

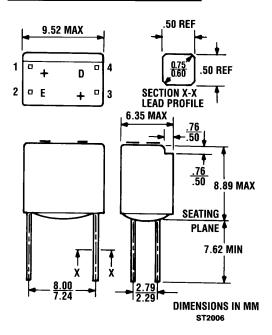
Excellent Integrated System Limited

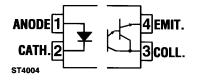
Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor H24A2

For any questions, you can email us directly: <u>sales@integrated-circuit.com</u>


Distributor of Fairchild Semiconductor: Excellent Integrated System Limited Datasheet of H24A2 - OPTOISO 5.3KV DARLINGTON 4DIP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com



PHOTOTRANSISTOR OPTOCOUPLERS

H24A1 H24A2

PACKAGE DIMENSIONS

DESCRIPTION

The H24A series consists of a gallium arsenide infrared emitting diode coupled with a silicon phototransistor. The devices are housed in a low-cost plastic package with lead spacing compatible with a dual in-line package.

- 4-pin configuration
- Small package size and low cost
- UL recognized-file E51868

- Digital logic inputs
- Microprocessor inputs
- Industrial controls

Equivalent Circuit

TOTAL PACKAGE	DETECTOR
Storage temperature	Power dissipation (25°C ambient) 150 mV
Operating temperature	Derate linearly (above 25°C)
Lead solder temperature	V _{CEO}
	V _{ECO}
INPUT DIODE	Continuous forward current
Power dissipation (25°C ambient) 100 mW	
Derate linearly (above 25°C) 1.67 mW/°C	
Continuous forward current	
Reverse voltage	

PHOTOTRANSISTOR OPTOCOUPLERS

SEMICONDUCTOR

ELECTRICAL CHARACTERISTICS (25°C Temperature Unless Otherwise Specified)

INDIVIDUAL COM	PONENT	CHARA	CTERI	STICS		
CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS
INPUT DIODE						
Forward voltage	VF			1.7	V	l _∈ =60 mA
Reverse current	l _R			1	μΑ	V ₈ =3 V
Reverse breakdown voltage	V _{(BR)R}	4			V	I ₈ =10 μA
Capacitance	C		30		pF	V=0, f=1 MHz
OUTPUT DETECTOR Breakdown voltage Collector to emitter	BV _{ceo}	30			v	I _c =1 mA, I _⊧ =0
Breakdown voltage Emitter to Collector	BV _{ECO}	7			V	$I_c = 100 \ \mu A, I_F = 0$
Collector dark current	I _{CEO}		5	100	nA	$V_{ce} = 10 \text{ V}, I_{F} = 0$
Capacitance	CCE		3.3		pF	V_{ce} =5 V, f=1 MHz

TRANSFER CHAI	RACTERIS	rics				
CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS
DC CURRENT TRANSFE	R RATIO					
H24A1	I _c	10.0			mA	$I_F = 10 \text{ mA}, V_{CE} = 10 \text{ V}$
H24A2	I _c	2.0			mA	I_{F} =10 mA, V_{CE} =10 V
Saturation voltage	V _{CE(SAT)}		0.1	0.4	V	$I_{\rm F}$ =10 mA, $I_{\rm C}$ =0.5 mA
Turn-on time	t		9		μs	$I_c=2 \text{ mA}, V_{ce}=10 \text{ V}, R_L=100 \Omega$
Turn-off time	t _{off}		4		μs	$I_F = 2 \text{ mA}, V_{CE} = 10 \text{ V}, R_L = 100 \Omega$
Turn-on time	t _{on}		6.5		μs	$I_F = 10 \text{ mA}, V_{CE} = 5 \text{ V}, R_L = 10 \text{ K}\Omega$
Turn-off time	t _{off}		165		μs	I_{F} =10 mA, V_{CE} =5 V, R_{L} =10K Ω

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS
Surge isolation voltage	V _{ISO}	6000			V _{Peak}	1 Minute
Steady-state isolation voltage	V _{ISO}	5300	_		V _{RMS}	1 Minute
Isolation resistance	R _{iso}	10"			ohms	V ₁₋₀ =500 VDC
Isolation capacitance	Ciso		0.5		pF	V ₁₋₀ =0, f=1 MHz

SEMICONDUCTOR

PHOTOTRANSISTOR OPTOCOUPLERS

TYPICAL ELECTRICAL CHARACTERISTIC CURVES (25°C Free Air Temperature Unless Otherwise Specified) 100 NORMALIZED TO: IF = IOMA VCE = 5V TA = 25°C PULSED PW = 100µs PRR = 100pps NORMALIZED OUTPUT CURRENT ICE(ON) - NORMALIZED OUTPUT CURRENT l_F=20m 10 IF=5mA VORMALIZED IF=IOMA VCE=5V PULSED PW=IOOµs PRR=IOOpp 1_F=2mA Ice (on)-1 0. 0. 0.03 -50 +25 +50 +75 +100 .001 21 IO IOO I -INPUT CURRENT - mA 1000 TA ~AMBIENT TEMPERATURE- °C ST2034 ST2035 Fig. 1. Output Current vs. Input Current Fig. 2. Output Current vs. Temperature 10000 NORMALIZED TO: I_F = IOmA V_{CE} = 5V NORMALIZED OUTPUT CURRENT Ic = 20m AMPERES PULSED PULSED PW=IOOµs PRR=IOOpp I_F=IOmA I_F = 5mA -FORWARD CURRENT PULSED ABOVE 60 mA 0. PW = 100 µ s -PRR = 100 pps I CE (ON)⁻ 2 0.01 L 10 100 VF-FORWARD VOLTAGE-VOLTS ST2036 VCE -COLLECTOR TO EMITTER VOLTAGE-VOLTS ST2037 Fig. 3. Input Characteristics Fig. 4. Output Characteristics ю ю DETECTOR NORMALIZED TO: VCE = 10 V NORMALIZED TO: VR=5V TA=25°C SMHO XOI ON CURRENT 10 CURRENT P LOFF LEAKAGE AND toFF NORMALIZED DARK I CEO-NORMALIZED 10 IZED | NORMALIZED TO RL=10 KΩ - I_F = 100A - I_F = RL -NORMAL I_F = RL V_{CC} = 5V PW = 300μs PRR= 100 pps ġ t or 0.1∟ 25 ΪK IOK IOOK RL-LOAD RESISTANCE - OHMS 1000 K 25 50 100 100 5C 75 TA-AMBIENT TEMPERATURE - °C TA-AMBIENT TEMPERATURE-°C ST2038 ST2039 Fig. 5. Switching Speed vs. R. Fig. 6. Leakage Current vs. Temperature

PHOTOTRANSISTOR OPTOCOUPLERS

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.