Excellent Integrated System Limited

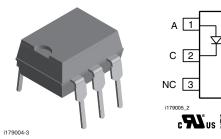
Stocking Distributor

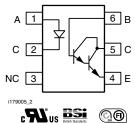
Click to view price, real time Inventory, Delivery & Lifecycle Information:

<u>Vishay Semiconductor/Opto Division</u> <u>MCA231-X009</u>

For any questions, you can email us directly: sales@integrated-circuit.com

Distributor of Vishay Semiconductor/Opto Division: Excellent Integrated System Limited Datasheet of MCA231-X009 - OPTOISO 5.3KV DARL W/BASE 6SMD


Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com



MCA231

Vishay Semiconductors

Optocoupler, Photodarlington Output, High Gain, with Base Connection

FEATURES

- Isolation test voltage, 5300 V_{RMS}
- Coupling capacitance, 0.5 pF
- Fast rise time, 10 µs
- Fast fall time, 35 µs
- Compliant to RoHS Directive 2002/95/EC and in accordance to WEEE 2002/96/EC

RoHS COMPLIANT

AGENCY APPROVALS

- UL1577, file no. E52744 system code H, double protection
- CSA 93751
- BSI IEC 60950; IEC 60065

DESCRIPTION

The MCA231 is a industry standard optocoupler, consisting of a gallium arsenide infrared LED and a silicon photodarlington. These optocouplers are constructed with a high voltage insulation packaging process which offers 7.5 kV withstand test capability.

ORDERING INFORMATION						
M C A 2 3 [PART NUMBER	1 - X 0 0 9 T PACKAGE OPTION TAPEAND 7.62 mm 7.62 mm					
AGENCY CERTIFIED/PACKAGE	CTR (%)					
AGENOT GERTIFIED/FAGRAGE	10 mA					
UL, BSI, VDE	> 200					
DIP-6	MCA231					
SMD-6, option 9	MCA231-X009T ⁽¹⁾					

Note

- For additional information on the available options refer to option information.
- (1) Also available in tubes, do not put T on the end.

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)								
PARAMETER	TEST CONDITION	PART	SYMBOL	VALUE	UNIT			
INPUT								
Reverse voltage			V_R	6	V			
Forward continuous current			I _F	60	mA			
Power dissipation			P _{diss}	135	mW			
Derate linearly from 25 °C				1.8	mW/°C			
OUTPUT	OUTPUT							
Collector emitter breakdown voltage		MCA231	BV _{CEO}	30	V			
Emitter collector breakdown voltage			BV _{ECO}	7	V			
Collector base breakdown voltage		MCA231	BV _{CBO}	30	V			
Power dissipation			P _{diss}	210	mW			
Derate linearly from 25 °C				2.8	mW/°C			

Document Number: 83656 Rev. 1.7, 23-Feb-11

Occument Number: 83656 For technical questions,

For technical questions, contact: optocoupleranswers@vishay.com

Distributor of Vishay Semiconductor/Opto Division: Excellent Integrated System Limited

Datasheet of MCA231-X009 - OPTOISO 5.3KV DARL W/BASE 6SMD

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

MCA231

Vishay Semiconductors

Optocoupler, Photodarlington Output, High Gain, with Base Connection

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)								
PARAMETER	TEST CONDITION	PART	SYMBOL	VALUE	UNIT			
COUPLER								
Total package dissipation (LED plus detector)			P _{tot}	260	mW			
Derate linearly from 25 °C				3.5	mW/°C			
Storage temperature			T _{stg}	- 55 to + 150	°C			
Operating temperature			T _{amb}	- 55 to + 100	°C			
Lead soldering time at 260 °C				10	S			
Isolation test voltage			V _{ISO}	5300	V _{RMS}			
Isolation resistance	V _{IO} = 500 V, T _{amb} = 25 °C		R _{IO}	10 ¹²	Ω			
ISOIATION resistance	V _{IO} = 500 V, T _{amb} = 100 °C		R _{IO}	10 ¹¹	Ω			

Note

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not
implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute
maximum ratings for extended periods of the time can adversely affect reliability.

PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
INPUT					•	•	
Forward voltage	I _F = 50 mA		V_{F}		1.1	1.5	V
Reverse current	V _R = 3 V		I _R			10	μΑ
Junction capacitance	V _R = 3 V		C _j		50		рF
OUTPUT							
Collector emitter breakdown voltage	$I_C = 100 \mu\text{A}, I_F = 0 \text{mA}$	MCA231	BV _{CEO}	30			V
Emitter collector breakdown voltage	$I_E = 10 \ \mu A, I_F = 0 \ mA$		BV _{ECO}	7			V
Collector base breakdown voltage	$I_C = 10 \mu A, I_F = 0 \text{ mA}$	MCA231	BV _{CBO}	30			V
Collector emitter leakage current			I _{CEO}			100	nA
COUPLER							
	$I_C = 2 \text{ mA}, I_F = 16 \text{ mA}$		V _{CEsat}			0.8	V
	$I_{C} = I_{F} = 50 \text{ mA}$		V _{CEsat}			1	V
Collector emitter saturation voltage	$I_C = 2 \text{ mA}, I_F = 1 \text{ mA}$		V _{CEsat}			1	V
	$I_C = 10 \text{ mA}, I_F = 5 \text{ mA}$		V _{CEsat}			1	V
	$I_C = 50 \text{ mA}, I_F = 10 \text{ mA}$		V _{CEsat}			1.2	V
Capacitance (input to output)			C _{IO}		0.5		pF

Note

• Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluation. Typical values are for information only and are not part of the testing requirements.

CURRENT TRANSFER RATIO (T _{amb} = 25 °C, unless otherwise specified)							
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT	
DC current transfer ratio	$V_{CE} = 5 \text{ V}, I_{F} = 10 \text{ mA}$	CTR _{DC}	200			%	

SWITCHING CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)							
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT	
Switching times	$R_L = 100 \Omega$, $V_{CE} = 10 V$	t _{on}		10		μs	
		t _{off}		30		μs	

www.vishay.com

For technical questions, contact: optocoupleranswers@vishay.com

Document Number: 83656

Rev. 1.7, 23-Feb-11

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

MCA231

Optocoupler, Photodarlington Output, High Gain, with Base Connection

Vishay Semiconductors

TYPICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

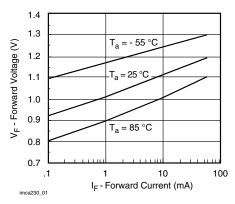


Fig. 1 - Forward Voltage vs. Forward Current

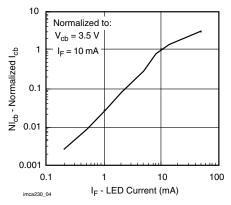


Fig. 4 - Normalized Collector Base Photocurrent vs. LED Current

Fig. 2 - Normalized Non-Saturated and Saturated CTR vs. **LED Current**

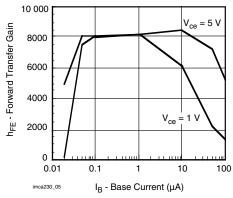


Fig. 5 - Non Saturated and Saturated hFE vs. Base Current

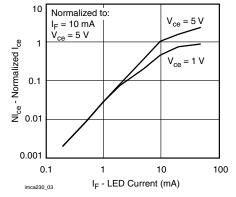


Fig. 3 - Normalized Non-Saturated and Saturated Collector Emitter Current vs. LED Current

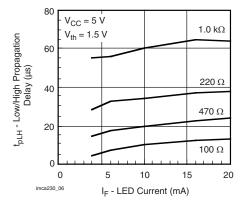


Fig. 6 - Low to High Propagation Delay vs. Collector Load Resistance and LED Current

Document Number: 83656 Rev. 1.7, 23-Feb-11

Datasheet of MCA231-X009 - OPTOISO 5.3KV DARL W/BASE 6SMD

MCA231

Vishay Semiconductors

Optocoupler, Photodarlington Output, High Gain, with Base Connection

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

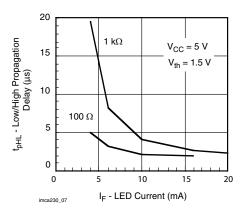


Fig. 7 - High to low Propagation Delay vs. Collector Load Resistance and LED Current

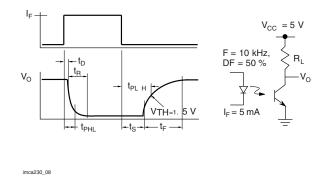
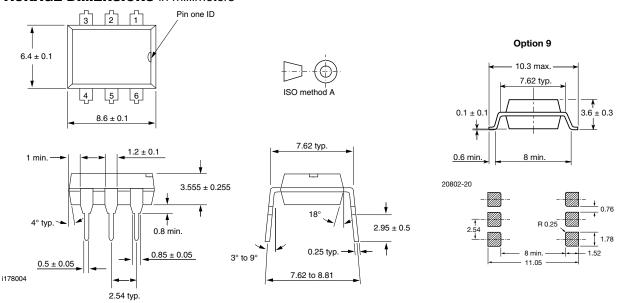



Fig. 8 - Switching Timing Waveform and Schematic

PACKAGE DIMENSIONS in millimeters

PACKAGE MARKING

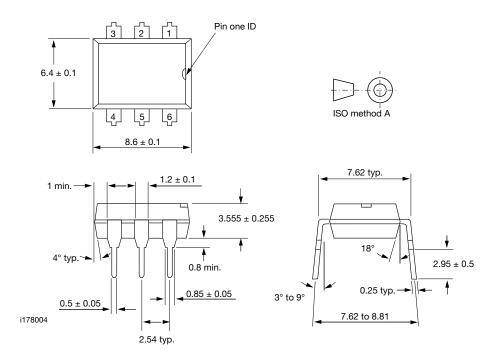
Note

Tape and reel suffix (T) is not part of the package marking.

Distributor of Vishay Semiconductor/Opto Division: Excellent Integrated System Limited

Datasheet of MCA231-X009 - OPTOISO 5.3KV DARL W/BASE 6SMD

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com


www.vishay.com

DIP-6A

Vishay Semiconductors

DIP-6A

PACKAGE DIMENSIONS in inches (millimeters)

Note

The information in this document provides generic information but for specific information on a product the appropriate product datasheet should be used.

Distributor of Vishay Semiconductor/Opto Division: Excellent Integrated System Limited Datasheet of MCA231-X009 - OPTOISO 5.3KV DARL W/BASE 6SMD

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Revision: 13-Jun-16 1 Document Number: 91000