Excellent Integrated System Limited Stocking Distributor Click to view price, real time Inventory, Delivery & Lifecycle Information: Texas Instruments TLV2361CDBV For any questions, you can email us directly: sales@integrated-circuit.com Datasheet of TLV2361CDBV - IC OPAMP GP 7MHZ SOT23-5 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com ### TLV2361, TLV2362 HIGH-PERFORMANCE LOW-VOLTAGE OPERATIONAL AMPLIFIERS SLOS195H - FEBRUARY 1997 - REVISED JUNE 2007 Low Supply-Voltage Operation . . . V_{CC} = ±1 V Min Wide Bandwidth . . . 7 MHz Typ at V_{CC}± = ±2.5 V High Slew Rate . . . 3 V/μs Typ at V_{CC}± = ±2.5 V • Wide Output Voltage Swing . . . \pm 2.4 V Typ at V_{CC} \pm = \pm 2.5 V, R_L = 10 k Ω • Low Noise . . . 8 nV/ $\sqrt{\text{Hz}}$ Typ at f = 1 kHz ### description/ordering information The TLV236x devices are high-performance dual operational amplifiers built using an original Texas Instruments bipolar process. These devices can be operated at a very low supply TLV2362 . . . D, DGK, P, PS, OR PW PACKAGE (TOP VIEW) voltage (± 1 V), while maintaining a wide output swing. The TLV236x devices offer a dramatically improved dynamic range of signal conditioning in low-voltage systems. The TLV236x devices also provide higher performance than other general-purpose operational amplifiers by combining higher unity-gain bandwidth and faster slew rate. With their low distortion and low-noise performance, these devices are well suited for audio applications. #### ORDERING INFORMATION | T _A | PACKAGE | <u>:</u> † | ORDERABLE
PART NUMBER | TOP-SIDE
MARKING [‡] | | |----------------|------------------|--------------|--------------------------|----------------------------------|--| | 000 1. 7000 | 00T 00 5 (DD)() | Reel of 3000 | TLV2361CDBVR | V00 | | | −0°C to 70°C | SOT-23-5 (DBV) | Reel of 250 | TLV2361CDBVT | YC3_ | | | | COT 00 5 (DD)/) | Reel of 3000 | TLV2361IDBVR | V04 | | | | SOT-23-5 (DBV) | Reel of 250 | TLV2361IDBVT | YC4_ | | | | MSOP/VSSOP (DGK) | Reel of 2500 | TLV2362IDGKR | YBS | | | | PDIP (P) | Tube of 50 | TLV2362IP | TLV2362IP | | | -40°C to 85°C | 0010 (D) | Tube of 75 | TLV2362ID | | | | | SOIC (D) | Reel of 2500 | TLV2362IDR | 23621 | | | | SOP (PS) | Reel of 2000 | TLV2362IPSR | TY2362 | | | | TCCOD (DW) | Tube of 150 | TLV2362IPW | TV0000 | | | | TSSOP (PW) | Reel of 2000 | TLV2362IPWR | TY2362 | | [†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. DBV: The actual top-side marking has one additional character that designates the wafer fab/assembly site. Datasheet of TLV2361CDBV - IC OPAMP GP 7MHZ SOT23-5 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com # TLV2361, TLV2362 HIGH-PERFORMANCE LOW-VOLTAGE OPERATIONAL AMPLIFIERS SLOS195H - FEBRUARY 1997 - REVISED JUNE 2007 ## equivalent schematic (each amplifier) | ACTUAL DEVICE COMPONENT COUNT | | | | | | | | | | |-------------------------------|----|----|--|--|--|--|--|--|--| | COMPONENT TLV2361 TLV2362 | | | | | | | | | | | Transistors | 30 | 46 | | | | | | | | | Resistors | 6 | 11 | | | | | | | | | Diodes | 1 | 1 | | | | | | | | | Capacitors | 2 | 4 | | | | | | | | | JFET | 1 | 1 | | | | | | | | Datasheet of TLV2361CDBV - IC OPAMP GP 7MHZ SOT23-5 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com ## TLV2361, TLV2362 HIGH-PERFORMANCE LOW-VOLTAGE OPERATIONAL AMPLIFIERS SLOS195H - FEBRUARY 1997 - REVISED JUNE 2007 ### Input voltage, V_I (any input) (see Notes 1 and 3) Output voltage, VO ±3.5 V Output current, I_O 20 mA absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† DBV package 206°C/W P package 85°C/W PS package 95°C/W PW package 149°C/W Operating virtual junction temperature, T_J 150°C Storage temperature range, T_{stq}-65°C to 150°C NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V_{CC+} and V_{CC-}. - 2. Differential voltages are at IN+ with respect to IN-. - All input voltage values must not exceed V_{CC}. Maximum power dissipation is a function of T_J(max), θ_{JA}, and T_A. The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_I(max) - T_A)/\theta_{IA}$. Selecting the maximum of 150°C can affect reliability. - 5. The package thermal impedance is calculated in accordance with JESD 51-7. ### recommended operating conditions | | | MIN | MAX | UNIT | | |-----------------|---|-----|------|------|--| | V _{CC} | Supply voltage | ±1 | ±2.5 | V | | | _ | Characting free six temperature | 0 | 70 | ç | | | IA | Operating free-air temperature TLV2361I, TLV2362I | -40 | 85 | -0 | | [†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. Datasheet of TLV2361CDBV - IC OPAMP GP 7MHZ SOT23-5 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com # TLV2361, TLV2362 # HIGH-PERFORMANCE LOW-VOLTAGE OPERATIONAL AMPLIFIERS SLOS195H - FEBRUARY 1997 - REVISED JUNE 2007 # TLV2361 and TLV2362 electrical characteristics, V_{CC}^{\pm} = ± 1.5 V (unless otherwise noted) | | PARAMETER | Т | EST CONDITIONS | | TA | MIN | TYP | MAX | UNIT | | |---------------------------------------|--------------------------------|------------------------------------|---|---------|------------|------|------|------|------|--| | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | Innut offeet veltere | V 0 | V 0 | | 25°C | | 1 | 6 | mV | | | V _{IO} | Input offset voltage | $V_{O} = 0$, | $V_{IC} = 0$ | | Full range | | | 7.5 | mv | | | | Input offset current | V = 0 | $V_{O} = 0,$ $V_{IC} = 0$ | | | | 5 | 100 | 4 | | | I _{IO} | input onset current | ν _O = 0, | V _{IC} = 0 | | Full range | | | 150 | nA | | | ١. | 1 | | $V_{O} = 0,$ $V_{IC} = 0$ | | | | 20 | 150 | nΛ | | | I _{IB} | Input bias current | $V_O = 0$, | v _{IC} = 0 | | Full range | | | 250 | nA | | | ., | . Common-mode input | | | 25°C | ±0.5 | | | ٧ | | | | V _{IC} | voltage | $ V_{IO} \le 7.5 \text{ mV}$ | Full range | ±0.5 | | | V | | | | | | Maximum positive-peak | $R_L = 10 \text{ k}\Omega$ | | 25°C | 1.2 | 1.4 | | ٧ | | | | V _{OM} + | output voltage | $R_L \geq 10 \; k\Omega$ | | | Full range | 1.2 | | | V | | | · · · | Maximum negative-peak | $R_L = 10 \text{ k}\Omega$ | | | 25°C | -1.2 | -1.4 | | ٧ | | | V _{OM} - | output voltage | $R_L \geq 10 \; k\Omega$ | | | Full range | -1.2 | | | | | | | Supply current | \/ O | Nolood | | 25°C | | 1.4 | 2.25 | mA | | | Icc | (per amplifier) | $V_{O} = 0$, | No load | | Full range | | | 2.75 | mA | | | _ | Large-signal differential | V 14.V | D 4010 | TLV2361 | 0500 | 60 | 80 | | ב | | | A _{VD} | voltage amplification | $V_O = \pm 1 V$ | $V_O = \pm 1 \text{ V},$ $R_L = 10 \text{ k}\Omega$ | | 25°C | | 55 | | dB | | | CMRR | Common-mode rejection ratio | $V_{IC} = \pm 0.5 \text{ V}$ | | 25°C | | 75 | | dB | | | | k _{SVR} | Supply-voltage rejection ratio | $V_{CC} \pm = \pm 1.5 \text{ V t}$ | to ±2.5 V | | 25°C | | 80 | | dB | | # TLV2361 and TLV2362 operating characteristics, $V_{CC}\pm=\pm1.5$ V, $T_A=25^{\circ}C$ | | PARAMETER | | TYP | UNIT | | | |----------------|--------------------------------|----------------------|------------------------------|-------------------------|-----|--------------------| | SR | Slew rate | $A_V = 1$, | $V_{I} = \pm 0.5 \text{ V}$ | | 2.5 | V/µs | | B ₁ | Unity-gain bandwidth | $A_V = 40,$ | $R_L = 10 \text{ k}\Omega$, | C _L = 100 pF | 6 | MHz | | V _n | Equivalent input noise voltage | $R_S = 100 \Omega$, | $R_F = 10 \text{ k}\Omega$ | f = 1 kHz | 9 | nV/√ Hz | Datasheet of TLV2361CDBV - IC OPAMP GP 7MHZ SOT23-5 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com ## TLV2361, TLV2362 HIGH-PERFORMANCE LOW-VOLTAGE OPERATIONAL AMPLIFIERS SLOS195H - FEBRUARY 1997 - REVISED JUNE 2007 ## TLV2361 and TLV2362 electrical characteristics, V_{CC}^{\pm} = ± 2.5 V (unless otherwise noted) | | PARAMETER | Т | EST CONDITIONS | 3 | TA | MIN | TYP | MAX | UNIT | | |--------------------------------------|--------------------------------|----------------------------------|----------------------------|------------|------------|-----|------|-----|------|--| | \/ | land offertuality as | V 0 | | | 25°C | | 1 | 6 | | | | V _{IO} | Input offset voltage | $V_O = 0$, | $V_{IC} = 0$ | | Full range | | | 7.5 | mV | | | | Input offset current | V = 0 | V -0 | 25°C | | 5 | 100 | | | | | I _{IO} Input offset current | | $V_{O} = 0$, | $V_{IC} = 0$ | | Full range | | | 150 | nA | | | I _{IB} Input bias current | | V 0 | | | | | 20 | 150 | ^ | | | | | $V_{O} = 0$, | $V_{IC} = 0$ | | Full range | | | 250 | nA | | | Common-mode input | | N 1 < 7.5 m)/ | | 25°C | ±1.5 | | | V | | | | V _{IC} | voltage | $ V_{IO} \le 7.5 \text{ mV}$ | | Full range | ±1.4 | | | V | | | | , Maximum positive-peak | | $R_L = 10 \text{ k}\Omega$ | | 25°C | 2 | 2.4 | | ., | | | | V _{OM+} | output voltage | $R_L \geq 10 \; k\Omega$ | | | Full range | 2 | | | V | | | V | Maximum negative-peak | $R_L = 10 \text{ k}\Omega$ | | | 25°C | -2 | -2.4 | | ٧ | | | V _{OM-} | output voltage | $R_L \ge 10 \ k\Omega$ | | Full range | -2 | | | V | | | | | Supply current | V 0 | Nalaad | | 25°C | | 1.75 | 2.5 | A | | | Icc | (per amplifier) | $V_{O} = 0$, | No load | | Full range | | | 3 | mA | | | | Large-signal differential | V 14.V | D 401-0 | TLV2361 | 0500 | 60 | 80 | | 4D | | | A _{VD} | voltage amplification | $V_O = \pm 1 V$, | $R_L = 10 \text{ k}\Omega$ | TLV2362 | 25°C | | 60 | | dB | | | CMRR | Common-mode rejection ratio | $V_{IC} = \pm 0.5 \text{ V}$ | | 25°C | | 85 | | dB | | | | k _{SVR} | Supply-voltage rejection ratio | $V_{CC} \pm = \pm 1.5 \text{ V}$ | to ±2.5 V | | 25°C | | 80 | | dB | | # TLV2361 and TLV2362 operating characteristics, $V_{CC}\pm=\pm2.5$ V, $T_A=25^{\circ}C$ | | PARAMETER | | TEST CONDITIONS | | | | | | |----------------|---------------------------------------|----------------------|------------------------------|---|-------|--------------------|--|--| | SR | Slew rate | $A_V = 1$, | $V_{I} = \pm 0.5 \ V$ | | 3 | V/μs | | | | B ₁ | Unity-gain bandwidth | $A_V = 40,$ | $R_L = 10 \text{ k}\Omega$, | C _L = 100 pF | 7 | MHz | | | | V _n | Equivalent input noise voltage | $R_S = 100 \Omega$, | $R_F = 10 \text{ k}\Omega$, | f = 1 kHz | 8 | nV/√ Hz | | | | THD + N | Total harmonic distortion, plus noise | A _V = 1, | $V_0 = \pm 1.2 \text{ V},$ | $R_L = 10 \text{ k}\Omega, f = 3 \text{ kHz}$ | 0.004 | % | | | Datasheet of TLV2361CDBV - IC OPAMP GP 7MHZ SOT23-5 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com # TLV2361, TLV2362 HIGH-PERFORMANCE LOW-VOLTAGE OPERATIONAL AMPLIFIERS SLOS195H - FEBRUARY 1997 - REVISED JUNE 2007 ### **TYPICAL CHARACTERISTICS** #### **Table of Graphs** | GRAPH TITLE | FIGURE | | | | | | | |---|--------|--|--|--|--|--|--| | Supply current vs Free-air temperature | 1 | | | | | | | | Supply current vs Supply voltage | 2 | | | | | | | | Maximum positive output voltage vs Output current | 3 | | | | | | | | Maximum negative output voltage vs Output current | 4 | | | | | | | | Maximum peak-to-peak output voltage vs Frequency | 5 | | | | | | | | Equivalent input noise voltage vs Frequency | 6 | | | | | | | | Total harmonic distortion vs Frequency | 7 | | | | | | | | Total harmonic distortion vs Output voltage | 8 | | | | | | | ## TLV2361, TLV2362 HIGH-PERFORMANCE LOW-VOLTAGE OPERATIONAL AMPLIFIERS SLOS195H - FEBRUARY 1997 - REVISED JUNE 2007 #### TYPICAL CHARACTERISTICS # **MAXIMUM POSITIVE OUTPUT VOLTAGE OUTPUT CURRENT** 2.5 $T_A = 25^{\circ}C$ V_{OM+} - Maximum Positive Output Voltage - V $V_{CC} \pm = \pm 2.5 \text{ V}$ 2 1.5 $V_{CC} \pm = \pm 1.5 \text{ V}$ 1 0.5 -1.2 -1.8 0 -0.4 IO - Output Current - mA Figure 3 ## TLV2361, TLV2362 HIGH-PERFORMANCE LOW-VOLTAGE OPERATIONAL AMPLIFIERS SLOS195H - FEBRUARY 1997 - REVISED JUNE 2007 #### **TYPICAL CHARACTERISTICS** Datasheet of TLV2361CDBV - IC OPAMP GP 7MHZ SOT23-5 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com PACKAGE OPTION ADDENDUM 18-Sep-2015 #### PACKAGING INFORMATION | Orderable Device | Status | Package Type | Package | Pins | Package | Eco Plan | Lead/Ball Finish | MSL Peak Temp | Op Temp (°C) | Device Marking | Samples | |------------------|----------|--------------|---------|------|---------|----------------------------|-------------------|--------------------|--------------|-------------------------|---------| | | (1) | | Drawing | | Qty | (2) | (6) | (3) | | (4/5) | | | TLV2361CDBV | OBSOLETE | SOT-23 | DBV | 5 | | TBD | Call TI | Call TI | 0 to 70 | | | | TLV2361CDBVR | ACTIVE | SOT-23 | DBV | 5 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU CU SN | Level-1-260C-UNLIM | 0 to 70 | (YC3B ~ YC3G ~
YC3L) | Samples | | TLV2361CDBVT | ACTIVE | SOT-23 | DBV | 5 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU CU SN | Level-1-260C-UNLIM | 0 to 70 | (YC3B ~ YC3G ~
YC3L) | Samples | | TLV2361IDBV | OBSOLETE | SOT-23 | DBV | 5 | | TBD | Call TI | Call TI | -40 to 85 | | | | TLV2361IDBVR | ACTIVE | SOT-23 | DBV | 5 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU CU SN | Level-1-260C-UNLIM | -40 to 85 | (YC4B ~ YC4G ~
YC4L) | Samples | | TLV2361IDBVT | ACTIVE | SOT-23 | DBV | 5 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU CU SN | Level-1-260C-UNLIM | -40 to 85 | (YC4B ~ YC4G ~
YC4L) | Samples | | TLV2362ID | ACTIVE | SOIC | D | 8 | 75 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 85 | 23621 | Samples | | TLV2362IDGKR | ACTIVE | VSSOP | DGK | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 85 | (YBL ~ YBS ~ YBU) | Samples | | TLV2362IDGKRG4 | ACTIVE | VSSOP | DGK | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 85 | (YBL ~ YBS ~ YBU) | Samples | | TLV2362IDR | ACTIVE | SOIC | D | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 85 | 23621 | Samples | | TLV2362IDRG4 | ACTIVE | SOIC | D | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 85 | 23621 | Samples | | TLV2362IP | ACTIVE | PDIP | Р | 8 | 50 | Pb-Free
(RoHS) | CU NIPDAU | N / A for Pkg Type | -40 to 85 | TLV2362IP | Samples | | TLV2362IPWLE | OBSOLETE | TSSOP | PW | 8 | | TBD | Call TI | Call TI | -40 to 85 | | | | TLV2362IPWR | ACTIVE | TSSOP | PW | 8 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 85 | TY2362 | Samples | | TLV2362IPWRG4 | ACTIVE | TSSOP | PW | 8 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 85 | TY2362 | Samples | (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. $\label{eq:obsolete} \textbf{OBSOLETE:} \ \ \textbf{TI} \ \ \text{has discontinued the production of the device}.$ Datasheet of TLV2361CDBV - IC OPAMP GP 7MHZ SOT23-5 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com PACKAGE OPTION ADDENDUM www.ti.com 18-Sep-2015 (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): Tl's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, Tl Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) - (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. - (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. - (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. - (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Datasheet of TLV2361CDBV - IC OPAMP GP 7MHZ SOT23-5 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com ### PACKAGE MATERIALS INFORMATION www.ti.com 8-Jun-2015 #### TAPE AND REEL INFORMATION - A0 Dimension designed to accommodate the component width - B0 Dimension designed to accommodate the component length - K0 Dimension designed to accommodate the component thickness - W Overall width of the carrier tape - P1 Pitch between successive cavity centers #### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | all difficultions are normina | | | | | | | | | | | | | |-------------------------------|-----------------|--------------------|---|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | | TLV2361CDBVR | SOT-23 | DBV | 5 | 3000 | 178.0 | 9.0 | 3.23 | 3.17 | 1.37 | 4.0 | 8.0 | Q3 | | TLV2361CDBVT | SOT-23 | DBV | 5 | 250 | 180.0 | 9.2 | 3.17 | 3.23 | 1.37 | 4.0 | 8.0 | Q3 | | TLV2361IDBVR | SOT-23 | DBV | 5 | 3000 | 180.0 | 9.2 | 3.17 | 3.23 | 1.37 | 4.0 | 8.0 | Q3 | | TLV2361IDBVR | SOT-23 | DBV | 5 | 3000 | 178.0 | 9.0 | 3.23 | 3.17 | 1.37 | 4.0 | 8.0 | Q3 | | TLV2361IDBVT | SOT-23 | DBV | 5 | 250 | 180.0 | 9.2 | 3.17 | 3.23 | 1.37 | 4.0 | 8.0 | Q3 | | TLV2361IDBVT | SOT-23 | DBV | 5 | 250 | 178.0 | 9.0 | 3.23 | 3.17 | 1.37 | 4.0 | 8.0 | Q3 | | TLV2362IDGKR | VSSOP | DGK | 8 | 2500 | 330.0 | 12.4 | 5.3 | 3.3 | 1.3 | 8.0 | 12.0 | Q1 | | TLV2362IDR | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 | | TLV2362IPWR | TSSOP | PW | 8 | 2000 | 330.0 | 12.4 | 7.0 | 3.6 | 1.6 | 8.0 | 12.0 | Q1 | Datasheet of TLV2361CDBV - IC OPAMP GP 7MHZ SOT23-5 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com # **PACKAGE MATERIALS INFORMATION** www.ti.com 8-Jun-2015 #### *All dimensions are nominal | All differsions are nominal | | | | | | | | |-----------------------------|--------------|-----------------|------|------|-------------|------------|-------------| | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | | TLV2361CDBVR | SOT-23 | DBV | 5 | 3000 | 180.0 | 180.0 | 18.0 | | TLV2361CDBVT | SOT-23 | DBV | 5 | 250 | 205.0 | 200.0 | 33.0 | | TLV2361IDBVR | SOT-23 | DBV | 5 | 3000 | 205.0 | 200.0 | 33.0 | | TLV2361IDBVR | SOT-23 | DBV | 5 | 3000 | 180.0 | 180.0 | 18.0 | | TLV2361IDBVT | SOT-23 | DBV | 5 | 250 | 205.0 | 200.0 | 33.0 | | TLV2361IDBVT | SOT-23 | DBV | 5 | 250 | 180.0 | 180.0 | 18.0 | | TLV2362IDGKR | VSSOP | DGK | 8 | 2500 | 370.0 | 355.0 | 55.0 | | TLV2362IDR | SOIC | D | 8 | 2500 | 340.5 | 338.1 | 20.6 | | TLV2362IPWR | TSSOP | PW | 8 | 2000 | 367.0 | 367.0 | 35.0 | ### **MECHANICAL DATA** P (R-PDIP-T8) PLASTIC DUAL-IN-LINE PACKAGE - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - C. Falls within JEDEC MS-001 variation BA. ## **MECHANICAL DATA** DBV (R-PDSO-G5) ### PLASTIC SMALL-OUTLINE PACKAGE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side. - D. Falls within JEDEC MO-178 Variation AA. ### LAND PATTERN DATA # DBV (R-PDSO-G5) ### PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad. - D. Publication IPC-7351 is recommended for alternate designs. - E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations. ## **MECHANICAL DATA** # DGK (S-PDSO-G8) ## PLASTIC SMALL-OUTLINE PACKAGE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end. - Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side. - E. Falls within JEDEC MO-187 variation AA, except interlead flash. ### LAND PATTERN DATA # DGK (S-PDSO-G8) ### PLASTIC SMALL OUTLINE PACKAGE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations. - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. PACKAGE OUTLINE ## **PW0008A** # TSSOP - 1.2 mm max height SMALL OUTLINE PACKAGE - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. - 2. This drawing is subject to change without notice. - 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side. - 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side. - 5. Reference JEDEC registration MO-153, variation AA. ## **EXAMPLE BOARD LAYOUT** ## **PW0008A** TSSOP - 1.2 mm max height SMALL OUTLINE PACKAGE NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. # **EXAMPLE STENCIL DESIGN** ## **PW0008A** TSSOP - 1.2 mm max height SMALL OUTLINE PACKAGE SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL SCALE:10X 4221848/A 02/2015 NOTES: (continued) - 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. - 9. Board assembly site may have different recommendations for stencil design. ### **MECHANICAL DATA** # D (R-PDSO-G8) ### PLASTIC SMALL OUTLINE - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side. - Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side. - E. Reference JEDEC MS-012 variation AA. ### LAND PATTERN DATA # D (R-PDSO-G8) ### PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations. - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. Datasheet of TLV2361CDBV - IC OPAMP GP 7MHZ SOT23-5 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com #### IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. #### **Products Applications** Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications Computers and Peripherals **Data Converters** dataconverter.ti.com www.ti.com/computers **DLP® Products** Consumer Electronics www.ti.com/consumer-apps www.dlp.com DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Security www.ti.com/security Logic Power Mgmt Space, Avionics and Defense www.ti.com/space-avionics-defense power.ti.com Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com **OMAP Applications Processors TI E2E Community** www.ti.com/omap e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity > Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2015, Texas Instruments Incorporated