

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Texas Instruments
TPS3606-33DGS

For any questions, you can email us directly: sales@integrated-circuit.com

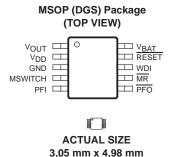
Datasheet of TPS3606-33DGS - IC BATT BACKUP SUPERVISR 10-MSOP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

TPS3606-33

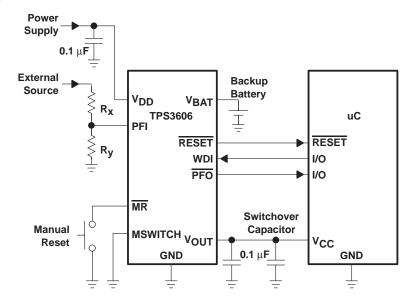
BATTERY-BACKUP SUPERVISOR FOR LOW-POWER PROCESSORS

SLVS335C - DECEMBER 2000 - REVISED JANUARY 2007

features


- Supply Current of 40 µA (Max)
- **Precision 3.3-V Supply Voltage Monitor** Other Voltage Options on Request
- Watchdog Timer With 800-ms Time-Out
- Backup-Battery Voltage Can Exceed VDD
- **Power-On Reset Generator With Fixed** 100-ms Reset Delay Time
- Voltage Monitor for Power-Fail or **Low-Battery Monitoring**
- Manual Switchover to Battery-Backup Mode
- **Manual Reset**
- **Battery Freshness Seal**
- 10-Pin MSOP Package
- Temperature Range . . . -40°C to 85°C

description


The TPS3606-33 supervisory circuit monitors and controls the processor activity. In case of powerfail or brownout conditions, the backup-battery switchover function of the TPS3606-33 allows a low-power processor and its peripherals to run from the installed backup battery without asserting a reset beforehand.

typical applications

- **Fax Machines**
- **Set-Top Boxes**
- **Advanced Voice Mail Systems**
- **Portable Battery Powered Equipment**
- **Computer Equipment**
- **Advanced Modems**
- **Automotive Systems**
- **Portable Long-Time Monitoring Equipment**
- Point-of-Sale Equipment

typical operating circuit

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

All trademarks are the property of their respective owners

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Datasheet of TPS3606-33DGS - IC BATT BACKUP SUPERVISR 10-MSOP

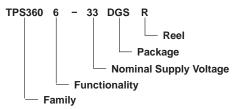
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

TPS3606-33 BATTERY-BACKUP SUPERVISOR FOR LOW-POWER PROCESSORS

SLVS335C - DECEMBER 2000 - REVISED JANUARY 2007

description (continued)

During power on, \overline{RESET} is asserted when the supply voltage (V_{DD} or V_{BAT}) becomes higher than 1.1 V. Thereafter, the supply voltage supervisor monitors V_{OUT} and keeps the \overline{RESET} output active as long as V_{OUT} remains below the threshold voltage (V_{IT}). An internal timer delays the return of the output to the inactive state (high) to ensure proper system reset. The delay time starts after V_{OUT} has risen above V_{IT}. When the supply voltage drops below V_{IT}, the output becomes active (low) again.


The TPS3606-33 is available in a 10-pin MSOP package and is characterized for operation over a temperature range of –40°C to 85°C.

PACKAGE INFORMATION

TA	DEVICE NAME	MARKING
-40°C to 85°C	TPS3606-33DGSR [†]	AKE

[†] The DGSR passive indicates tape and reel of 2500 parts.

ordering information application specific versions (see Note)

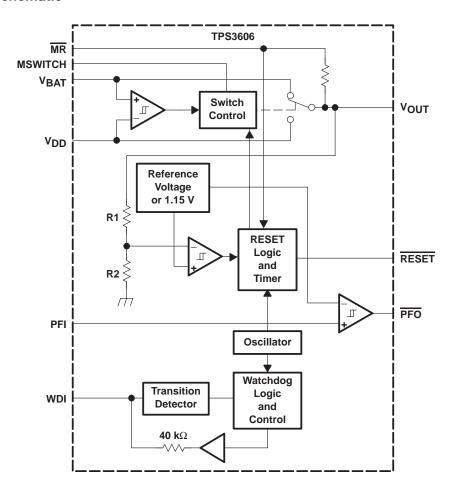
DEVICE NAME	NOMINAL VOLTAGE [‡] , V _{NOM}
TPS3606-33 DGS	3.3 V

[‡] For other threshold voltages, contact the local TI sales office for availability and lead-time.

FUNCTION TABLES TPS3606

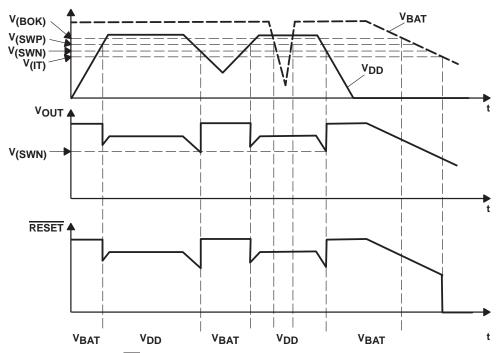
V _{DD} > V _{SW}	V _{OUT} > V _{IT}	V _{DD} > V _{BAT}	V _{OUT}	RESET
0	0	0	VBAT	0
0	0	1	V_{DD}	0
0	1	0	V_{BAT}	1
0	1	1	V_{DD}	1
1	1	0	V_{DD}	1
1	1	1	V_{DD}	1

PFI > V _{PFI}	PFO
0	0
1	1


CONDITION.: V_{OUT} > V_{DD}(min)

SLVS335C - DECEMBER 2000 - REVISED JANUARY 2007

functional schematic



SLVS335C - DECEMBER 2000 - REVISED JANUARY 2007

timing diagram

NOTES: A. MSWITCH = 0, $\overline{MR} = 1$

Terminal Functions

TERMIN	AL	1/0	DECODINE	
NAME	NO.	1/0	DESCRIPTION	
GND	3	- 1	Ground	
MR	7	- 1	Manual reset input	
MSWITCH	4	- 1	Manual switch to force device into battery-backup mode	
PFI	5	- 1	Power-fail comparator input	
PFO	6	0	Power-fail comparator output	
RESET	9	0	Active-low reset output	
VBAT	10	I	Backup-battery input	
V_{DD}	2	I	Input supply voltage	
VOUT	1	0	Supply output	
WDI	8	1	Watchdog timer input	

Datasheet of TPS3606-33DGS - IC BATT BACKUP SUPERVISR 10-MSOP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

TPS3606-33

BATTERY-BACKUP SUPERVISOR FOR LOW-POWER PROCESSORS

SLVS335C - DECEMBER 2000 - REVISED JANUARY 2007

detailed description

battery freshness seal

The battery freshness seal of the TPS3606 family disconnects the backup battery from the internal circuitry until it is needed. This ensures that the backup battery connected to V_{BAT} is fresh when the final product is put to use. The following steps explain how to enable the freshness seal mode:

- Connect V_{BAT} (V_{BAT} > V_{BAT(min)})
- 2. Ground PFO
- 3. Connect PFI to V_{DD} or PFI > V_(PFI)
- 4. Connect V_{DD} to power supply (V_{DD} > V_{IT})
- Ground MR
- Power down V_{DD}
- 7. The freshness seal mode is entered and pins PFO and MR can be disconnected.

The battery freshness seal mode is disabled by the positive-going edge of RESET when V_{DD} is applied.

power-fail comparator (PFI and PFO)

An additional comparator is provided to monitor voltages other than the nominal supply voltage. The power-fail input (PFI) is compared with an internal voltage reference of 1.15 V. If the input voltage falls below the power-fail threshold (V_(PFI)) of 1.15 V typical, the power-fail output (PFO) goes low. If it goes above V_(PFI) plus about 12-mV hysteresis, the output returns to high. By connecting two external resistors, it is possible to supervise any voltages above $V_{(PFI)}$. The sum of both resistors should be about 1 M Ω , to minimize power consumption and also to ensure that the current in the PFI pin can be neglected compared with the current through the resistor network. The tolerance of the external resistors should be not more than 1% to ensure minimal variation of sensed voltage.

If the power-fail comparator is unused, connect PFI to ground and leave PFO unconnected.

backup-battery switchover

In the event of a brownout or power failure, it may be necessary to keep a processor running. If a backup battery is installed at V_{BAT}, the devices automatically connect the processor to backup power when V_{DD} fails. In order to allow the backup battery (e.g., a 3.6-V lithium cell) to have a higher voltage than V_{DD}, this family of supervisors does not connect V_{BAT} to V_{OUT} when V_{BAT} is greater than V_{DD} . V_{BAT} only connects to V_{OUT} (through a 2- Ω switch) when V_{OUT} falls below $V_{(SWN)}$ and V_{BAT} is greater than V_{DD} . When V_{DD} recovers, switchover is deferred either until V_{DD} crosses V_{BAT} , or when V_{DD} rises above the threshold $(V_{(SWP)})$.

V _{DD} > V _{BAT}	V _{DD} > V _(SWN)	V _{OUT}
1	1	V_{DD}
1	0	V_{DD}
0	1	V_{DD}
0	0	V_{BAT}

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

TPS3606-33 BATTERY-BACKUP SUPERVISOR FOR LOW-POWER PROCESSORS

SLVS335C - DECEMBER 2000 - REVISED JANUARY 2007

detailed description (continued)

manual switchover (MSWITCH)

While operating in the normal mode from VDD, the device can be manually forced to operate in the battery-backup mode by connecting MSWITCH to V_{DD}. The table below shows the different switchover modes.

	MSWITCH	Status
V	GND	V _{DD} mode
V _{DD} mode	V_{DD}	Switch to battery-backup mode
Dettem: beekun mede	GND	Battery-backup mode
Battery-backup mode	V_{DD}	Battery-backup mode

If the manual switchover feature is not used, MSWITCH must be connected to ground.

watchdog

In a microprocessor- or DSP-based system, it is not only important to supervise the supply voltage, it is also important to ensure the correct program execution. The task of a watchdog is to ensure that the program is not stalled in an indefinite loop. The microprocessor, microcontroller, or the DSP has to toggle the watchdog input within typically 0.8 s to avoid a time-out from occurring. Either a low-to-high or a high-to-low transition resets the internal watchdog timer. If the input is unconnected, the watchdog is disabled and is retriggered internally.

saving current while using the watchdog

The watchdog input is internally driven low during the first 7/8 of the watchdog time-out period, then momentarily pulses high, resetting the watchdog counter. For minimum watchdog input current (minimum overall power consumption), leave WDI low for the majority of the watchdog time-out period, pulsing it low-high-low once within 7/8 of the watchdog time-out period to reset the watchdog timer. If instead, WDI is externally driven high for the majority of the time-out period, a current of e.g. 5 V/40 k $\Omega \approx$ 125 μA can flow into WDI.

Figure 1. Watchdog Timing

Datasheet of TPS3606-33DGS - IC BATT BACKUP SUPERVISR 10-MSOP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

TPS3606-33 BATTERY-BACKUP SUPERVISOR FOR LOW-POWER PROCESSORS

SLVS335C - DECEMBER 2000 - REVISED JANUARY 2007

absolute maximum ratings over operating free-air temperature (unless otherwise noted)†

Supply voltage: V _{DD} (see Note1)	7 V
MR, WDI, and PFI pins (see Note 1)	$-0.3 \text{ V to } (V_{DD} + 0.3 \text{ V})$
Continuous output current at V _{OUT} : I _O	300 mA
All other pins, IO	±10 mA
Continuous total power dissipation	See Dissipation Rating Table
Operating free-air temperature range, T _A	–40°C to 85°C
Storage temperature range, T _{stq}	–65°C to 150°C
Lead temperature soldering 1,6 mm (1/16 inch) from case for 10 seconds	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values are with respect to GND. For reliable operation the device must not be operated at 7 V for more than t = 1000h continuously.

DISSIPATION RATING TABLE

PACKAGE	T _A < 25°C	DERATING FACTOR	T _A = 70°C	T _A = 85°C
	POWER RATING	ABOVE T _A = 25°C	POWER RATING	POWER RATING
DGS	424 mW	3.4 mW/°C	271 mW	220 mW

recommended operating conditions at specified temperature range

		MIN	MAX	UNIT
Supply voltage, V _{DD}		1.65	5.5	V
Battery supply voltage, V _{BAT}		1.5	5.5	V
Input voltage, V _I		0	V _O + 0.3	V
High-level input voltage, VIH	0).7 x V _O		V
Low-level input voltage, all other pins, V _{IL}			0.3 x V _O	V
Continuous output current at VOUT, IO			200	mA
Input transition rise and fall rate at WDI, MSWITCH, $\Delta t/\Delta V$			100	ns/V
Slew rate at V _{DD} or V _{BAT}			34	mV/μs
Operating free-air temperature range, TA		-40	85	°C

Datasheet of TPS3606-33DGS - IC BATT BACKUP SUPERVISR 10-MSOP

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

TPS3606-33 BATTERY-BACKUP SUPERVISOR FOR LOW-POWER PROCESSORS

SLVS335C - DECEMBER 2000 - REVISED JANUARY 2007

electrical characteristics over recommended operating conditions (unless otherwise noted)

	PARAMETER			NDITIONS	MIN	TYP	MAX	UNIT
			V _{OUT} = 2 V,	I _{OH} = -400 μA	V _{OUT} – 0.2 V			
.,		RESET	V _{OUT} = 3.3 V V _{OUT} = 5 V,		V _{OUT} – 0.4 V			V
VOH	High-level output voltage		V _{OUT} = 1.8 V,	$I_{OH} = -20 \mu A$	V _{OUT} – 0.3 V			V
		PFO		$I_{OH} = -80 \mu A$ $I_{OH} = -120 \mu A$	V _{OUT} – 0.4 V			
		RESET	V _{OUT} = 2 V,	I _{OL} = 400 μA			0.2	
VOL	Low-level output voltage	PFO	V _{OUT} = 3.3 V, V _{OUT} = 5 V,				0.4	V
V _{res}	Power-up reset voltage (see Note 2)		V _{BAT} > 1.1 V V _{DD} > 1.4 V,				0.4	V
	Normal mode		$I_O = 5 \text{ mA},$	V _{DD} = 1.8 V	V _{DD} – 50 mV			
			$I_O = 75 \text{ mA},$	$V_{DD} = 3.3 \text{ V}$	V _{DD} – 150 mV			
Vout			$I_O = 150 \text{ mA},$	$V_{DD} = 5 V$	V _{DD} – 250 mV			V
	Battery-backup mode		$I_O = 4 \text{ mA},$	$V_{BAT} = 1.5 V$	V _{BAT} – 50 mV			
			$I_0 = 75 \text{ mA},$	V _{BAT} = 3.3 V	V _{BAT} – 150 mV			
F-I- ()	V _{DD} to V _{OUT} on-resistant	ce	$V_{DD} = 3.3 \text{ V}$			1	2	Ω
^r ds(on)	V _{BAT} to V _{OUT} on-resistar	ice	V _{BAT} = 3.3 V			1	2	32
VIT	Negative-going input threshold voltage (see Notes 3 and 4)	TPS3606x33			2.87	2.93	2.99	V
V _(PFI)	Power-fail input threshold voltage	PFI			1.13	1.15	1.17	
V _(SWN)	Battery switch threshold vonegative-going VOUT	oltage			V _{IT} + 1%	V _{IT} + 2%	V _{IT} + 3.2%	V

NOTES: 2. The lowest supply voltage at which $\overline{\text{RESET}}$ becomes active. $t_{f(VDD)} \ge 15 \,\mu\text{s/V}$.

- 3. To ensure best stability of the threshold voltage, a bypass capacitor (ceramic, 0.1 μF) should be placed near the supply terminal.
- 4. Voltage is sensed at VOUT
- For details on how to optimize current consumption when using WDI refer to section detailed description.

Datasheet of TPS3606-33DGS - IC BATT BACKUP SUPERVISR 10-MSOP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

TPS3606-33

BATTERY-BACKUP SUPERVISOR FOR LOW-POWER PROCESSORS

SLVS335C - DECEMBER 2000 - REVISED JANUARY 2007

electrical characteristics over recommended operating conditions (unless otherwise noted) (continued)

PARAMETER		TEST CONDITIONS	MIN TYP	MAX	UNIT	
			1.65 V < V _{IT} < 2.5 V	20		
		VIT	2.5 V < V _{IT} < 3.5 V	40		
1			3.5 V < V _{IT} < 5.5 V	50		
V _{hys}	Hysteresis	V _{PFI}		12		mV
´			1.65 V < V _(SWN) < 2.5 V	85		
		V(SWN)	2.5 V < V _(SWN) < 3.5 V	100		
			3.5 V < V _(SWN) < 5.5 V	110		
	TP-1 1 - 12 - 1 - 1 - 1 - 1	WDI	$WDI = V_{DD} = 5.5 V$		150	μА
ΙΗ	High-level input current	MR	$\overline{MR} = 0.7 \times V_{DD}, V_{DD} = 5 V$	-33	-76	
	La de alla de accesa	WDI	$WDI = 0 V$, $V_{DD} = 5 V$		-150	
^I IL	Low-level input current	MR	$\overline{MR} = 0 \text{ V}, \qquad V_{DD} = 5 \text{ V}$	-110	-255	
Ц	Input current	PFI, MSWITCH	$V_I < V_{DD}$	-25	25	nA
			PFO = 0 V, V _{DD} = 1.8 V		-0.3	
los	Short-circuit current	PFO	PFO = 0 V, V _{DD} = 3.3 V		-1.1	mA
			PFO = 0 V, V _{DD} = 5 V		-2.4	
I	\/ ounnly ourrent		V _{OUT} = V _{DD}		40	
lDD	V _{DD} supply current		V _{OUT} = V _{BAT}		8	μΑ
			$V_{OUT} = V_{DD}$	-0.1	0.1	
I(BAT)	I(BAT) VBAT supply current		V _{OUT} = V _{BAT}		40	μА
Ci	Input capacitance		V _I = 0 V to 5 V	5		pF

timing requirements at R_L = 1 M Ω , C_L = 50 pF, T_A = -40°C to 85°C

	PARAMETER	MIN	TYP	MAX	UNIT		
		V_{DD}	$V_{IH} = V_{IT} + 0.2 \text{ V}, V_{IL} = V_{IT} - 0.2 \text{ V}$	5			μs
t _w	Pulse width	MR	V V .00VV 00 V V 07 V	400			
		WDI	$V_{DD} > V_{IT} + 0.2 \text{ V}, V_{IL} = 0.3 \text{ x } V_{DD}, V_{IH} = 0.7 \text{ x } V_{DD}$	100			ns

switching characteristics at R_L= 1 M Ω , C_L = 50 pF, T_A = -40°C to 85°C

	PARAMETER		TEST C	MIN	TYP	MAX	UNIT	
t _d	Delay time	V _{DD} ≥ V _{IT} + 0.2 V, See timing diagram	$\overline{MR} \ge 0.7 \text{ x V}_{DD}$	60	100	140	ms	
t(tout)	Watchdog time-out		V _{DD} > V _{IT} + 0.2 V,	See timing diagram	0.48	0.8	1.12	S
	Propagation (delay) time, high-to-low-level output	V _{DD} to RESET	V _{IL} = V _{IT} - 0.2 V,	V _{IH} = V _{IT} + 0.2 V		2	5	μs
tou		PFI to PFO	$V_{IL} = V_{(PFI)} - 0.2 V,$	V _{IH} = V _(PFI) + 0.2 V		3	5	μs
[†] PHL		MR to RESET	$V_{DD} \ge V_{IT} + 0.2 \text{ V},$ $V_{IH} = 0.7 \text{ x } V_{DD}$	$V_{IL} = 0.3 \times V_{DD}$		0.1	1	μs
	Transition time	V _{DD} to V _{BAT}	V _{IL} = V _(BAT) - 0.2 V V _(BAT) < V _{IT}	V_{1} , $V_{1H} = V_{(BAT)} + 0.2 V_{1}$			3	μs

SLVS335C - DECEMBER 2000 - REVISED JANUARY 2007

TYPICAL CHARACTERISTICS

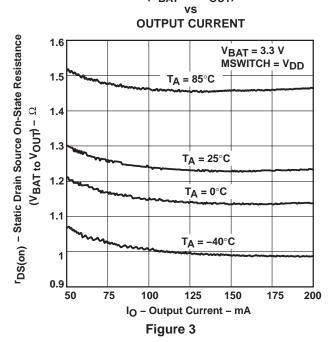
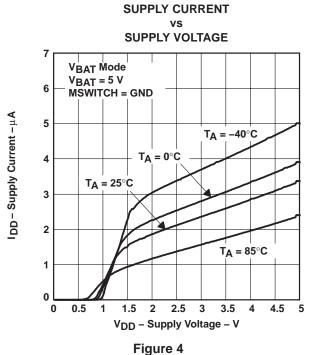

Table of Graphs

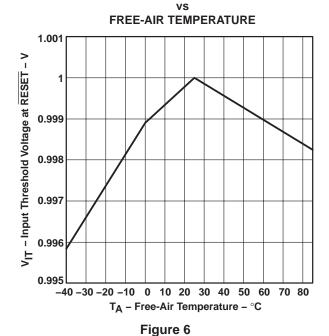
			FIGURE
	Static drain-source on-state resistance (V _{DD} to V _{OUT})	vs Output current	2
^r DS(on)	Static drain-source on-state resistance (VBAT to VOUT)	vs Output current	3
rDS(on) Star IDD Sul VIT Inp VOH Hig VOL Lov	0	vs Supply voltage	4
	Supply current	vs Battery supply	5
VIT	Input threshold voltage at RESET	vs Free-air temperature	6
.,	High-level output voltage at RESET	LEGIT IN THE STATE OF THE STATE	7, 8
VOH	High-level output voltage at PFO	vs High-level output current	9, 10
VOL	Low-level output voltage at RESET	vs Low-level output current	11, 12
	Minimum pulse duration at V _{DD}	vs Threshold voltage overdrive at V _{DD}	13
	Minimum pulse duration at PFI	vs Threshold voltage overdrive at PFI	14

STATIC DRAIN SOURCE ON-STATE RESISTANCE (V_{DD} TO V_{OUT})

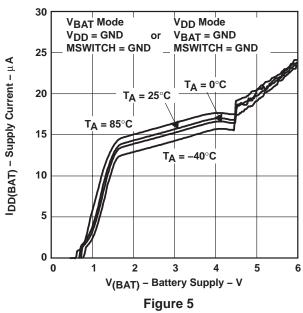
vs **OUTPUT CURRENT** 1.5 ^rDS(on) - Static Drain Source On-State Resistance = 85°C 1.4 T_A 1.3 $\Omega - (TOD to Vout) - \Omega$ T_A = 25°C 1.2 T_A = 0°C 1.1 $T_A = -40^{\circ}C$ $V_{DD} = 3.3 \text{ V}$ 0.9 V_{BAT} = GND MSWITCH = GND 0.8 100 125 50 75 175 200 IO - Output Current - mA Figure 2

STATIC DRAIN SOURCE ON-STATE RESISTANCE (V_{BAT} TO V_{OUT})





SLVS335C - DECEMBER 2000 - REVISED JANUARY 2007


TYPICAL CHARACTERISTICS

INPUT THRESHOLD VOLTAGE AT RESET

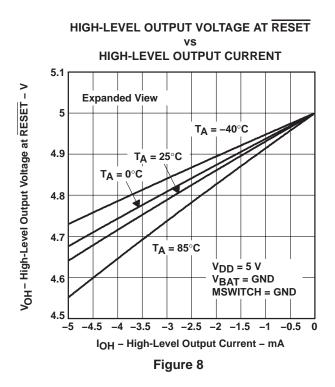
SUPPLY CURRENT vs BATTERY SUPPLY

HIGH-LEVEL OUTPUT VOLTAGE AT RESET

HIGH-LEVEL OUTPUT CURRENT



Figure 7



VOH - High-Level Output Voltage at RESET - V

SLVS335C - DECEMBER 2000 - REVISED JANUARY 2007

TYPICAL CHARACTERISTICS

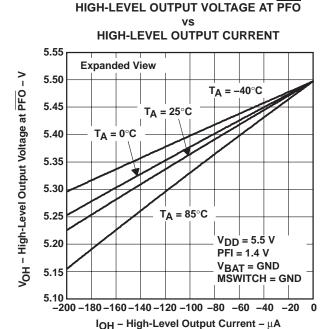
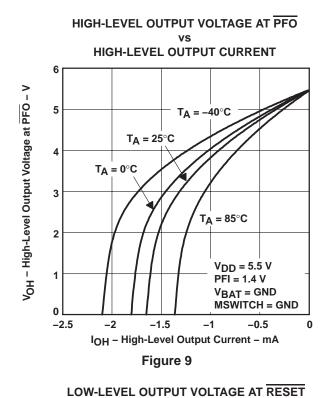
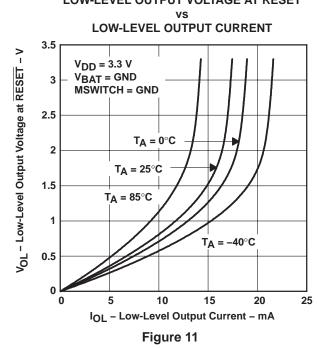




Figure 10

SLVS335C - DECEMBER 2000 - REVISED JANUARY 2007

TYPICAL CHARACTERISTICS

LOW-LEVEL OUTPUT VOLTAGE AT RESET LOW-LEVEL OUTPUT CURRENT 500 **Expanded View** VOL - Low-Level Output Voltage at RESET - mV T_A = 85°C V_{DD} = 3.3 V 400 $V_{BAT}^{-} = GND$ MSWITCH = GND T_A = 25°C 300 $T_A = 0^{\circ}C$ 200 T_A = -40°C 100 3 5 IOL - Low-Level Output Current - mA

Figure 12

MINIMUM PULSE DURATION AT V_{DD} THRESHOLD VOLTAGE OVERDRIVE AT VDD 10 9 Minimum Pulse Duration at V_{DD} – μ s 8 7 6 5 4 3 2 1 0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 V_{T(O)} – Threshold Voltage Overdrive at V_{DD} – V

Figure 13

MINIMUM PULSE DURATION AT PFI vs

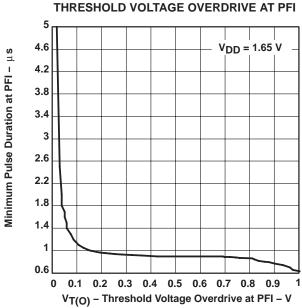


Figure 14

Datasheet of TPS3606-33DGS - IC BATT BACKUP SUPERVISR 10-MSOP

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

PACKAGE OPTION ADDENDUM

29-Nov-2006

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
TPS3606-33DGS	ACTIVE	MSOP	DGS	10	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3606-33DGSG4	ACTIVE	MSOP	DGS	10	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3606-33DGSR	ACTIVE	MSOP	DGS	10	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3606-33DGSRG4	ACTIVE	MSOP	DGS	10	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): Tl's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

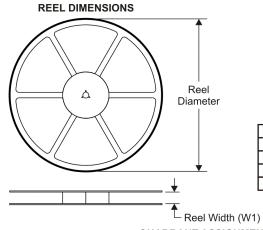
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

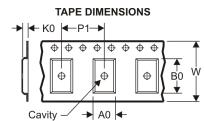
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

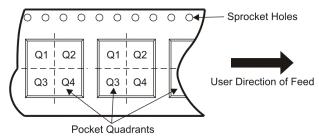
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


Datasheet of TPS3606-33DGS - IC BATT BACKUP SUPERVISR 10-MSOP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com



PACKAGE MATERIALS INFORMATION

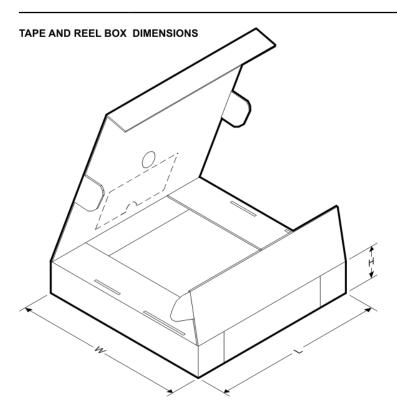
www.ti.com 17-Apr-2009


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

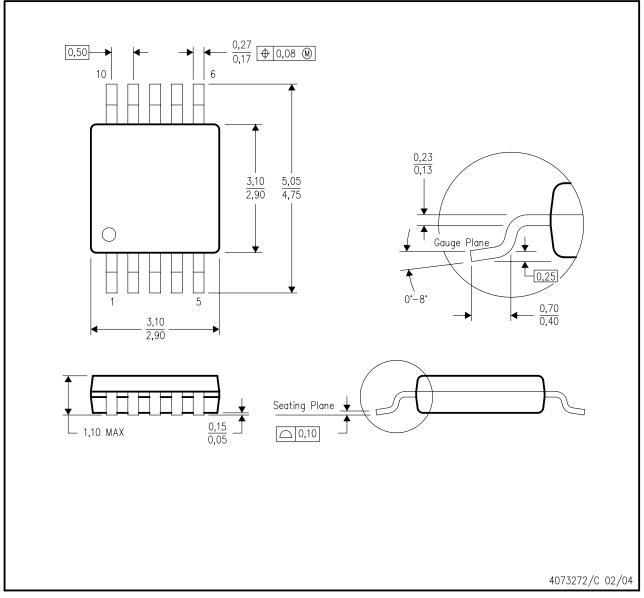

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS3606-33DGSR	MSOP	DGS	10	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1

Datasheet of TPS3606-33DGS - IC BATT BACKUP SUPERVISR 10-MSOP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

PACKAGE MATERIALS INFORMATION

www.ti.com 17-Apr-2009

*All dimensions are nominal


Device	Package Type	age Type Package Drawing		SPQ	Length (mm)	Width (mm)	Height (mm)
TPS3606-33DGSR	MSOP	DGS	10	2500	358.0	335.0	35.0

MECHANICAL DATA

DGS (S-PDSO-G10)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.
- D. Falls within JEDEC MO-187 variation BA.

Distributor of Texas Instruments: Excellent Integrated System LimitedDatasheet of TPS3606-33DGS - IC BATT BACKUP SUPERVISR 10-MSOP

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications Amplifiers amplifier.ti.com Audio www.ti.com/audio Automotive Data Converters dataconverter.ti.com www.ti.com/automotive DI P® Products www.dlp.com Broadband www.ti.com/broadband DSP dsp.ti.com **Digital Control** www.ti.com/digitalcontrol Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Military Interface interface.ti.com www.ti.com/military Optical Networking Logic www.ti.com/opticalnetwork logic.ti.com Power Mgmt Security www.ti.com/security power.ti.com Microcontrollers Telephony www.ti.com/telephony microcontroller.ti.com RFID Video & Imaging www.ti-rfid.com www.ti.com/video RF/IF and ZigBee® Solutions www.ti.com/lprf www.ti.com/wireless

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2009, Texas Instruments Incorporated