

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

<u>Texas Instruments</u> <u>SN74ABT16853DLR</u>

For any questions, you can email us directly: sales@integrated-circuit.com

Datasheet of SN74ABT16853DLR - IC TXRX BUS 8-9BIT DUAL 56-SSOP

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

SN54ABT16853, SN74ABT16853 DUAL 8-BIT TO 9-BIT PARITY BUS TRANSCEIVERS

SCBS153B - OCTOBER 1992 - REVISED JANUARY 1997

- Members of the Texas Instruments Widebus™ Family
- State-of-the-Art EPIC-IIB™ BiCMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds 500 mA
 Per JEDEC Standard JESD-17
- Typical V_{OLP} (Output Ground Bounce) < 1 V at V_{CC} = 5 V, T_A = 25°C
- Distributed V_{CC} and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- High-Drive Outputs (-32-mA I_{OH}, 64-mA I_{OL})
- Parity-Error Flag With Parity Generator/Checker
- Latch for Storage of the Parity-Error Flag
- Package Options Include Plastic 300-mil Shrink Small-Outline (DL) and Thin Shrink Small-Outline (DGG) Packages and 380-mil Fine-Pitch Ceramic Flat (WD) Package Using 25-mil Center-to-Center Spacings

description

The 'ABT16853 dual 8-bit to 9-bit parity transceivers are designed for communication between data buses. When data is transmitted from the A bus to the B bus, a parity bit is generated. When data is transmitted from the B bus to the A bus, with its corresponding parity bit, the open-collector parity-error (ERR) output indicates whether or not an error in the B data has occurred. The output-enable (OEA and OEB) inputs can be used to disable the device so that the buses are effectively isolated. The 'ABT16853 provide true data at the outputs.

SN54ABT16853 . . . WD PACKAGE SN74ABT16853 . . . DGG OR DL PACKAGE (TOP VIEW)

1OEB	1	\cup	56	10EA
1LE	2		55	1CLR
1ERR	3			1PARITY
GND	4			GND
1A1	5] 1B1
1A2	6		51] 1B2
v _{cc} l	7		50] v _{cc}
1A3			49] 1B3
1A4	9		48] 1B4
1A5	10] 1B5
GND	11			GND
1A6	12		45] 1B6
1A7	13		44] 1B7
1A8	14		43] 1B8
2A1	15		42] 2B1
2A2			41] 2B2
2A3	17] 2B3
GND	18		39] GND
2A4	19		38] 2B4
2A5	20		37] 2B5
2A6	21		36] 2B6
v _{cc} l	22		35] v _{cc}
2A7	23		34] 2B7
2A8	24		33] 2B8
GND	25		32] GND
	26		31	2PARITY
	27		30	2CLR
2 <mark>OEB</mark>	28		29	20EA

A 9-bit parity generator/checker generates a parity-odd (PARITY) output and monitors the parity of the I/O ports with the $\overline{\mathsf{ERR}}$ flag. The parity-error output can be passed, sampled, stored, or cleared from the latch using the latch-enable ($\overline{\mathsf{LE}}$) and clear ($\overline{\mathsf{CLR}}$) control inputs. When both $\overline{\mathsf{OEA}}$ and $\overline{\mathsf{OEB}}$ are low, data is transferred from the A bus to the B bus, and inverted parity is generated. Inverted parity is a forced error condition that gives the designer more system diagnostic capability.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC-IIB and Widebus are trademarks of Texas Instruments Incorporated.

Datasheet of SN74ABT16853DLR - IC TXRX BUS 8-9BIT DUAL 56-SSOP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

SN54ABT16853, SN74ABT16853 **DUAL 8-BIT TO 9-BIT PARITY BUS TRANSCEIVERS**

SCBS153B - OCTOBER 1992 - REVISED JANUARY 1997

description (continued)

The SN54ABT16853 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ABT16853 is characterized for operation from -40°C to 85°C.

FUNCTION TABLE

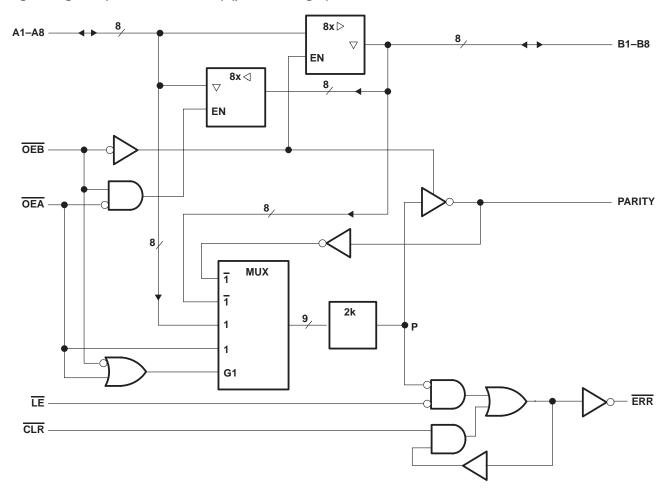
	INPUTS						OUTPU	JT AND I/O		
OEB	OEA	CLR	LE	AI Σ OF H	BI [†] Σ OF H	Α	В	PARITY	ERR‡	FUNCTION
L	Н	Х	Х	Odd Even	NA	NA	Α	L H	NA	A data to B bus and generate parity
Н	L	Х	L	NA	Odd	В	NA	NA	Н	B data to A bus and
					Even				L	check parity
Н	L	Н	Н	NA	Χ	Х	NA	NA	NC	Store error flag
Х	Х	L	Н	Χ	Χ	Х	NA	NA	Н	Clear error-flag register
		Н	Н	Х					NC	
н	Н	L	Н	Χ	X	X 7 7 7		7	Н	Isolation§
"	П	X	L	L Odd	Χ	2	Z	۷	Н	(parity check)
		Χ	L	H Even					L	
		X :	Х	Odd	NA	NA	A	Н	NΙΛ	A data to B bus and
	L	^	^	Even	INA	INA	A	L	NA	generate inverted parity

NA = not applicable, NC = no change, X = don't care

[†] Summation of high-level inputs includes PARITY along with Bi inputs.

[‡] Output states shown assume ERR was previously high.

[§] In this mode, ERR (when clocked) shows inverted parity of the A bus.



Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

SN54ABT16853, SN74ABT16853 DUAL 8-BIT TO 9-BIT PARITY BUS TRANSCEIVERS

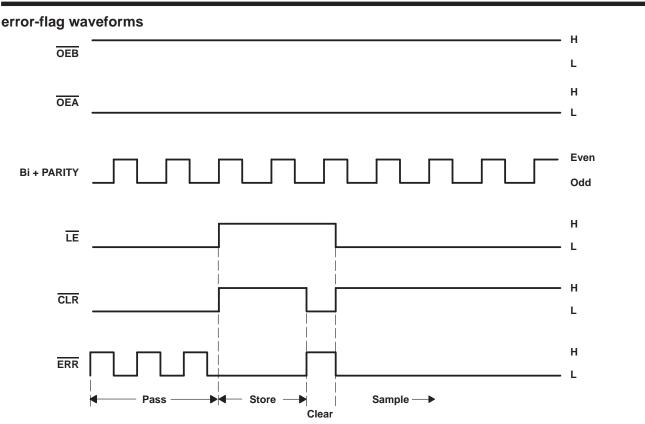
SCBS153B - OCTOBER 1992 - REVISED JANUARY 1997

logic diagram (each transceiver) (positive logic)

ERROR-FLAG FUNCTION TABLE

ERROR FEAG FORGITOR TABLE									
INPU	JTS	INTERNAL OUTPUT		OUTPUT OUTPUT ERR					
CLR	LE	POINT P	ERR _{n-1} †	EKK					
		L	Х	L	Pass				
	L	Н	^	Н	Fass				
		L	Х	L					
Н	L	X	L	L	Sample				
		Н	Н	н н					
L	Н	Х	Х	Н	Clear				
н	Н	Х	L	L	Store				
_ ''	11	^	Н	Н	Sidle				

[†] State of ERR before changes at CLR, LE, or point P



Datasheet of SN74ABT16853DLR - IC TXRX BUS 8-9BIT DUAL 56-SSOP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

SN54ABT16853, SN74ABT16853 DUAL 8-BIT TO 9-BIT PARITY BUS TRANSCEIVERS

SCBS153B - OCTOBER 1992 - REVISED JANUARY 1997

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	0.5 V to 7 V
Input voltage range, V _I (except I/O ports) (see Note 1)	. -0.5 V to 7 V
Voltage range applied to any output in the high or power-off state, VO	-0.5 V to 5.5 V
Current into any output in the low state, IO: SN54ABT16853	96 mA
SN74ABT16853	128 mA
Input clamp current, I _{IK} (V _I < 0)	–18 mA
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Package thermal impedance, θ _{JA} (see Note 2): DGG package	81°C/W
DL package	74°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. The package thermal impedance is calculated in accordance with EIA/JEDEC Std JESD51.

Datasheet of SN74ABT16853DLR - IC TXRX BUS 8-9BIT DUAL 56-SSOP

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

SN54ABT16853, SN74ABT16853 DUAL 8-BIT TO 9-BIT PARITY BUS TRANSCEIVERS

SCBS153B - OCTOBER 1992 - REVISED JANUARY 1997

recommended operating conditions (see Note 3)

			SN54AB1	Γ16853	SN74AB	Г16853	UNIT
			MIN	MAX	MIN	MAX	UNIT
VCC	Supply voltage		4.5	5.5	4.5	5.5	V
VIH	High-level input voltage		2	, A	2		V
V _{IL}	Low-level input voltage			0.8		0.8	V
VI	Input voltage		0	Vcc	0	VCC	V
VOH	High-level output voltage	ERR	4	5.5		5.5	V
ІОН	High-level output current	Except ERR	3	-24		-32	mA
l _{OL}	Low-level output current		20,	48		64	mA
Δt/Δν	Input transition rise or fall rate	Outputs enabled	Q"	10		10	ns/V
TA	Operating free-air temperature		-55	125	-40	85	°C

NOTE 3: Unused pins (input or I/O) must be held high or low to prevent them from floating.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DA.	DAMETED	TEST CONDITIONS		Т	A = 25°C	;	SN54ABT16853		SN74ABT16853		UNIT	
PA	RAMETER	lesi coi	NUTTIONS	MIN	TYP [†]	MAX	MIN	MAX	MIN	MAX	UNII	
٧ıĸ		$V_{CC} = 4.5 \text{ V},$	I _I = -18 mA			-1.2		-1.2		-1.2	V	
		$V_{CC} = 4.5 \text{ V},$	$I_{OH} = -3 \text{ mA}$	2.5	3		2.5				V	
V	All outputs	V _{CC} = 5 V,	$I_{OH} = -3 \text{ mA}$	3	3.4		3		3			
VOH	except ERR	V _{CC} = 4.5 V	$I_{OH} = -24 \text{ mA}$				2				V	
		VCC = 4.5 V	$I_{OH} = -32 \text{ mA}$	2*	2.7				2			
VOL		V _{CC} = 4.5 V	I _{OL} = 24 mA		0.25	0.55		0.55			V	
VOL		VCC = 4.5 V	$I_{OL} = 64 \text{ mA}$		0.3	0.55*				0.55	V	
V _{hys}					100						mV	
I _{OH}	ERR	$V_{CC} = 4.5 \text{ V},$	V _{OH} = 5.5 V			20		20		20	μΑ	
l _{off}		$V_{CC} = 0$,	V_I or $V_O \le 4.5 \text{ V}$			±100		361		±100	μΑ	
ICEX	Outputs high	$V_{CC} = 5.5 \text{ V},$	V _O = 5.5 V			50		50		50	μΑ	
1.	Control inputs	V _{CC} = 5.5 V, V _I = V _{CC} or GND				±1	5	±1		±1	μΑ	
†į	A or B ports	$A \cap A \cap A = A \cap A \cap A = A \cap A \cap A \cap A \cap $	\I = ∧CC or GND			±100	90	±100		±100	μΑ	
Ι _Ι L	A or B ports	$V_{CC} = 0$,	$V_I = GND$			- 50	Q'A	- 50		-50	μΑ	
lo [‡]		V _{CC} = 5.5 V,	V _O = 2.5 V	-50	-100	-180	-50	-180	-50	-180	mA	
IOZH§		V _{CC} =5.5 V,	V _O = 2.7 V			50		50		50	μΑ	
lozL§		V _{CC} = 5.5 V,	V _O = 0.5 V			-50		- 50		-50	μΑ	
		V _{CC} = 5.5 V,	Outputs high		1.5	2		2		2		
Icc	A or B ports	$I_{O} = 0$,	Outputs low		32	40		40		40	mA	
		$V_I = V_{CC}$ or GND	Outputs disabled		1	2		2		2		
Δlcc¶		V _{CC} = 5.5 V, One input at 3.4 V, Other inputs at V _{CC} or GND				50		50		50	μΑ	
Ci	Control inputs	V _I = 2.5 V or 0.5 V			3						pF	
C _{io}	A or B ports	V _O = 2.5 V or 0.5 V	,		9						pF	

^{*} On products compliant to MIL-PRF-38535, this parameter does not apply.

This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

[†] All typical values are at $V_{CC} = 5 \text{ V}$.

[‡] Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

[§] The parameters IOZH and IOZL include the input leakage current.

Datasheet of SN74ABT16853DLR - IC TXRX BUS 8-9BIT DUAL 56-SSOP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

SN54ABT16853, SN74ABT16853 DUAL 8-BIT TO 9-BIT PARITY BUS TRANSCEIVERS

SCBS153B - OCTOBER 1992 - REVISED JANUARY 1997

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

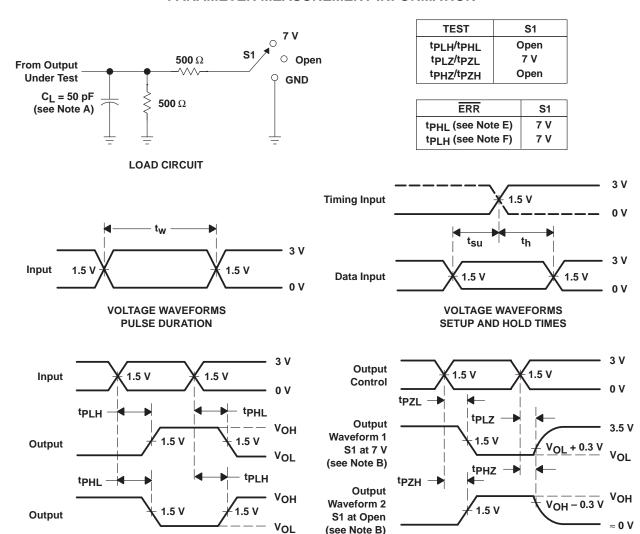
			V _{CC} = T _A = 2	5 V, 25°C	SN54AB	Г16853	SN74ABT	16853	UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	
	t _W Pulse duration	LE high or low	8.5		8.5	1/5	8.5		no
ι _W		CLR low			4 4		4		ns
	Catua tima	Setup time A, B, and PARITY before LE↓ CLR before LE↓			10	2	10		no
^t su	t _{Su} Setup time				9		0		ns
<u>.</u>	4 Haldina	A, B, and PARITY after LE↓	0		80		0		no
t _h Hold time	CLR after LE↓			6° 0		0		ns	

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	1 1 1 1 1 2 3 6		, ;	SN54AB1	16853	SN74ABT16853		UNIT		
	(HAP O1)	(0011-01)	MIN	TYP	MAX	MIN	MAX	MIN	MAX		
t _{PLH}	A or B	B or A	1.5	2.5	3.3	1.5	4.2	1.5	4.1	ns	
t _{PHL}	AOIB	DOIA	2	3.1	3.9	2	4.5	2	4.3	10	
t _{PLH}	A == OF	PARITY	2	4.6	5.9	2	7.3	2	7.1	ns	
t _{PHL}	A or OE	FANITI	2	4.8	6.2	2	7.6	2	7.2	110	
^t PLH	CLR	ERR	2	3.7	5.1	2	5.9	2	5.7	ns	
^t PZH		A or B	2	3.9	4.9	2	5.8	2	5.6	20	
t _{PZL}	ŌĒ	AUID	2.5	4.3	5.1	2.5	6.2	2.5	6	ns	
t _{PHZ}			A or B	2	3.6	4.5	2	5.5	2	5.4	ns
tPLZ	ŌĒ	AOIB	1.5	3	3.8	1.5	4.7	1.5	4.3	110	
^t PZH	ŌĒ	PARITY	2	3.6	5	2	5.8	2	5.7	ns	
t _{PZL}	OE	PARITI	2.5	4.4	5.8	2.5	6.7	2.5	6.5	115	
t _{PHZ}		PARITY	1.5	3.2	4	1.5	4.8	1.5	4.7	ns	
tPLZ	ŌĒ	PARITI	1.5	2.9	3.7	1.5	4.2	1.5	4.1	115	
t _{PLH}	ī.	FDD	2	3.5	4.2	2	5	2	4.8	nc	
t _{PHL}	LE	ERR	2	3.4	4.4	2	5.2	2	4.9	ns	
^t PLH	A, B, or PARITY	ERR	2	4.5	6.3	2	7.5	2	7.2	nc	
t _{PHL}	A, B, UI PARTIT	EKK	2	4.8	6.3	2	7.7	2	7.4	ns	

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

SN54ABT16853, SN74ABT16853 DUAL 8-BIT TO 9-BIT PARITY BUS TRANSCEIVERS


SCBS153B - OCTOBER 1992 - REVISED JANUARY 1997

VOLTAGE WAVEFORMS

ENABLE AND DISABLE TIMES

LOW- AND HIGH-LEVEL ENABLING

PARAMETER MEASUREMENT INFORMATION

INVERTING AND NONINVERTING OUTPUTS

NOTES: A. C₁ includes probe and jig capacitance.

VOLTAGE WAVEFORMS

PROPAGATION DELAY TIMES

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_Q = 50~\Omega$, $t_f \leq 2.5$ ns. $t_f \leq 2.5$ ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. t_{PHL} is measured at 1.5 V.
- F. t_{PLH} is measured at V_{OL} + 0.3 V.

Figure 1. Load Circuit and Voltage Waveforms

Datasheet of SN74ABT16853DLR - IC TXRX BUS 8-9BIT DUAL 56-SSOP

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated