

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Texas Instruments
CD74HCT7046AM

For any questions, you can email us directly: sales@integrated-circuit.com

Data sheet acquired from Harris Semiconductor SCHS218C

February 1998 - Revised October 2003

CD74HC7046A, CD74HCT7046A

Phase-Locked Loop with VCO and Lock Detector

Features

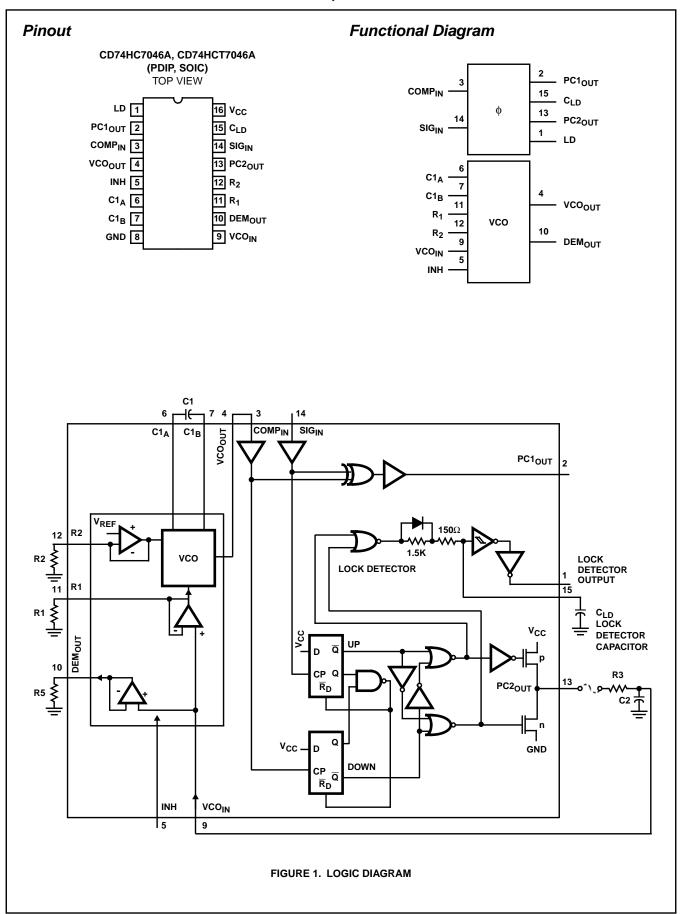
- Center Frequency of 18MHz (Typ) at V_{CC} = 5V, Minimum Center Frequency of 12MHz at V_{CC} = 4.5V
- Choice of Two Phase Comparators
 - Exclusive-OR
 - Edge-Triggered JK Flip-Flop
- Excellent VCO Frequency Linearity
- VCO-Inhibit Control for ON/OFF Keying and for Low Standby Power Consumption
- . Minimal Frequency Drift
- · Zero Voltage Offset Due to Op-Amp Buffer
- Operating Power-Supply Voltage Range
- Fanout (Over Temperature Range)
 - Standard Outputs......10 LSTTL Loads
 - Bus Driver Outputs 15 LSTTL Loads
- Wide Operating Temperature Range . . . -55°C to 125°C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- HC Types
 - 2V to 6V Operation
 - High Noise Immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC} at V_{CC} = 5V
- HCT Types
 - 4.5V to 5.5V Operation
 - Direct LSTTL Input Logic Compatibility, V_{IL} = 0.8V (Max), V_{IH} = 2V (Min)
 - CMOS Input Compatibility, $I_I \le 1\mu A$ at V_{OL} , V_{OH}

Applications

- FM Modulation and Demodulation
- · Frequency Synthesis and Multiplication
- Frequency Discrimination
- Tone Decoding
- · Data Synchronization and Conditioning
- Voltage-to-Frequency Conversion
- Motor-Speed Control
- Related Literature
 - AN8823, CMOS Phase-Locked-Loop Application Using the CD74HC/HCT7046A and CD74HC/HCT7046A

Description

The CD74HC7046A and CD74HCT7046A high-speed silicon-gate CMOS devices, specified in compliance with JEDEC Standard No. 7A, are phase-locked-loop (PLL) circuits that contain a linear voltage-controlled oscillator (VCO), two-phase comparators (PC1, PC2), and a lock detector. A signal input and a comparator input are common to each comparator. The lock detector gives a HIGH level at pin 1 (LD) when the PLL is locked. The lock detector capacitor must be connected between pin 15 (C $_{\rm LD}$) and pin 8 (Gnd). For a frequency range of 100kHz to 10MHz, the lock detector capacitor should be 1000pF to 10pF, respectively.


The signal input can be directly coupled to large voltage signals, or indirectly coupled (with a series capacitor) to small voltage signals. A self-bias input circuit keeps small voltage signals within the linear region of the input amplifiers. With a passive low-pass filter, the 7046A forms a second-order loop PLL. The excellent VCO linearity is achieved by the use of linear op-amp techniques.

Ordering Information

PART NUMBER	TEMP. RANGE (°C)	PACKAGE
CD74HC7046AE	-55 to 125	16 Ld PDIP
CD74HC7046AM	-55 to 125	16 Ld SOIC
CD74HC7046AMT	-55 to 125	16 Ld SOIC
CD74HC7046AM96	-55 to 125	16 Ld SOIC
CD74HCT7046AE	-55 to 125	16 Ld PDIP
CD74HCT7046AM	-55 to 125	16 Ld SOIC
CD74HCT7046AMT	-55 to 125	16 Ld SOIC
CD74HCT7046AM96	-55 to 125	16 Ld SOIC

NOTE: When ordering, use the entire part number. The suffix 96 denotes tape and reel. The suffix T denotes a small-quantity reel of 250.

Pin Descriptions

	- 	.
PIN NO.	SYMBOL	NAME AND FUNCTION
1	LD	Lock Detector Output (Active High)
2	PC1 _{OUT}	Phase Comparator 1 Output
3	COMPIN	Comparator Input
4	VCO _{OUT}	VCO Output
5	INH	Inhibit Input
6	C1 _A	Capacitor C1 Connection A
7	C1 _B	Capacitor C1 Connection B
8	Gnd	Ground (0V)
9	VCOIN	VCO Input
10	DEM _{OUT}	Demodulator Output
11	R ₁	Resistor R1 Connection
12	R ₂	Resistor R2 Connection
13	PC2 _{OUT}	Phase Comparator 2 Output
14	SIG _{IN}	Signal Input
15	C _{LD}	Lock Detector Capacitor Input
16	V _{CC}	Positive Supply Voltage

General Description

VCO

The VCO requires one external capacitor C1 (between C1_A and C1_B) and one external resistor R1 (between R1 and Gnd) or two external resistors R1 and R2 (between R1 and Gnd, and R2 and Gnd). Resistor R1 and capacitor C1 determine the frequency range of the VCO. Resistor R2 enables the VCO to have a frequency offset if required. See logic diagram, Figure 1.

The high input impedance of the VCO simplifies the design of low-pass filters by giving the designer a wide choice of resistor/capacitor ranges. In order not to load the low-pass filter, a demodulator output of the VCO input voltage is provided at pin 10 (DEMOLIT). In contrast to conventional techniques where the DEMOUT voltage is one threshold voltage lower than the VCO input voltage, here the DEMOUT voltage equals that of the VCO input. If $\mathsf{DEM}_{\mathsf{OUT}}$ is used, a load resistor (Rs) should be connected from DEM $_{OUT}$ to Gnd; if unused, DEMOLIT should be left open. The VCO output (VCO_{OUT}) can be connected directly to the comparator input (COMPIN), or connected via a frequency-divider. The VCO output signal has a specified duty factor of 50%. A LOW level at the inhibit input (INH) enables the VCO, while a HIGH level disables the VCO to minimize standby power consumption.

Phase Comparators

The signal input (SIG_{IN}) can be directly coupled to the self-biasing amplifier at pin 14, provided that the signal swing is between the standard HC family input logic levels, Capacitive coupling is required for signals with smaller swings.

Phase Comparator 1 (PC1)

This is an Exclusive-OR network. The signal and comparator input frequencies (f_i) must have a 50% duty factor to obtain the maximum locking range. The transfer characteristic of PC1, assuming ripple $(f_r = 2f_i)$ is suppressed, is:

 $V_{DEMOUT} = (V_{CC}/\pi)$ ($\phi_{SIGIN} - \phi_{COMPIN}$) where V_{DEMOUT} is the demodulator output at pin 10; $V_{DEMOUT} = V_{PC1OUT}$ (via low-pass filter).

The average output voltage from PC1, fed to the VCO input via the low-pass filter and seen at the demodulator output at pin 10 (VDEMOUT), is the resultant of the phase differences of signals (SIGIN) and the comparator input (COMPIN) as shown in Figure 2. The average of VDEM is equal to 1/2 VCC when there is no signal or noise at SIGIN, and with this input the VCO oscillates at the center frequency (fo). Typical waveforms for the PC1 loop locked at fo shown in Figure 3.

The frequency capture range $(2f_{\text{C}})$ is defined as the frequency range of input signals on which the PLL will lock if it was initially out-of-lock. The frequency lock range $(2f_{\text{L}})$ is defined as the frequency range of input signals on which the loop will stay locked if it was initially in lock. The capture range is smaller or equal to the lock range.

With PC1, the capture range depends on the low-pass filter characteristics and can be made as large as the lock range. This configuration retains lock behavior even with very noisy input signals. Typical of this type of phase comparator is that it can lock to input frequencies close to the harmonics of the VCO center frequency.

Phase Comparator 2 (PC2)

This is a positive edge-triggered phase and frequency detector. When the PLL is using this comparator, the loop is controlled by positive signal transitions and the duty factors of SIGIN and COMP $_{\rm IN}$ are not important. PC2 comprises two D-type flip-flops, control-gating and a three-state output stage. The circuit functions as an up-down counter (Figure 1) where SIG $_{\rm IN}$ causes an up-count and COMP $_{\rm IN}$ a down-count. The transfer function of PC2, assuming ripple (f $_{\rm f}$ = f $_{\rm i}$) is suppressed, is:

 $V_{DEMOUT} = (V_{CC}/4\pi)$ ($\phi_{SIGN} - \phi_{COMPIN}$) where V_{DEMOUT} is the demodulator output at pin 10; $V_{DEMOUT} = V_{PC2OUT}$ (via low-pass filter).

The average output voltage from PC2, fed to the VCO via the low-pass filter and seen at the demodulator output at pin 10 (VDEMOUT), is the resultant of the phase differences of $SIG_{\mbox{\footnotesize{IN}}}$ and COMP $_{\mbox{\footnotesize{IN}}}$ as shown in Figure 4. Typical waveforms for the PC2 loop locked at f_0 are shown in Figure 5.

When the frequencies of SIG_{IN} and $COMP_{IN}$ are equal but the phase of SIG_{IN} leads that of $COMP_{IN}$, the p-type output driver at $PC2_{OUT}$ is held "ON" for a time corresponding to the phase differences (ϕ_{DEMOUT}). When the phase of SIG_{IN} lags that of $COMP_{IN}$, the n-type driver is held "ON".

When the frequency of ${\rm SIG_{IN}}$ is higher than that of ${\rm COMP_{IN}}$, the p-type output driver is held "ON" for most of the input signal cycle time, and for the remainder of the cycle both n-type and p-type drivers are "OFF" (three-state). If the ${\rm SIG_{IN}}$ fre-

quency is lower than the COMP_{IN} frequency, then it is the n-type driver that is held "ON" for most of the cycle. Subsequently, the voltage at the capacitor (C2) of the low-pass filter connected to PC2_{OUT} varies until the signal and comparator inputs are equal in both phase and frequency. At this stable point the voltage on C2 remains constant as the PC2 output is in three-state and the VCO input at pin 9 is a high impedance.

Thus, for PC2, no phase difference exists between SIG_{IN} and $COMP_{IN}$ over the full frequency range of the VCO. Moreover, the power dissipation due to the low-pass filter is reduced because both p-type and n-type drivers are "OFF" for most of the signal input cycle. It should be noted that the PLL lock range for this type of phase comparator is equal to the capture range and is independent of the low-pass filter. With no signal present at SIG_{IN} , the VCO adjusts, via PC2, to its lowest frequency.

Lock Detector Theory of Operation

Detection of a locked condition is accomplished by a NOR gate and an envelope detector as shown in Figure 6. When the PLL is in Lock, the output of the NOR gate is High and the lock detector output (Pin 1) is at a constant high level. As the loop tracks the signal on Pin 14 (signal in), the NOR gate outputs pulses whose widths represent the phase differences between the VCO and the input signal. The time between pulses will be approximately equal to the time constant of the VCO center frequency. During the rise time of the pulse, the diode across the $1.5 \mathrm{k}\Omega$ resistor is forward

biased and the time constant in the path that charges the lock detector capacitor is T = (150 Ω x C_{LD}).

During the fall time of the pulse the capacitor discharges through the 1.5k Ω and the 150 Ω resistors and the channel resistance of the n-device of the NOR gate to ground (T = (1.5k Ω + 150 Ω + Rn-channel) x C_{I D}).

The waveform preset at the capacitor resembles a sawtooth as shown in Figure 7. The lock detector capacitor value is determined by the VCO center frequency. The typical range of capacitor for a frequency of 10MHz is about 10pF and for a frequency of 100kHz is about 100pF. The chart in Figure 8 can be used to select the proper lock detector capacitor value. As long as the loop remains locked and tracking, the level of the sawtooth will not go below the switching threshold of the Schmitt-trigger inverter. If the loop breaks lock, the width of the error pulse will be wide enough to allow the sawtooth waveform to go below threshold and a level change at the output of the Schmitt trigger will indicate a loss of lock, as shown in Figure 9. The lock detector capacitor also acts to filter out small glitches that can occur when the loop is either seeking or losing lock.

Note: When using phase comparator 1, the detector will only indicate a lock condition on the fundamental frequency and not on the harmonics, which PC1 will also lock on. If a detection of lock is needed over the harmonic locking range of PC1, then the lock detector output must be OR-ed with the output of PC1.

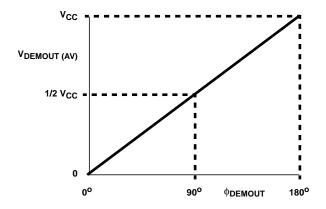


FIGURE 2. PHASE COMPARATOR 1: AVERAGE OUTPUT VOLTAGE vs INPUT PHASE DIFFERENCE: VDEMOUT = VPC10UT = (VCC/π) (ϕ sigin - ϕ COMPIN); ϕ DEMOUT = (ϕ sigin - ϕ COMPIN)

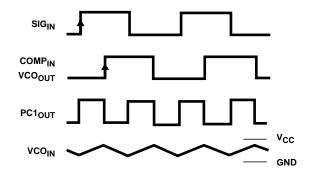
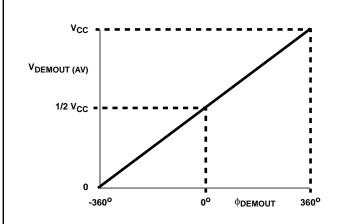



FIGURE 3. TYPICAL WAVEFORMS FOR PLL USING PHASE COMPARATOR 1, LOOP LOCKED AT $f_{\rm O}$

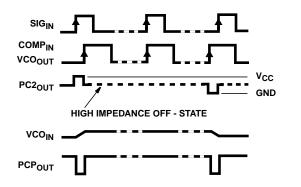


FIGURE 4. PHASE COMPARATOR 2: AVERAGE OUTPUT VOLTAGE vs INPUT PHASE DIFFERENCE: $V_{DEMOUT} = V_{PC2OUT} = (V_{CC}/\pi) \ (\varphi sigin - \varphi compin); \ \varphi_{DEMOUT} = (\varphi sigin - \varphi compin)$

FIGURE 5. TYPICAL WAVEFORMS FOR PLL USING PHASE COMPARATOR 2, LOOP LOCKED AT $f_{\rm O}$

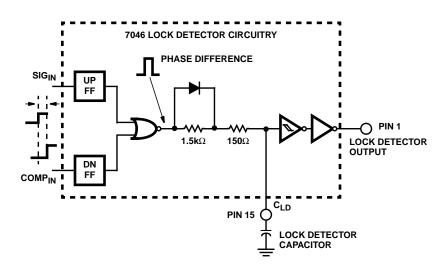


FIGURE 6. CD74HC/HCT7046A LOCK DETECTOR CIRCUIT

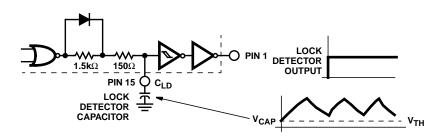


FIGURE 7. WAVEFORM PRESENT AT LOCK DETECTOR CAPACITOR WHEN IN LOCK

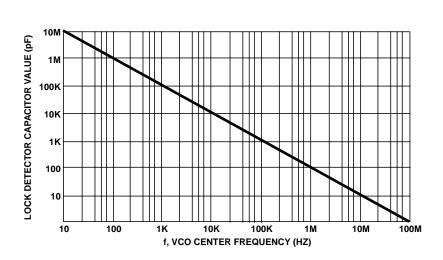


FIGURE 8. LOCK DETECTOR CAPACITOR SELECTION CHART

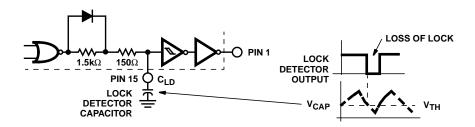


FIGURE 9. WAVEFORM PRESENT AT LOCK DETECTOR CAPACITOR WHEN UNLOCKED

Absolute Maximum Ratings	Thermal Information
DC Supply Voltage, V_{CC} 0.5V to 7V DC Input Diode Current, I_{IK} For $V_I < -0.5$ V or $V_I > V_{CC} + 0.5$ V ± 20 mA DC Output Diode Current, I_{OK} For $V_O < -0.5$ V or $V_O > V_{CC} + 0.5$ V ± 20 mA DC Output Source or Sink Current per Output Pin, I_O For $V_O > -0.5$ V or $V_O < V_{CC} + 0.5$ V ± 25 mA DC V_{CC} or Ground Current, I_{CC} ± 25 mA	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
Operating Conditions	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	
4.5V. 500ns (Max) 6V. 400ns (Max)	

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. The package thermal impedance is calculated in accordance with JESD 51-7.

DC Electrical Specifications

		TES CONDI		v _{cc}		25°C		-40°C T	O 85°C	-55°C T	O 125°C	
PARAMETER	SYMBOL	V _I (V)	I _O (mA)	(V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
HC TYPES							-					
VCO SECTION												
INH High Level Input	V _{IH}	V _{IH} -		3	2.1	-	-	2.1	-	2.1	-	V
Voltage				4.5	3.15	-	-	3.15	-	3.15	-	V
				6	4.2	-	-	4.2	-	4.2	-	V
INH Low Level Input	V _{IL}	-	-	3	-	-	0.9	-	0.9	-	0.9	V
Voltage				4.5	-	-	1.35	-	1.35	-	1.35	V
				6	-	-	1.8	-	1.8	-	1.8	V
VCO _{OUT} High Level	V _{OH}	V_{IH} or V_{IL}	-0.02	3	2.9	-	-	2.9	-	2.9	-	V
Output Voltage CMOS Loads			-0.02	4.5	4.4	-	-	4.4	-	4.4	-	V
OWOO LOUGS			-0.02	6	5.9	-	-	5.9	-	5.9	-	V
VCO _{OUT} High Level			-	-	-	-	-	-	-	-	-	V
Output Voltage TTL Loads			-4	4.5	3.98	-	-	3.84	-	3.7	-	V
112 20000			-5.2	6	5.48	-	-	5.34	-	5.2	-	V
VCO _{OUT} Low Level	V _{OL}	V_{IH} or V_{IL}	0.02	2	-	-	0.1	-	0.1	-	0.1	V
Output Voltage CMOS Loads			0.02	4.5	-	-	0.1	-	0.1	-	0.1	V
OMOO LOGGO			0.02	6	-	-	0.1	-	0.1	-	0.1	V
VCO _{OUT} Low Level			-	-	-	-	-	-	-	-	-	V
Output Voltage TTL Loads			4	4.5	-	-	0.26	-	0.33	-	0.4	V
			5.2	6	-	-	0.26	-	0.33	-	0.4	V
C1A, C1B Low Level	V _{OL}	V _{IL} or	4	4.5	-	-	0.40	-	0.47	-	0.54	V
Output Voltage (Test Purposes Only)		V _{OL}	5.2	6	-	-	0.40	-	0.47	-	0.54	V

DC Electrical Specifications (Continued)

		TE:		V _{CC}		25°C		-40°C 1	O 85°C	-55°C T	O 125°C	
PARAMETER	SYMBOL	V _I (V)	I _O (mA)	(V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
INH VCO _{IN} Input Leakage Current	Ι _Ι	V _{CC} or GND	-	6	-	-	±0.1	-	±1	-	±1	μΑ
R1 Range (Note 2)	-	-	-	4.5	3	-	-	-	-	-	-	kΩ
R2 Range (Note 2)	-	-	-	4.5	3	-	-	-	-	-	-	kΩ
C1 Capacitance	-	-	-	3	-	-	No	-	-	-	-	pF
Range				4.5	40	-	Limit	-	-	-	-	pF
				6	-	-		-	-	-	-	pF
VCO _{IN} Operating	-	Over the		3	1.1	-	1.9	-	-	-	-	V
Voltage Range		specified f		4.5	1.1	-	3.2	-	-	-	-	V
		8, and (Note	35 - 38	6	1.1	-	4.6	-	-	-	-	V
PHASE COMPARATO	R SECTIO	N	-								•	
SIG _{IN} , COMP _{IN}	V _{IH}	-	-	2	1.5	-	-	1.5	-	1.5	-	V
DC Coupled High-Level Input				4.5	3.15	-	-	3.15	-	3.15	-	V
Voltage				6	4.2	-	-	4.2	-	4.2	-	V
SIG _{IN} , COMP _{IN}	V _{IL}	-	-	2	-	-	0.5	-	0.5	-	0.5	V
DC Coupled Low-Level Input				4.5	-	-	1.35	-	1.35	-	1.35	V
Voltage				6	-	-	1.8	-	1.8	-	1.8	V
LD, PCn _{OUT} High-	V _{OH}	V _{IL} or V _{IH}	-0.02	2	1.9	-	-	1.9	-	1.9	-	V
Level Output Voltage CMOS Loads				4.5	4.4	-	-	4.4	-	4.4	-	V
CIVIOO LOAGS				6	5.9	-	-	5.9	-	5.9	-	V
LD, PCn _{OUT} High-	V _{OH}	V _{IL} or V _{IH}	-4	4.5	3.98	-	-	3.84	-	3.7	-	V
Level Output Voltage TTL Loads			-5.2	6	5.48	-	-	5.34	-	5.2	-	V
LD, PCn _{OUT} Low-	V _{OL}	V _{IL} or V _{IH}	0.02	2	-	-	0.1	-	0.1	-	0.1	V
Level Output Voltage CMOS Loads				4.5	-	-	0.1	-	0.1	-	0.1	V
				6	-	-	0.1	-	0.1	-	0.1	V
LD, PCn _{OUT} Low- Level Output Voltage	V _{OL}	V _{IL} or V _{IH}	4	4.5	-	-	0.26	-	0.33	-	0.4	V
TTL Loads			5.2	6	-	-	0.26	-	0.33	-	0.4	V
SIG _{IN} , COMP _{IN} Input	Ιį	V _{CC} or	-	2	-	-	±3	-	±4	-	±5	μΑ
Leakage Current		GND		3	-	-	±7	-	±9	-	±11	μΑ
				4.5	-	-	±18	-	±23	-	±29	μΑ
				6	-	-	±30	-	±38	-	±45	μΑ
PC2 _{OUT} Three-State Off-State Current	I _{OZ}	V _{IL} or V _{IH}	-	6	-	-	±0.5	-	±5	-	±10	μΑ
SIG _{IN} , COMP _{IN} Input	R _I	V _I at Se		3	-	800	-	-	-	_	-	kΩ
Resistance		Operatio ΔV _I =		4.5	-	250	-	-	-	-	-	kΩ
		See Fig		6	-	150	-	-	-	-	-	kΩ
DEMODULATOR SEC	CTION											
Resistor Range	R _S	at R _S >	300kΩ	3	10	-	300	-	-	-	-	kΩ
		Leakage Can Inf	Current luence	4.5	10	-	300	-	-	-	-	kΩ
		V _{DEN}		6	10	-	300	-	-	-	-	kΩ

DC Electrical Specifications (Continued)

		CONDI		v _{cc}		25°C		-40°C 1	го 85°C	-55°C T	O 125°C	
PARAMETER	SYMBOL	V _I (V)	I _O (mA)	(V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
Offset Voltage VCOIN	V _{OFF}	$V_I = V_{V_I}$	COIN =	3	-	±30	-	-	-	-	-	mV
to V _{DEM}		V _{CC}		4.5	-	±20	-	-	-	-	-	mV
		Values tal R _S Ra See Fig	ange	6	-	±10	-	-	-	-	-	mV
Dynamic Output	RO	VDEMO	OUT =	3	-	25	-	-	-	-	-	Ω
Resistance at DEM _{OUT}		$\frac{V_{CC}}{2}$		4.5	-	25	-	-	-	-	-	Ω
DEMO01		-		6	-	25	-	-	-	-	-	Ω
Quiescent Device Current	I _{CC}	Pins 3, 5 at V _{CC} F GND, I _I a and 14 exclu	Pin 9 at at Pins 3 to be	6	-	-	8	-	80	-	160	μА
HCT TYPES												
VCO SECTION												
INH High Level Input Voltage	V _{IH}	-	-	4.5 to 5.5	2	-	-	2	-	2	-	V
INH Low Level Input Voltage	V _{IL}	-	-	4.5 to 5.5	-	-	0.8	-	0.8	-	0.8	V
VCO _{OUT} High Level Output Voltage CMOS Loads	V _{OH}	V _{IH} or V _{IL}	-0.02	4.5	4.4	-	-	4.4	-	4.4	-	V
VCO _{OUT} High Level Output Voltage TTL Loads			-4	4.5	3.98	-	-	3.84	-	3.7	-	V
VCO _{OUT} Low Level Output Voltage CMOS Loads	V _{OL}	V _{IH} or V _{IL}	0.02	4.5	-	-	0.1	-	0.1	-	0.1	V
VCO _{OUT} Low Level Output Voltage TTL Loads			4	4.5	-	-	0.26	-	0.33	-	0.4	V
C1A, C1B Low Level Output Voltage (Test Purposes Only)	V _{OL}	V _{IH} or V _{IL}	4	4.5	-	-	0.40	-	0.47	-	0.54	V
INH VCO _{IN} Input Leakage Current	lı	Any Vo Between V	V _{CC} and	5.5	-		±0.1	-	±1	-	±1	μА
R1 Range (Note 2)	-	-	-	4.5	3	-	-	-	-	-	-	kΩ
R2 Range (Note 2)	-	-	-	4.5	3	-	-	-	-	-	-	kΩ
C1 Capacitance Range	-	-	-	4.5	40	-	No Limit	-	-	-	-	pF
VCO _{IN} Operating Voltage Range	-	Over the specified f Linearity So 8, and 3 (Note	or R1 for ee Figure 35 - 38	4.5	1.1	-	3.2	-	-	-	-	V
PHASE COMPARATO	R SECTIO	N										
SIG _{IN} , COMP _{IN} DC Coupled High-Level Input Voltage	V _{IH}	-	-	4.5 to 5.5	3.15	-	-	3.15	-	3.15	-	V

DC Electrical Specifications (Continued)

		TES CONDI		v _{cc}		25°C		-40°C 1	O 85°C	-55°C TO 125°C		
PARAMETER	SYMBOL	V _I (V)	I _O (mA)	(V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
SIG _{IN} , COMP _{IN} DC Coupled Low-Level Input Voltage	V _{IL}	-	-	4.5 to 5.5	-	-	1.35	-	1.35	-	1.35	V
LD, PCn _{OUT} High- Level Output Voltage CMOS Loads	V _{OH}	V _{IL} or V _{IH}	-	4.5	4.4	-	-	4.4	-	4.4	-	V
LD, PCn _{OUT} High- Level Output Voltage TTL Loads	V _{OH}	V _{IL} or V _{IH}	1	4.5	3.98	-	-	3.84	-	3.7	1	٧
LD, PCn _{OUT} Low- Level Output Voltage CMOS Loads	V _{OL}	V _{IL} or V _{IH}	-	4.5	-	-	0.1	-	0.1	-	0.1	V
LD, PCn _{OUT} Low- Level Output Voltage TTL Loads	V _{OL}	V _{IL} or V _{IH}	-	4.5	-	-	0.26	-	0.33	-	0.4	V
SIG _{IN} , COMP _{IN} Input Leakage Current	Ι _Ι	Any Voltage Between V _{CC} and GND	-	5.5	-	-	±30		±38		±45	μΑ
PC2 _{OUT} Three-State Off-State Current	l _{OZ}	V _{IL} or V _{IH}	1	5.5	-	-	±0.5	±5	-	-	±10	μΑ
SIG _{IN} , COMP _{IN} Input Resistance	R _I	V _I at Se Operatio ΔV, 0 See Fig	n Point: .5V,	4.5	-	250	-	-	-	-	-	kΩ
DEMODULATOR SEC	TION											
Resistor Range	R _S	at R _S > Leakage Can Infl V _{DEM}	Current uence	4.5	10	-	300	-	-	-	-	kΩ
Offset Voltage VCO _{IN} to V _{DEM}	VOFF	$V_{I} = V_{VI}$ $\frac{V_{CC}}{2}$ $Values ta$ $R_{S} Ra$ $See Fig$	ken over ange	4.5	-	±20	-	-	-	-	-	mV
Dynamic Output Resistance at DEM _{OUT}	R _O	V _{DEMO}	DUT =	4.5	-	25	-	-	-	-	-	Ω
Quiescent Device Current	Icc	V _{CC} or GND	-	5.5	-	-	8	-	80	-	160	μΑ
Additional Quiescent Device Current Per Input Pin: 1 Unit Load	ΔI _{CC} (Note 4)	V _{CC} -2.1 (Exclud- ing Pin 5)	-	4.5 to 5.5	-	100	360	-	450	-	490	μΑ

- 2. The value for R1 and R2 in parallel should exceed 2.7kΩ; R1 and R2 values above 300kΩ may contribute to frequency shift due to leakage currents.
- 3. The maximum operating voltage can be as high as V_{CC} -0.9V, however, this may result in an increased offset voltage.
- 4. For dual-supply systems theoretical worst case ($V_I = 2.4V$, $V_{CC} = 5.5V$) specification is 1.8mA.

HCT Input Loading Table

INPUT	UNIT LOADS
INH	1

NOTE: Unit Load is ΔI_{CC} limit specified in DC Electrical Table, e.g., 360µA max at 25°C.

Switching Specifications $C_1 = 50pF$, Input t_r , $t_f = 6ns$

		TEST			25°C		-40 ⁰ (С ТО °С		C TO 5°C	
PARAMETER	SYMBOL	CONDITIONS	V _{CC} (V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
HC TYPES						-				•	
PHASE COMPARATOR SECTI	ON										
Propagation Delay ${\sf SIG_{IN}, COMP_{IN} \ to \ PC_{1OUT}}$	t _{PLH} , t _{PHL}		2	-	-	200	-	250	-	300	ns
			4.5	-	-	40	-	50	-	60	ns
			6	-	-	34	-	43	-	51	ns
Output Transition Time	t _{THL} , t _{TLH}		2	-	-	75	-	95	-	110	ns
			4.5	-	-	15	-	19	-	22	ns
			6	-	-	13	-	16	-	19	ns
Output Enable Time, SIG _{IN} ,	t _{PZH} , t _{PZL}		2	-	-	280	-	350	-	420	ns
COMP _{IN} to PC2 _{OUT}			4.5	-	-	56	-	70	-	84	ns
			6	-	-	48	-	60	-	71	ns
Output Disable Time, SIG _{IN} ,	t _{PHZ} , t _{PLZ}		2	-	-	325	-	405	-	490	ns
COMP _{IN} to PC2 _{OUT}			4.5	-	-	65	-	81	-	98	ns
			6	-	-	55	-	69	-	83	ns
AC Coupled Input Sensitivity (P-		V _{I(P-P)}	3	-	11	-	-	-	-	-	mV
P) at SIG _{IN} or COMP _{IN}			4.5	-	15	-	-	-	-	-	mV
			6	-	33	-	-	-	-	-	mV
VCO SECTION										•	
Frequency Stability with	Δf	$R_1 = 100k\Omega$,	3	-	-	-	Тур	0.11	-	-	%/°C
Temperature Change	$\overline{\Delta}\overline{T}$	R ₂ = ∞	4.5	-	-	-			-	-	%/°C
			6	-	-	-			-	-	%/°C
Maximum Frequency	f _{MAX}	C ₁ = 50pF	3	-	-	-	-	-	-	-	MHz
		$R_1 = 3.5k\Omega$ $R_2 = \infty$	4.5	-	24	-	-	-	-	-	MHz
		2	6	-	-	-	-	-	-	-	MHz
		C ₁ = 0pF	3	-	-	-	-	-	-	-	MHz
		$R_1 = 9.1k\Omega$ $R_2 = \infty$	4.5	-	38	-	-	-	-	-	MHz
		_	6	-	-	-	-	-	-	-	MHz
Center Frequency	f _o	C ₁ = 40pF	3	7	10	-	-	-	-	-	MHz
		$R_1 = 3k\Omega$ $R_2 = \infty$	4.5	12	17	-	-	-	-	-	MHz
		$VCO_{IN} = V_{CC}/2$	6	14	21	-	-	-	-	-	MHz
Frequency Linearity	Δf_{VCO}	$R_1 = 100k\Omega$	3	-	-	-	-	-	-	-	%
		$R_2 = \infty$ $C_1 = 100pF$	4.5	-	0.4	-	-	-	-	-	%
		, 100pi	6	-	-	-	-	-	-	-	%

Center Frequency

Frequency Linearity

Offset Frequency

V_{OUT} vs f_{IN}

DEMODULATOR SECTION

CD74HC7046A, CD74HCT7046A

		TEST		25°C			-40 ⁰ (85		-55°C TO 125°C		
PARAMETER	SYMBOL	CONDITIONS	V _{CC} (V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
Offset Frequency		$R_2 = 220k\Omega$	3	-	-	-	-	-	-	-	kHz
		C ₁ = 1nF	4.5	1	400	-	1	-	•	-	kHz
			6	-	-	-	-	-	-	-	kHz
DEMODULATOR SECTION											
V _{OUT} vs f _{IN}		$R_1 = 100k\Omega$	3	-	-	-	-	-	-	-	mV/kH
		$R_2 = \infty$ $C_1 = 100pF$	4.5	-	330	-	-	-	-	-	mV/kH
		$R_5 = 10k\Omega$ $R_3 = 100k\Omega$ $C_2 = 100pF$	6	-	-	-	-	-	-	-	mV/kH
HCT TYPES											
PHASE COMPARATOR SECT	ION										
Propagation Delay SIG _{IN} , COMP _{IN} to PC _{1OUT}	t _{PLH} , t _{PHL}		4.5	-	-	45	-	56	-	68	ns
Output Transition Time	t _{THL} , t _{TLH}		4.5	-	-	15	-	19	-	22	ns
Output Enable Time, SIG _{IN} , COMP _{IN} to PC2 _{OUT}	t _{PZH} , t _{PZL}		4.5	-	-	60	-	75	-	90	ns
Output Disable Time, SIG _{IN} , COMP _{IN} to PCZ _{OUT}	t _{PHZ} , t _{PLZ}		4.5	-	-	70	-	86	-	105	ns
AC Coupled Input Sensitivity		V _{I(P-P)}	3	-	11	-	-	-	-	-	mV
(P-P) at SIGIN or COMPIN			4.5	-	15	-	-	-	-	-	mV
			6	-	33	-	-	-	-	-	mV
VCO SECTION	•										•
Frequency Stability with Temperature Change	$\frac{\Delta f}{\overline{\Delta T}}$	$R_1 = 100$ kΩ, $R_2 = \infty$	4.5	-	-	-	Тур	0.11	-	-	%/°C
Maximum Frequency	f _{MAX}	$C_1 = 50pF$ $R_1 = 3.5k\Omega$ $R_2 = \infty$	4.5	-	24	-	-	-	-	-	MHz
		$C_1 = 0pF$ $R_1 = 9.1k\Omega$ $R_2 = \infty$	4.5	-	38	-	-	-	-	-	MHz

 $C_1 = 40pF$

 $R_1 = 3k\Omega$ $R_2 = \infty$ $VCO_{IN} = V_{CC}/2$ $R_1 = 100k\Omega$

 $R_2 = \infty$ $C_1 = 100pF$

 $R_2 = 220k\Omega$

 $\bar{C}_1 = 1nF$

 $R_1 = 100k\Omega$

 $R_1 = 100k\Omega$ $R_2 = \infty$ $C_1 = 100pF$ $R_5 = 10k\Omega$

 $R_3 = 100k\Omega$ $C_2 = 100pF$

 f_0

 Δf_{VCO}

4.5

4.5

4.5

4.5

12

17

0.4

400

330

 MHz

%

kHz

mV/kHz

Test Circuits and Waveforms

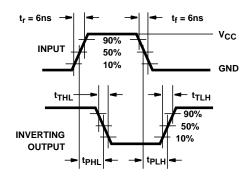


FIGURE 10. HC TRANSITION TIMES AND PROPAGATION DELAY TIMES, COMBINATION LOGIC

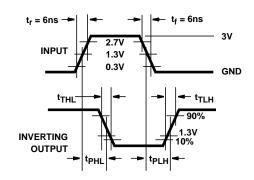


FIGURE 11. HCT TRANSITION TIMES AND PROPAGATION **DELAY TIMES, COMBINATION LOGIC**

Typical Performance Curves

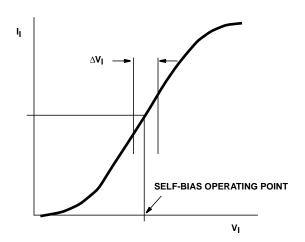


FIGURE 12. TYPICAL INPUT RESISTANCE CURVE AT SIGIN, COMPIN

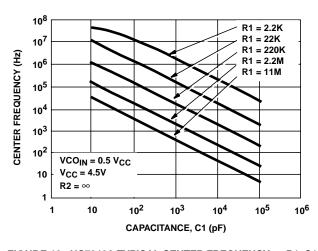
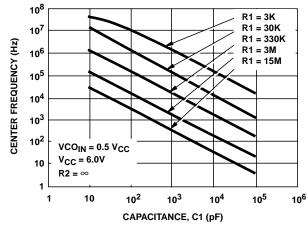



FIGURE 13. HC7046A TYPICAL CENTER FREQUENCY vs R1, C1

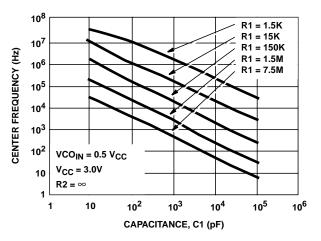
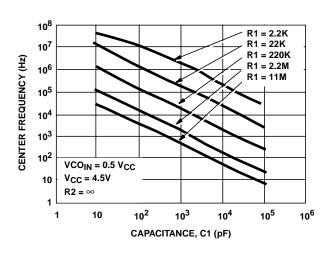



FIGURE 14. HC7046A TYPICAL CENTER FREQUENCY vs R1, C1 FIGURE 15. HC7046A TYPICAL CENTER FREQUENCY vs R1, C1

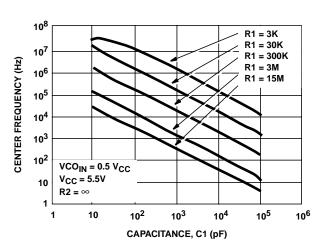
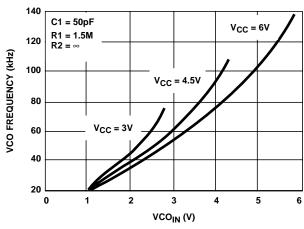



FIGURE 16. HCT7046A TYPICAL CENTER FREQUENCY vs R1, C1

FIGURE 17. HCT7046A TYPICAL CENTER FREQUENCY vs R1, C1

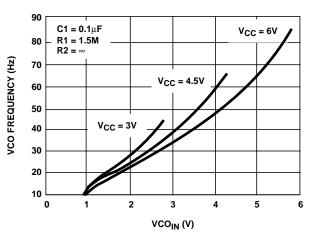
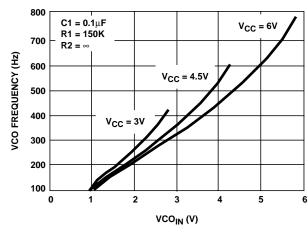



FIGURE 18. HC7046A TYPICAL VCO FREQUENCY vs VCOIN

FIGURE 19. HC7046A TYPICAL VCO FREQUENCY vs VCO IN (R1 = 1.5M Ω , C1 = 0.1 μ F)

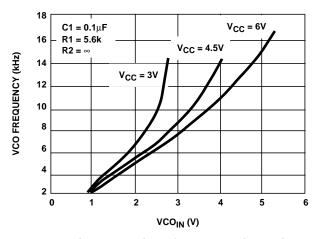


FIGURE 20. HC7046A TYPICAL VCO FREQUENCY vs VCO IN (R1 = 150k Ω , C1 = 0.1 μ F)

FIGURE 21. HC7046A TYPICAL VCO FREQUENCY vs VCO IN (R1 = 5.6k Ω , C1 = 0.1 μ F)

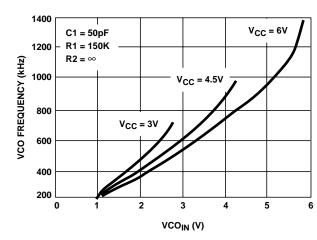


FIGURE 22. HC7046A TYPICAL VCO FREQUENCY vs VCO IN (R1 = 150k Ω , C1 = 0.1 μ F)

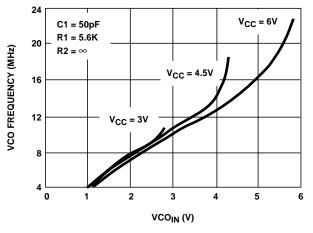


FIGURE 23. HC7046A TYPICAL VCO FREQUENCY vs VCO_{IN} (R1 = $5.6k\Omega$, C1 = 50pF)

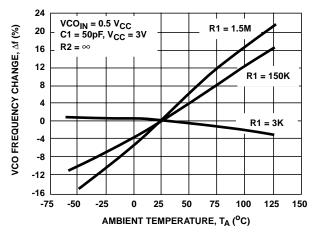


FIGURE 24. HC7046A TYPICAL CHANGE IN VCO FREQUENCY VS AMBIENT TEMPERATURE AS A FUNCTION OF R1 (V_{CC} = 3V)

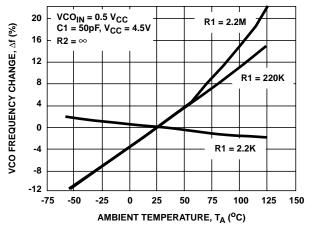


FIGURE 25. HC7046A TYPICAL CHANGE IN VCO FREQUENCY vs AMBIENT TEMPERATURE AS A FUNCTION OF R1

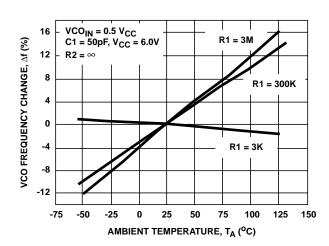


FIGURE 26. HC7046A TYPICAL CHANGE IN VCO FREQUENCY vs AMBIENT TEMPERATURE AS A FUNCTION OF R1

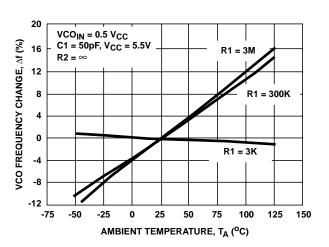


FIGURE 27. HCT7046A TYPICAL CHANGE IN VCO FREQUENCY vs AMBIENT TEMPERATURE AS A FUNCTION OF R1

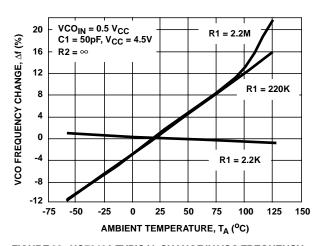


FIGURE 28. HC7046A TYPICAL CHANGE IN VCO FREQUENCY vs AMBIENT TEMPERATURE AS A FUNCTION OF R1

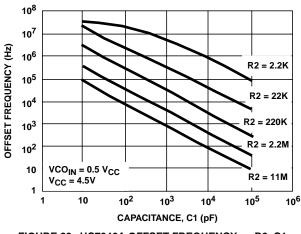


FIGURE 29. HC7046A OFFSET FREQUENCY vs R2, C1

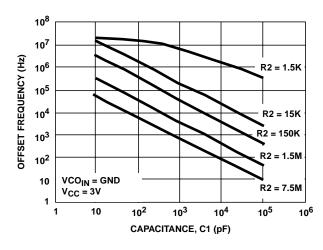


FIGURE 30. HC7046A OFFSET FREQUENCY vs R2, C1

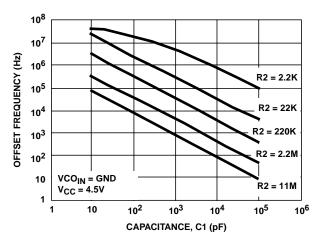


FIGURE 31. HCT7046A OFFSET FREQUENCY vs R2, C1

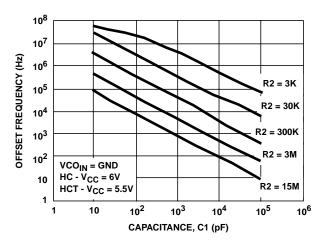


FIGURE 32. HC7046A AND HCT7046A OFFSET FREQUENCY vs R2, C1

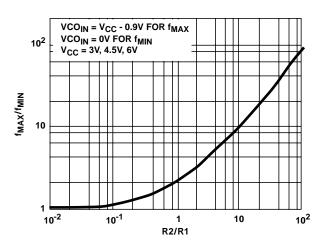


FIGURE 33. HC7046A f_{MIN}/f_{MAX} vs R2/R1

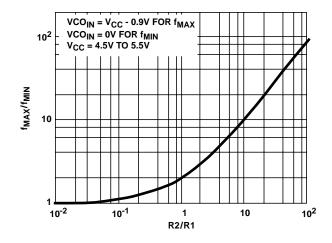


FIGURE 34. HCT7046A f_{MAX}/f_{MIN} vs R2/R1

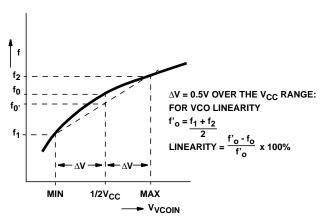


FIGURE 35. DEFINITION OF VCO FREQUENCY LINEARITY

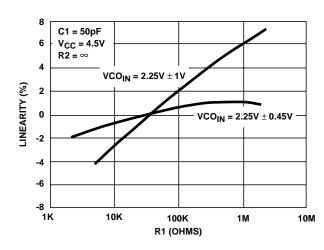


FIGURE 36. HC7046A VCO LINEARITY vs R1

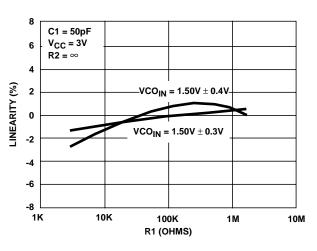
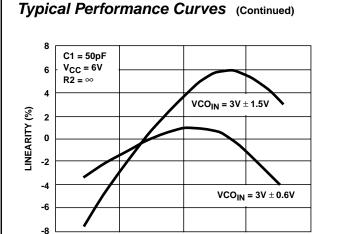



FIGURE 37. HC7046A VCO LINEARITY vs R1

10M

100K

R1 (OHMS)

10K

1K

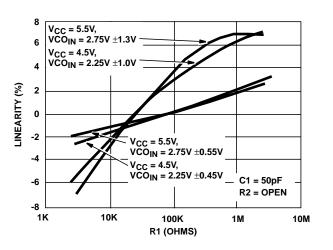


FIGURE 39. HCT7046A VCO LINEARITY vs R1

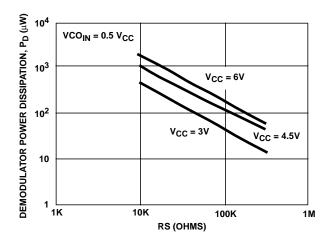


FIGURE 40. HC7046A DEMODULATOR POWER DISSIPATION vs RS (TYP)

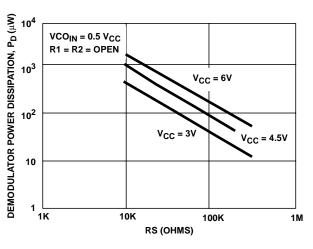


FIGURE 41. HCT7046A DEMODULATOR POWER DISSIPATION vs RS (TYP) (V_{CC} = 3V, 4.5V, 6V)

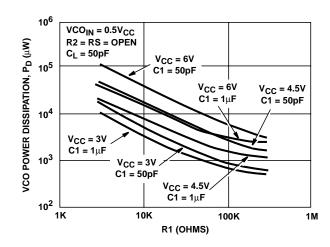


FIGURE 42. HC7046A VCO POWER DISSIPATION vs R1 (C1 = 50pF, 1μ F)

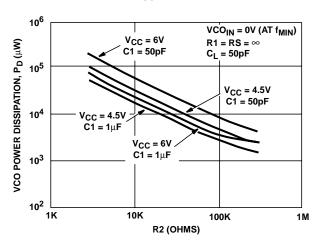
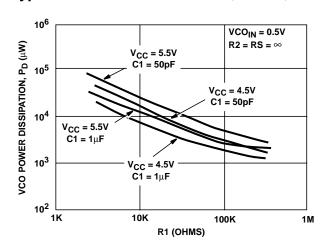



FIGURE 43. HCT7046A VCO POWER DISSIPATION vs R2 (C1 = 50pF, 1μ F)

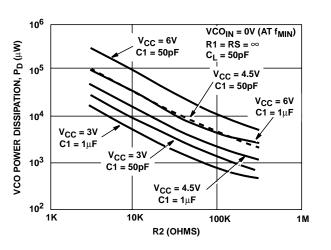


FIGURE 44. HCT7046A VCO POWER DISSIPATION vs R1 (C1 = 50pF, 1μ F)

FIGURE 45. HC7046A VCO POWER DISSIPATION vs R2 (C1 = 50pF, $1\mu F$)

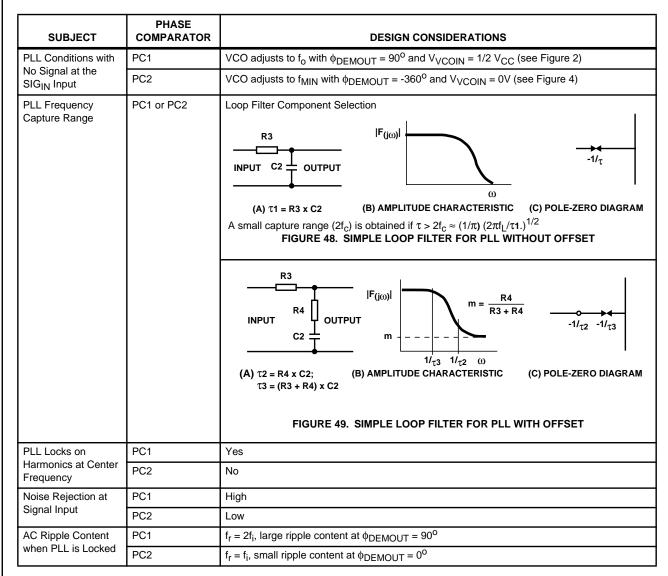
HC/HCT7046A CPD

CHIP SECTION	нс	НСТ	UNIT
Comparator 1	48	50	pF
Comparator 2	39	48	pF
vco	61	53	pF

Application Information

This information is a guide for the approximation of values of external components to be used with the CD74HC7046A and CD74HCT7046A in a phase-lock-loop system.

References should be made to Figures 13 through 23 and Figures 36 through 41 as indicated in the table.


Values of the selected components should be within the following ranges:

R1 $> 3k\Omega$; R2 $> 3k\Omega$;

R1 || R2 parallel value > $2.7k\Omega$; C1 greater than 40pF

SUBJECT	PHASE COMPARATOR	DESIGN CONSIDERATIONS
VCO Frequency Without Extra Offset (R2 = ∞)	PC1 or PC2	VCO Frequency Characteristic The characteristics of the VCO operation are shown in Figures 13 - 23. f_MAX
	PC1	Selection of R1 and C1 Given f ₀ , determine the values of R1 and C1 using Figures 13 - 17.
	PC2	Given f_{MAX} calculate f_0 as $f_{MAX}/2$ and determine the values of R1 and C1 using Figures 13 - 17. To obtain $2f_L$: $2f_L \approx \frac{2(\Delta VCO_{IN})}{R1C1}$ where $0.9V < VCO_{IN} < V_{CC}$ - $0.9V$ is the range of ΔVCO_{IN}
VCO Frequency with Extra Offset (R2 > 3kΩ)	PC1 or PC2	VCO Frequency Characteristic The characteristics of the VCO operation are shown in Figures 29 - 32. MAX
	PC1 or PC2	Selection of R1, R2 and C1 Given f_0 and f_L , offset frequency, f_{MIN} , may be calculated from $f_{MIN} \approx f_0$ - 1.6 f_L . Obtain the values of C1 and R2 by using Figures 29 - 32. Calculate the values of R1 from Figures 33 - 34.

Lock Detector Circuit

The lock detector feature is very useful in data synchronization, motor speed control, and demodulation. By adjusting the value of the lock detector capacitor so that the lock output will change slightly before actually losing lock, the designer can create an "early warning" indication allowing corrective measures to be implemented. The reverse is also true, especially with motor speed controls, generators, and clutches that must be set up before actual lock occurs or disconnected during loss of lock.

When using phase comparator 1, the detector will only indicate a lock condition on the fundamental frequency and not on the harmonics, which PC1 will lock on.

Datasheet of CD74HCT7046AM - IC PLL W/VCO/LOCK DETECT 16-SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

PACKAGE OPTION ADDENDUM

10-Jun-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type		Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
CD74HC7046AE	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD74HC7046AE	Samples
CD74HC7046AM	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC7046AM	Samples
CD74HC7046AM96	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC7046AM	Samples
CD74HC7046AMG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC7046AM	Samples
CD74HC7046AMT	ACTIVE	SOIC	D	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC7046AM	Samples
CD74HCT7046AE	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD74HCT7046AE	Samples
CD74HCT7046AEE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD74HCT7046AE	Samples
CD74HCT7046AM	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT7046AM	Samples
CD74HCT7046AM96	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT7046AM	Samples
CD74HCT7046AMG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT7046AM	Samples
CD74HCT7046AMT	ACTIVE	SOIC	D	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT7046AM	Samples

(1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability

recording the planties deviation and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): Tl's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Addendum-Page 1

Datasheet of CD74HCT7046AM - IC PLL W/VCO/LOCK DETECT 16-SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

PACKAGE OPTION ADDENDUM

ww.ti.com 10-Jun-2014

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

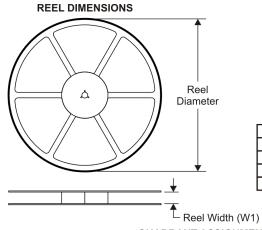
Green (RoHS & no Sb/Br): Tl defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight

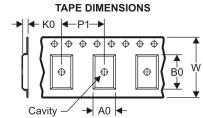
in homogeneous material)

- (9) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. Tl bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. Tl has taken and continues to take reasonable steps to provide representative and accurate information that way not have conducted destructive testing or chemical analysis on incoming materials and chemicals. Tl and Tl suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

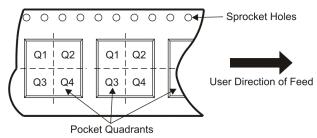
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


Datasheet of CD74HCT7046AM - IC PLL W/VCO/LOCK DETECT 16-SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com



PACKAGE MATERIALS INFORMATION

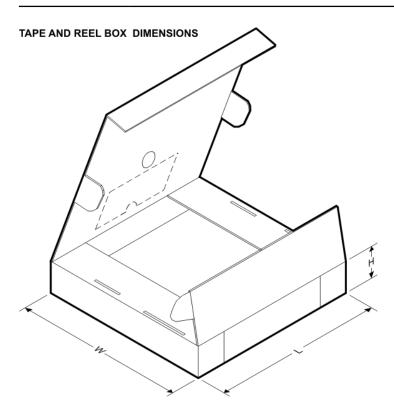
19-Mar-2008


TAPE AND REEL INFORMATION

ΔΩ	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
	Dimension designed to accommodate the component thickness
	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

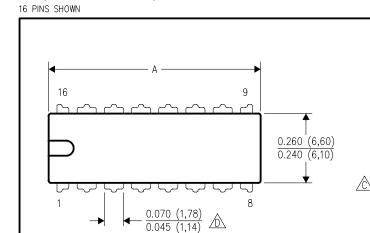

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CD74HC7046AM96	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
CD74HCT7046AM96	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1

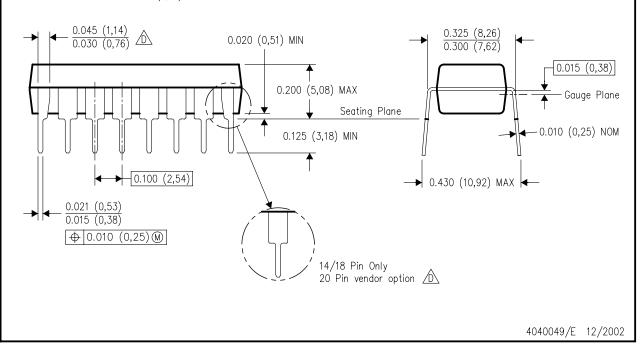
Datasheet of CD74HCT7046AM - IC PLL W/VCO/LOCK DETECT 16-SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

PACKAGE MATERIALS INFORMATION

19-Mar-2008

*All dimensions are nominal


7 till difficilities are memiliar							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CD74HC7046AM96	SOIC	D	16	2500	333.2	345.9	28.6
CD74HCT7046AM96	SOIC	D	16	2500	333.2	345.9	28.6

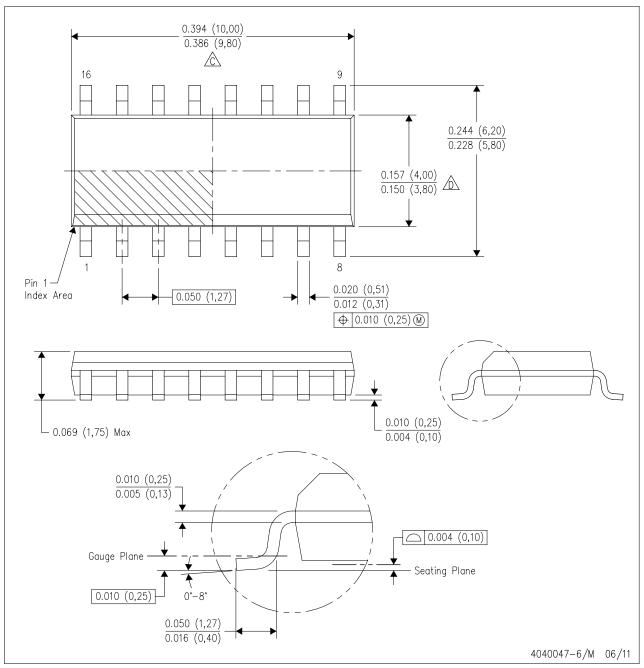

MECHANICAL DATA

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

PINS **	14	16	18	20
A MAX	0.775 (19,69)	0.775 (19,69)	0.920 (23,37)	1.060 (26,92)
A MIN	0.745 (18,92)	0.745 (18,92)	0.850 (21,59)	0.940 (23,88)
MS-001 VARIATION	AA	ВВ	AC	AD

- . All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

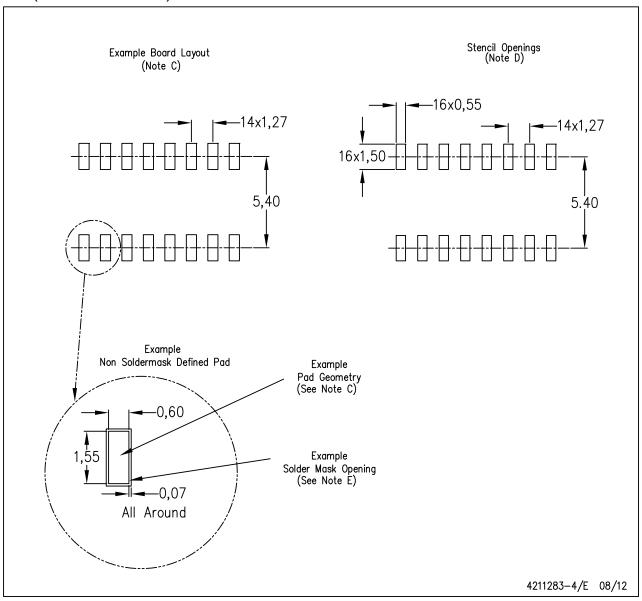


MECHANICAL DATA

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.



LAND PATTERN DATA

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

Distributor of Texas Instruments: Excellent Integrated System LimitedDatasheet of CD74HCT7046AM - IC PLL W/VCO/LOCK DETECT 16-SOIC

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Computers and Peripherals www.ti.com/computers **Data Converters** dataconverter.ti.com **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy

 Clocks and Timers
 www.ti.com/clocks
 Industrial
 www.ti.com/industrial

 Interface
 interface.ti.com
 Medical
 www.ti.com/medical

 Logic
 logic.ti.com
 Security
 www.ti.com/security

Power Mgmt Space, Avionics and Defense <u>www.ti.com/space-avionics-defense</u>

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated