHC16244, SN74AHC16244

SCLS327H-MARCH 1996-REVISED OCTOBER 2014


www.ti.com

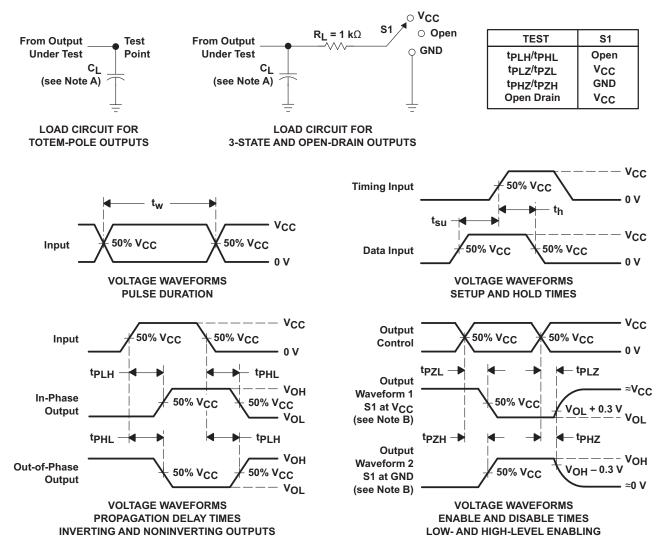

7.9 Operating Characteristics

 V_{CC} = 5 V, T_A = 25°C

	PARAMETER	TEST	CONDITIONS	TYP	UNIT
C_{pd}	Power dissipation capacitance	No load,	f = 1 MHz	10.5	pF

7.10 Typical Characteristics

Datasheet of SN74AHC16244DGVR - IC BUFF/DVR TRI-ST 16BIT 48TVSOP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com



www.ti.com

SN54AHC16244, SN74AHC16244

SCLS327H - MARCH 1996-REVISED OCTOBER 2014

8 Parameter Measurement Information

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O = 50 \Omega$, $t_f \leq$ 3 ns. $t_f \leq$ 3 ns.
- D. The outputs are measured one at a time with one input transition per measurement.

Figure 3. Load Circuit and Voltage Waveforms

Datasheet of SN74AHC16244DGVR - IC BUFF/DVR TRI-ST 16BIT 48TVSOP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

SN54AHC16244, SN74AHC16244

SCLS327H - MARCH 1996-REVISED OCTOBER 2014

www.ti.com

9 Detailed Description

9.1 Overview

The SNx4AHC16244 devices are 16-bit buffers and line drivers designed specifically to improve the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters

These devices can be used as four 4-bit buffers, two 8-bit buffers, or one 16-bit buffer. They provide true outputs and symmetrical active-low output-enable (OE) inputs.

To ensure the high-impedance state during power up or power down, $\overline{\text{OE}}$ should be tied to V_{CC} through a pull-up resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver. The SN54AHC16244 is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74AHC16244 is characterized for operation from –40°C to 85°C.

9.2 Functional Block Diagram

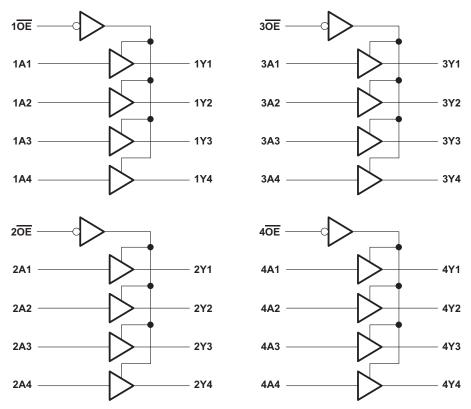
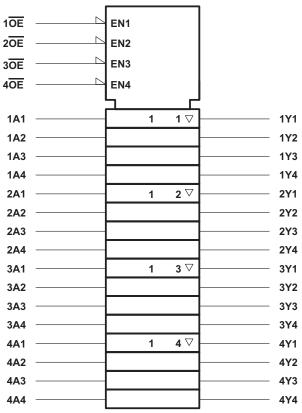


Figure 4. Logic Diagram (Positive Logic)

10

Product Folder Links: SN54AHC16244 SN74AHC16244



www.ti.com

SN54AHC16244, SN74AHC16244

SCLS327H –MARCH 1996–REVISED OCTOBER 2014

Functional Block Diagram (continued)

This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Figure 5. Logic Symbol

9.3 Feature Description

- · Wide operating voltage range
 - Operates from 2 V to 5.5 V
- Allows down voltage translation
 - Inputs accept voltages up to 5.5 V
- Slows edges rates, minimizing output ringing

9.4 Device Functional Modes

Table 1. Function Table (Each 4-bit Buffer/Driver)

INF	PUTS	ОИТРИТ
ŌĒ	Α	Y
L	Н	Н
L	L	L
Н	Χ	High-Z

Copyright © 1996-2014, Texas Instruments Incorporated

Submit Documentation Feedback

11

Datasheet of SN74AHC16244DGVR - IC BUFF/DVR TRI-ST 16BIT 48TVSOP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

> Texas Instruments

SN54AHC16244, SN74AHC16244

SCLS327H - MARCH 1996-REVISED OCTOBER 2014

www.ti.com

10 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

10.1 Application Information

The SN74AHC16244 is a low-drive CMOS device that can be used for a multitude of applications where output ringing is a concern. The low drive and slow edge rates will minimize overshoot and undershoot on the outputs. The inputs are tolerant to 5.5 V at any valid V_{CC} . This feature makes it ideal for translating down to the V_{CC} level. Figure 6 shows the reduction in ringing compared to higher-drive parts, such as AC.

10.2 Typical Application

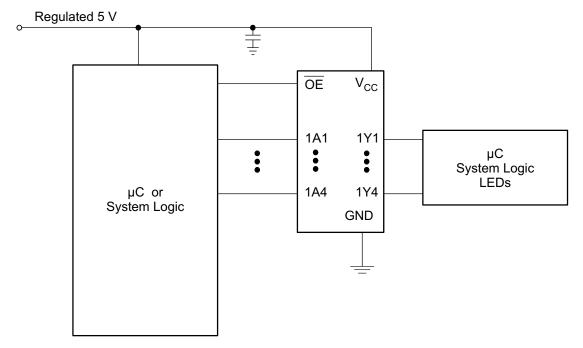


Figure 6. Application Diagram

10.2.1 Design Requirements

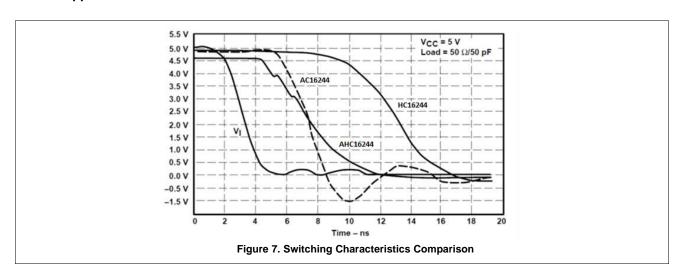
This device uses CMOS technology and has balanced output drive. Care should be taken to avoid bus contention because it can drive currents that would exceed maximum limits. The high drive will also create fast edges into light loads, so routing and load conditions should be considered to prevent ringing.

10.2.2 Detailed Design Procedure

- 1. Recommended input conditions:
 - For rise time and fall time specifications, see (Δt/ΔV) in the Recommended Operating Conditions table.
 - For specified high and low levels, see (V_{IH} and V_{IL}) in the Recommended Operating Conditions table.
 - Inputs are overvoltage tolerant allowing them to go as high as 5.5 V at any valid V_{CC}
- 2. Recommend output conditions:
 - Load currents should not exceed 25 mA per output and 75 mA total for the part.
 - Outputs should not be pulled above V_{CC}.

Datasheet of SN74AHC16244DGVR - IC BUFF/DVR TRI-ST 16BIT 48TVSOP

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com


www.ti.com

SN54AHC16244, SN74AHC16244

SCLS327H - MARCH 1996-REVISED OCTOBER 2014

Typical Application (continued)

10.2.3 Application Curves

Power Supply Recommendations

The power supply can be any voltage between the Min and Max supply voltage rating located in the Recommended Operating Conditions.

Each V_{CC} terminal should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, a 0.1 μF capacitor is recommended. If there are multiple V_{CC} terminals then 0.01 μF or 0.022 μF capacitors are recommended for each power terminal. It is acceptable to parallel multiple bypass capacitors to reject different frequencies of noise. 0.1 μF and 1.0 μF capacitors are commonly used in parallel. The bypass capacitor should be installed as close to the power terminal as possible for the best results.

12 Layout

12.1 Layout Guidelines

When using multiple bit logic devices, inputs should not float. In many cases, functions or parts of functions of digital logic devices are unused. Some examples are when only two inputs of a triple-input AND gate are used, or only 3 of the 4-buffer gates are used. Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. Specified in Figure 8 are rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally they will be tied to GND or V_{CC}, whichever makes more sense or is more convenient. It is generally acceptable to float outputs unless the part is a transceiver.

12.2 Layout Example

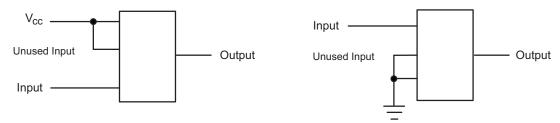


Figure 8. Layout Diagram

Copyright © 1996-2014, Texas Instruments Incorporated

Submit Documentation Feedback

13

Datasheet of SN74AHC16244DGVR - IC BUFF/DVR TRI-ST 16BIT 48TVSOP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

SN54AHC16244, SN74AHC16244

SCLS327H-MARCH 1996-REVISED OCTOBER 2014

www.ti.com

13 Device and Documentation Support

13.1 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 2. Related Links

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
SN54AHC16244	Click here	Click here	Click here	Click here	Click here
SN74AHC16244	Click here	Click here	Click here	Click here	Click here

13.2 Trademarks

Widebus is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

13.3 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

13.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Product Folder Links: SN54AHC16244 SN74AHC16244

Submit Documentation Feedback

Copyright © 1996-2014, Texas Instruments Incorporated

Datasheet of SN74AHC16244DGVR - IC BUFF/DVR TRI-ST 16BIT 48TVSOP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

PACKAGE OPTION ADDENDUM

16-Oct-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	•		Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
74AHC16244DGGRG4	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	AHC16244	Samples
SN74AHC16244DGGR	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	AHC16244	Samples
SN74AHC16244DGVR	ACTIVE	TVSOP	DGV	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	HE244	Samples
SN74AHC16244DL	ACTIVE	SSOP	DL	48	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	AHC16244	Samples
SN74AHC16244DLG4	ACTIVE	SSOP	DL	48	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	AHC16244	Samples
SN74AHC16244DLR	ACTIVE	SSOP	DL	48	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	AHC16244	Samples
SN74AHC16244DLRG4	ACTIVE	SSOP	DL	48	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	AHC16244	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

Information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempl): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): Til defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

Addendum-Page 1

Distributor of Texas Instruments: Excellent Integrated System LimitedDatasheet of SN74AHC16244DGVR - IC BUFF/DVR TRI-ST 16BIT 48TVSOP

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

PACKAGE OPTION ADDENDUM

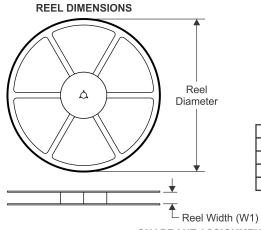
www.ti.com 16-Oct-2014

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "--" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

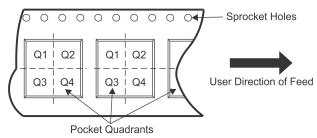
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information that way not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


Datasheet of SN74AHC16244DGVR - IC BUFF/DVR TRI-ST 16BIT 48TVSOP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

PACKAGE MATERIALS INFORMATION

www.ti.com 5-Aug-2014

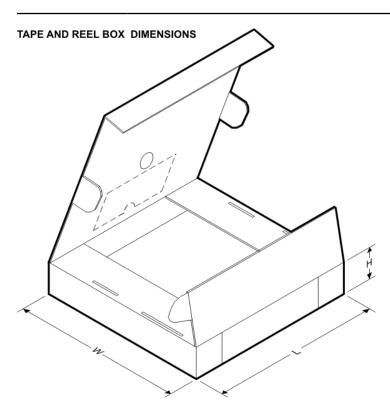

TAPE AND REEL INFORMATION

TAPE DIMENSIONS + K0 + P1 + B0 W Cavity - A0 +

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal


Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74AHC16244DGGR	TSSOP	DGG	48	2000	330.0	24.4	8.6	15.8	1.8	12.0	24.0	Q1
SN74AHC16244DGVR	TVSOP	DGV	48	2000	330.0	16.4	7.1	10.2	1.6	12.0	16.0	Q1
SN74AHC16244DLR	SSOP	DL	48	1000	330.0	32.4	11.35	16.2	3.1	16.0	32.0	Q1

Datasheet of SN74AHC16244DGVR - IC BUFF/DVR TRI-ST 16BIT 48TVSOP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

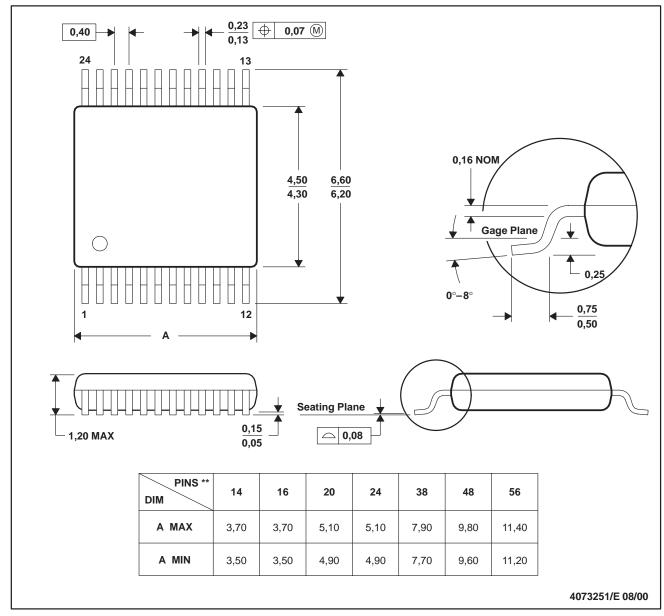
PACKAGE MATERIALS INFORMATION

www.ti.com 5-Aug-2014

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74AHC16244DGGR	TSSOP	DGG	48	2000	367.0	367.0	45.0
SN74AHC16244DGVR	TVSOP	DGV	48	2000	367.0	367.0	38.0
SN74AHC16244DLR	SSOP	DL	48	1000	367.0	367.0	55.0

Datasheet of SN74AHC16244DGVR - IC BUFF/DVR TRI-ST 16BIT 48TVSOP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com


MECHANICAL DATA

MPDS006C - FEBRUARY 1996 - REVISED AUGUST 2000

DGV (R-PDSO-G**)

24 PINS SHOWN

PLASTIC SMALL-OUTLINE

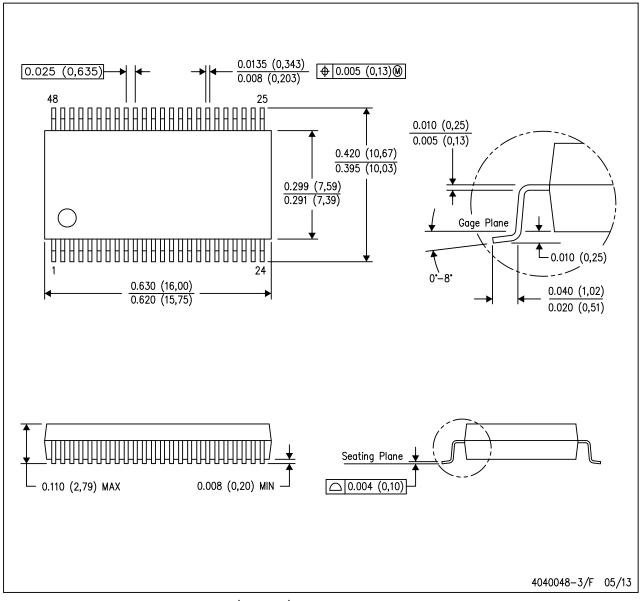
NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.

D. Falls within JEDEC: 24/48 Pins – MO-153

14/16/20/56 Pins - MO-194



MECHANICAL DATA

DL (R-PDSO-G48)

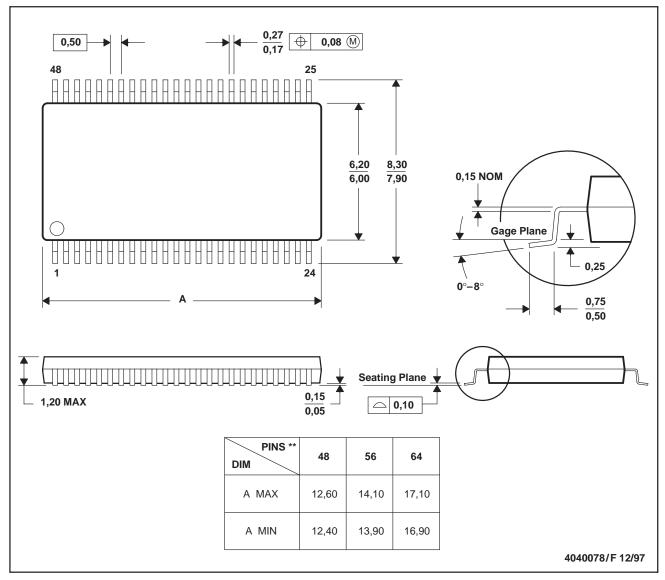
PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MO-118

PowerPAD is a trademark of Texas Instruments.

Datasheet of SN74AHC16244DGVR - IC BUFF/DVR TRI-ST 16BIT 48TVSOP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com


MECHANICAL DATA

MTSS003D - JANUARY 1995 - REVISED JANUARY 1998

DGG (R-PDSO-G**)

48 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153

Distributor of Texas Instruments: Excellent Integrated System LimitedDatasheet of SN74AHC16244DGVR - IC BUFF/DVR TRI-ST 16BIT 48TVSOP

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Computers and Peripherals www.ti.com/computers **Data Converters** dataconverter.ti.com **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial

Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security

Power Mgmt Space, Avionics and Defense <u>www.ti.com/space-avionics-defense</u>

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID <u>www.ti-rfid.com</u>

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated