

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

LEM USA, Inc. HAW 07-P

For any questions, you can email us directly: sales@integrated-circuit.com

Current Transducer HAW 07-P

For the electronic measurement of currents: DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Preliminary

Electrical data					
Primary nomina r.m.s. current \mathbf{I}_{PN} (A)	Primary current measuring range $\mathbf{l}_{\mathrm{P}}\left(\mathrm{A}\right)$	Primary Conductor Diameter (mm)	Туре		
7.5	± 19	1.1	HAW 07-P		
V _C	Supply voltage (± 5 %)		± 15	V	
V _C I _C V _d	Current consumption		<± 18	mΑ	
V d	R.m.s. voltage for AC isolat	tion test, 50/60Hz, 1 mi	n 2.0	kV	
R _{IS}	Isolation resistance @ 500	VDC	> 500	$M\Omega$	
VOUT	Output voltage @ ± I _{PN} , R ₁ =	: 10 kΩ, T _Δ = 25°C	±4	V	
R _{OUT}	Output internal resistance	^	100	Ω	
R	Load resistance		>10	$k\Omega$	

Accuracy-Dynamic performance data							
X	Accuracy @ I_{PN} , $T_A = 25^{\circ}C$ (without offset)	< ± 1	% of I _{PN}				
$\mathbf{e}_{_{\perp}}$	Linearity (0 ± I _{DN})	< ± 1	% of I				
V OE	Electrical offset voltage, T _A = 25°C	$< \pm 40$	mV '				
V OH	Hysteresis offset voltage \textcircled{a} $I_p = 0$;						
On	after an excursion of 1 x I _{PN}	< ± 20	mV				
V_{OT}	Thermal drift of \mathbf{V}_{OF} max.	± 1.5	mV/K				
v _{o⊤} TCe _G	Thermal drift of the gain (% of reading)	± 0.1	%/K				
t,	Response time @ 90% of I_p	< 3	μs				
f	Frequency bandwidth (- 3 dB) ¹⁾	DC 50	kHz				

Ger	neral data		
T _A T _S m	Ambient operating temperature	- 10 + 75	°C
	Ambient storage temperature	- 15 + 85	°C
	Mass	12	g

Features

- Hall effect measuring principle
- Galvanic isolation between primary and secondary circuit
- Isolation voltage 2000 V
- Low power consumption
- Extended measuring range(2.5x I_{PN})

Advantages

- Easy mounting
- Small size and space saving
- Only one design for wide current ratings range
- High immunity to external interference.

Applications

- DC motor drives
- Switched Mode Power Supplies (SMPS)
- AC variable speed drives
- Uninterruptible Power Supplies (UPS)
- Battery supplied applications
- Inverters

Notes: EN 50178 approval pending

LEM Components www.lem.com

010824/1

¹⁾ Derating is needed to avoid excessive core heating at high frequency.

4 Output

UNIT: mm SCALE: 2/1