Excellent Integrated System Limited Stocking Distributor Click to view price, real time Inventory, Delivery & Lifecycle Information: <u>Texas Instruments</u> <u>SN74LVC2G17DBVR</u> For any questions, you can email us directly: sales@integrated-circuit.com Datasheet of SN74LVC2G17DBVR - IC BUFF DL SCHMIT TRIG SOT23-6 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com SN74LVC2G17 SCES381N - JANUARY 2002-REVISED JANUARY 2015 ## SN74LVC2G17 Dual Schmitt-Trigger Buffer #### 1 Features - · Schmitt-Trigger inputs provide hysteresis - Available in the Texas Instruments NanoFree[™] Package - Supports 5-V V_{CC} Operation - Inputs Accept Voltages to 5.5 V - Max t_{pd} of 5.4 ns at 3.3 V - Low Power Consumption, 10-μA Max I_{CC} - ±24-mA Output Drive at 3.3 V - Typical V_{OLP} (Output Ground Bounce) < 0.8 V at V_{CC} = 3.3 V, T_A = 25°C - Typical V_{OHV} (Output V_{OH} Undershoot) 2 V at V_{CC} = 3.3 V, T_A = 25°C - I_{off} Supports Live Insertion, Partial-Power-Down Mode Operation and Back-Drive Protection - Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II - ESD Protection Exceeds JESD 22 - 2000-V Human-Body Model - 1000-V Charged-Device Model ### 2 Applications - AV Receivers - Audio Docks: Portable - Blu-ray Players and Home Theater - MP3 Players/Recorders - · Personal Digital Assistants (PDAs) - Power: Telecom/Server AC/DC Supply: Single Controller: Analog and Digital - Solid State Drives (SSDs): Client and Enterprise - TVs: LCD/Digital and High-Definition (HDTVs) - Tablets: Enterprise - · Video Analytics: Server - · Wireless Headsets, Keyboards, and Mice ## 3 Description This dual Schmitt-Trigger buffer is designed for 1.65- V to 5.5-V V_{CC} operation. The SN74LVC2G17 device contains two buffers and performs the Boolean function Y = A. The device functions as two independent buffers, but because of Schmitt action, it may have different input threshold levels for positive-going (V_{T+}) and negative-going (V_{T-}) signals. NanoFree[™] package technology is a major breakthrough in IC packaging concepts, using the die as the package. This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. ## **Device Information**(1) | PART NUMBER | PACKAGE (PIN) | BODY SIZE | |-------------|---------------|-------------------| | | SOT-23 (6) | 2.90 mm × 1.60 mm | | | SC70 (6) | 2.00 mm × 1.25 mm | | SN74LVC2G17 | SON (6) | 1.45 mm × 1.00 mm | | | SON (6) | 1.00 mm × 1.00 mm | | | DSBGA (6) | 1.41 mm × 0.91 mm | (1) For all available packages, see the orderable addendum at the end of the data sheet. ## 4 Simplified Schematic Datasheet of SN74LVC2G17DBVR - IC BUFF DL SCHMIT TRIG SOT23-6 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com ### SN74LVC2G17 SCES381N – JANUARY 2002 – REVISED JANUARY 2015 www.ti.com | | Table of | Conte | nts | | |-----|--|------------|--|------| | | 1 Features 1 | 9 | Detailed Description | 8 | | : | 2 Applications 1 | | 9.1 Overview | | | ; | B Description 1 | | 9.2 Functional Block Diagram | 8 | | 4 | Simplified Schematic 1 | | 9.3 Feature Description | | | , | 5 Revision History 2 | | 9.4 Device Functional Modes | 8 | | (| 6 Pin Configuration and Functions | 10 | Application and Implementation | 9 | | | 7 Specifications 4 | | 10.1 Application Information | | | | 7.1 Absolute Maximum Ratings | | 10.2 Typical Power Button Circuit | 9 | | | 7.2 ESD Ratings | 11 | Power Supply Recommendations | 10 | | | 7.3 Recommended Operating Conditions 4 | 12 | Layout | 10 | | | 7.4 Thermal Information5 | | 12.1 Layout Guidelines | | | | 7.5 Electrical Characteristics 5 | | 12.2 Layout Example | 11 | | | 7.6 Switching Characteristics, -40°C to 85°C6 | 13 | Device and Documentation Support | 12 | | | 7.7 Switching Characteristics, -40°C to 125°C 6 | | 13.1 Trademarks | 12 | | | 7.8 Operating Characteristics 6 | | 13.2 Electrostatic Discharge Caution | 12 | | | 7.9 Typical Characteristics | | 13.3 Glossary | 12 | | 8 | Parameter Measurement Information 7 | 14 | Mechanical, Packaging, and Orderable Information | 12 | | Cha | anges from Revision M (November 2013) to Revision N Added Applications, Device Information table, Pin Function Typical Characteristics, Feature Description section, Device | | • | Page | | | section, Power Supply Recommendations section, Layout Mechanical, Packaging, and Orderable Information section | section, D | Device and Documentation Support section, an | | | Cha | anges from Revision L (September 2013) to Revision M | | | Page | | • | Updated document formatting | | | 1 | | • | Changed MAX operating temperature to 125°C in <i>Recomm</i> | | | | | | | | | | | Cha | anges from Revision K (July 2012) to Revision L | | | Page | | • | Updated document to new TI data sheet format | | | 1 | | • | Added ESD warning. | | | 12 | | Cha | anges from Revision J (June 2012) to Revision K | | | Page | Datasheet of SN74LVC2G17DBVR - IC BUFF DL SCHMIT TRIG SOT23-6 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com www.ti.com SN74LVC2G17 SCES381N - JANUARY 2002 - REVISED JANUARY 2015 ## 6 Pin Configuration and Functions #### **Pin Functions** | Pl | IN | TYPE | DESCRIPTION | |-----------------|-----|------|-------------| | NAME | NO. | IIFE | DESCRIPTION | | 1A | 1 | I | Input 1 | | 1Y | 6 | 0 | Output 1 | | 2A | 3 | I | Input 2 | | 2Y | 4 | 0 | Output 2 | | GND | 2 | | Ground | | V _{CC} | 5 | | Power Pin | Product Folder Links: SN74LVC2G17 Copyright © 2002-2015, Texas Instruments Incorporated Submit Documentation Feedback 3 Datasheet of SN74LVC2G17DBVR - IC BUFF DL SCHMIT TRIG SOT23-6 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com #### SN74LVC2G17 SCES381N-JANUARY 2002-REVISED JANUARY 2015 www.ti.com ## **Specifications** ## 7.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted)(1) | | | | MIN | MAX | UNIT | |------------------|--|------------------------------------|------|-----------------------|------| | V_{CC} | Supply voltage range | | -0.5 | 6.5 | V | | V _I | Input voltage range (2) | Input voltage range ⁽²⁾ | | 6.5 | V | | Vo | Voltage range applied to any output in the high-impedance or power-off state (2) | | -0.5 | 6.5 | V | | Vo | Voltage range applied to any output in the high or low state (2)(3) | | -0.5 | V _{CC} + 0.5 | V | | I _{IK} | Input clamp current | V ₁ < 0 | | -50 | mA | | I _{OK} | Output clamp current | V _O < 0 | | -50 | mA | | Io | Continuous output current | | | ±50 | mA | | | Continuous current through V _{CC} or | GND | | ±100 | mA | | TJ | Junction temperature under bias | | | 150 | °C | | T _{stg} | Storage temperature range | | -65 | 150 | °C | Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. ## 7.2 ESD Ratings | | | VALUE | UNIT | |---------------------------------|---|-------|------| | | Human-Body Model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins (2) | 2000 | V | | V _{ESD} ⁽¹⁾ | Charged-Device Model (CDM), per JEDEC specification JESD22-C101, all pins (3) | 1000 | V | Electrostatic discharge (ESD) to measure device sensitivity and immunity to damage caused by assembly line electrostatic discharges in ### 7.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted)(1) | | | | MIN | MAX | UNIT | |-----------------|--------------------------------|--------------------------|------|----------|------| | V _{CC} | Supply voltage | Operating | 1.65 | 5.5 | V | | V_{I} | Input voltage | | 0 | 5.5 | V | | Vo | Output voltage | | 0 | V_{CC} | V | | | | V _{CC} = 1.65 V | | -4 | | | | | V _{CC} = 2.3 V | | -8 | | | I _{OH} | OH High-level output current | V 2V | | -16 | mA | | | | $V_{CC} = 3 \text{ V}$ | | -24 | | | | | $V_{CC} = 4.5 \text{ V}$ | | -32 | | | | | V _{CC} = 1.65 V | | 4 | | | | | $V_{CC} = 2.3 \text{ V}$ | | 8 | | | I _{OL} | Low-level output current | V 2V | | 16 | mA | | | | $V_{CC} = 3 \text{ V}$ | | 24 | | | | | $V_{CC} = 4.5 \text{ V}$ | | 32 | | | T_A | Operating free-air temperature | • | -40 | 125 | °C | All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed. The value of V_{CC} is provided in the *Recommended Operating Conditions* table. JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. www.ti.com ## Distributor of Texas Instruments: Excellent Integrated System Limited Datasheet of SN74LVC2G17DBVR - IC BUFF DL SCHMIT TRIG SOT23-6 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com TEXAS INSTRUMENTS SN74LVC2G17 SCES381N - JANUARY 2002-REVISED JANUARY 2015 ### 7.4 Thermal Information | | | | | SN74LVC2G17 | , | | | |-------------------|--|-----|-----|-------------|-----|-----|------| | THERMAL METRIC(1) | | DBV | DCK | YZP | DRY | DSF | UNIT | | | | | | 6 PINS | | | | | $R_{\theta JA}$ | Junction-to-ambient thermal resistance (2) | 165 | 259 | 123 | 234 | 300 | °C/W | - (1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953. - 2) The package thermal impedance is calculated in accordance with JESD 51-7. ## 7.5 Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted) | PARAMETER | TEST CONDITIONS | V | –40° | C to 85°C | –40°C | to 125°C | UNIT | |--------------------------------|---|-----------------|-----------------------|------------------------|-----------------------|------------------------|------| | PARAMETER | TEST CONDITIONS | V _{CC} | MIN | TYP ⁽¹⁾ MAX | MIN | TYP ⁽¹⁾ MAX | UNII | | | | 1.65 V | 0.7 | 1.4 | 0.7 | 1.4 | | | V _{T+} | | 2.3 V | 1.0 | 1.7 | 1.0 | 1.7 | | | Positive-going input threshold | | 3 V | 1.3 | 2.0 | 1.3 | 2.0 | V | | voltage | | 4.5 V | 1.9 | 3.1 | 1.9 | 3.1 | | | | | 5.5 V | 2.2 | 3.7 | 2.2 | 3.7 | | | | | 1.65 V | 0.3 | 0.7 | 0.3 | 0.7 | | | V _{T-} | | 2.3 V | 0.4 | 1 | 0.4 | 1.0 | | | Negative-going input threshold | | 3 V | 0.8 | 1.3 | 0.8 | 1.3 | V | | voltage | | 4.5 V | 1.1 | 2 | 1.1 | 2.0 | | | | | 5.5 V | 1.4 | 2.5 | 1.4 | 2.5 | | | | | 1.65 V | 0.3 | 0.8 | 0.3 | 0.8 | | | ΔV_{T} | | 2.3 V | 0.4 | 0.9 | 0.35 | 0.9 | | | Hysteresis | | 3 V | 0.4 | 1.1 | 0.4 | 1.1 | V | | $(V_{T+} - V_{T-})$ | | 4.5 V | 0.6 | 1.3 | 0.6 | 1.3 | | | | | 5.5 V | 0.7 | 1.4 | 0.7 | 1.4 | | | | $I_{OH} = -100 \ \mu A$ | 1.65 V to 5.5 V | V _{CC} - 0.1 | | V _{CC} - 0.1 | | | | | $I_{OH} = -4 \text{ mA}$ | 1.65 V | 1.2 | | 1.2 | | | | V _{OH} | $I_{OH} = -8 \text{ mA}$ | 2.3 V | 1.9 | | 1.9 | | V | | VOH | I _{OH} = −16 mA | 3 V | 2.4 | | 2.4 | | V | | | $I_{OH} = -24 \text{ mA}$ | 3 V | 2.3 | | 2.3 | | | | | $I_{OH} = -32 \text{ mA}$ | 4.5 V | 3.8 | | 3.8 | | | | | I _{OL} = 100 μA | 1.65 V to 5.5 V | | 0.1 | | 0.1 | | | | I _{OL} = 4 mA | 1.65 V | | 0.45 | | 0.45 | | | V _{OL} | I _{OL} = 8 mA | 2.3 V | | 0.3 | | 0.3 | V | | VOL | I _{OL} = 16 mA | 3 V | | 0.4 | | 0.4 | V | | | I _{OL} = 24 mA | 3 v | | 0.55 | | 0.55 | | | | I _{OL} = 32 mA | 4.5 V | | 0.55 | | 0.55 | | | I _I A input | V _I = 5.5 V or GND | 0 to 5.5 V | | ±5 | | ±5 | μΑ | | I _{off} | V_1 or $V_0 = 5.5 \text{ V}$ | 0 | | ±10 | | ±10 | μΑ | | I _{cc} | $V_I = 5.5 \text{ V or GND}, \qquad I_O = 0$ | 1.65 V to 5.5 V | | 10 | | 10 | μΑ | | ΔI _{CC} | One input at V _{CC} – 0.6 V,
Other inputs at V _{CC} or GND | 3 V to 5.5 V | | 500 | | 500 | μA | | C_{i} | V _I = V _{CC} or GND | 3.3 V | | 4 | | 4 | pF | (1) All typical values are at V_{CC} = 3.3 V, T_A = 25°C. Datasheet of SN74LVC2G17DBVR - IC BUFF DL SCHMIT TRIG SOT23-6 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com #### SN74LVC2G17 SCES381N-JANUARY 2002-REVISED JANUARY 2015 www.ti.com ## 7.6 Switching Characteristics, -40°C to 85°C over recommended operating free-air temperature range (unless otherwise noted) (see Figure 3) | | | | | | | -40°C t | to 85°C | | | | | |-----------------|-----------------|----------------|-------------------------|-----|-------------------------|---------|------------------------------|-----|------------------------|-----|------| | PARAMETER | FROM
(INPUT) | TO
(OUTPUT) | V _{CC} = ± 0.1 | | V _{CC} = ± 0.2 | | V _{CC} = 1
± 0.3 | | V _{CC} = ± 0. | | UNIT | | | | | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX | | | t _{pd} | A | Y | 3.9 | 9.3 | 1.9 | 5.7 | 2.2 | 5.4 | 1.5 | 4.3 | ns | ### 7.7 Switching Characteristics, -40°C to 125°C over recommended operating free-air temperature range (unless otherwise noted) (see Figure 3) | | | | | | | -40°C to | 125°C | | | | | |-----------------|-----------------|----------------|------------------------------|-----|------------------------------|----------|------------------------------|-----|-------------------------|-----|------| | PARAMETER | FROM
(INPUT) | TO
(OUTPUT) | V _{CC} = 1
± 0.1 | | V _{CC} = 2
± 0.2 | | V _{CC} = 3
± 0.3 | | V _{CC} = ± 0.5 | | UNIT | | | | | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX | | | t _{pd} | A | Υ | 3.9 | 9.8 | 1.9 | 6.2 | 2.2 | 5.9 | 1.5 | 4.8 | ns | ## 7.8 Operating Characteristics $T_A = 25^{\circ}C$ | PARAMETER TEST CONDITIONS | | V _{CC} = 5 V | UNIT | | | | | |---------------------------|-------------------------------|-----------------------|------|-----|-----|------|----| | | | TYP | TYP | TYP | TYP | UNII | | | C | Power dissipation capacitance | f = 10 MHz | 17 | 18 | 19 | 21 | pF | Product Folder Links: SN74LVC2G17 ## 7.9 Typical Characteristics vs Load Capacitance Submit Documentation Feedback Copyright © 2002–2015, Texas Instruments Incorporated www.ti.com SN74LVC2G17 SCES381N - JANUARY 2002 - REVISED JANUARY 2015 ### **Parameter Measurement Information** | TEST | S1 | |------------------------------------|-------------------| | t _{PLH} /t _{PHL} | Open | | t _{PLZ} /t _{PZL} | V _{LOAD} | | t _{PHZ} /t _{PZH} | GND | | ., | INF | PUTS | ., | ., | | _ | .,, | |-------------------------------------|-----------------|---------|--------------------|---------------------|---------------|----------------|----------------| | V _{cc} | V, | t,/t, | V _M | V _{LOAD} | C | R _∟ | V _A | | 1.8 V ± 0.15 V | V _{cc} | ≤2 ns | V _{cc} /2 | 2 × V _{cc} | 30 pF | 1 k Ω | 0.15 V | | $2.5~\textrm{V}~\pm~0.2~\textrm{V}$ | V_{cc} | ≤2 ns | V _{cc} /2 | 2 × V _{cc} | 30 pF | 500 Ω | 0.15 V | | 3.3 V ± 0.3 V | 3 V | ≤2.5 ns | 1.5 V | 6 V | 50 pF | 500 Ω | 0.3 V | | 5 V ± 0.5 V | V _{cc} | ≤2.5 ns | V _{cc} /2 | 2 × V _{cc} | 50 pF | 500 Ω | 0.3 V | NOTES: A. C. includes probe and jig capacitance. - B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_{\circ} = 50 Ω . - D. The outputs are measured one at a time, with one transition per measurement. - E. $t_{\mbox{\tiny PLZ}}$ and $\dot{t}_{\mbox{\tiny PHZ}}$ are the same as $t_{\mbox{\tiny dis}}.$ - F. t_{PZL} and t_{PZH} are the same as t_{en} . - G. t_{PLH} and t_{PHL} are the same as t_{pd} . - H. All parameters and waveforms are not applicable to all devices. Figure 3. Load Circuit and Voltage Waveforms Copyright © 2002-2015, Texas Instruments Incorporated Submit Documentation Feedback Datasheet of SN74LVC2G17DBVR - IC BUFF DL SCHMIT TRIG SOT23-6 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com #### SN74LVC2G17 SCES381N-JANUARY 2002-REVISED JANUARY 2015 www.ti.com ## **Detailed Description** #### 9.1 Overview NanoFree™ package technology is a major breakthrough in IC packaging concepts, using the die as the package. This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. ## 9.2 Functional Block Diagram ### 9.3 Feature Description - 1.65 V to 5.5 V operating voltage range - Allows down voltage translation - 5 V to 3.3 V - 5 V or 3.3 V to 1.8 V - Inputs accept voltages to 5.5 V - 5-V tolerance on input pin - Ioff feature - Allows voltage on the inputs and outputs when V_{CC} is 0 V - Able to reduce leakage when V_{CC} is 0 V - Schmitt-Trigger Input can improve the noise immunity capability ### 9.4 Device Functional Modes | INPUT
A | OUTPUT
Y | |------------|-------------| | Н | Н | | L | L | www.ti.com SN74LVC2G17 SCES381N - JANUARY 2002-REVISED JANUARY 2015 ## 10 Application and Implementation #### **NOTE** Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. ## **10.1 Application Information** The SN74LVC2G17 device contains two buffers and performs the Boolean function Y = A. The device functions as two independent buffers, but because of Schmitt action, it may have different input threshold levels for positive-going (V_{T+}) and negative-going (V_{T+}) signals. ## 10.2 Typical Power Button Circuit Figure 4. Device Power Button Circuit ### 10.2.1 Design Requirements This device uses CMOS technology and has balanced output drive. Care should be taken to avoid bus contention because it can drive currents that would exceed maximum limits. Outputs can be combined to produce higher drive but the high drive will also create faster edges into light loads so routing and load conditions should be considered to prevent ringing. #### 10.2.2 Detailed Design Procedure - 1. Recommended Input Conditions: - For rise time and fall time specifications, see (Δt/ΔV) in Recommended Operating Conditions table. - For specified high and low levels, see (V_{IH} and V_{IL}) in Recommended Operating Conditions table. - Inputs are overvoltage tolerant allowing them to go as high as 5.5 V at any valid V_{CC} . - 2. Recommend Output Conditions: - Load currents should not exceed 50 mA per output and 100 mA total for the part. - Series resistors on the output may be used if the user desires to slow the output edge signal or limit the output current. Datasheet of SN74LVC2G17DBVR - IC BUFF DL SCHMIT TRIG SOT23-6 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com #### SN74LVC2G17 SCES381N-JANUARY 2002-REVISED JANUARY 2015 www.ti.com ### Typical Power Button Circuit (continued) ### 10.2.3 Application Curves ## 11 Power Supply Recommendations The power supply can be any voltage between the MIN and MAX supply voltage rating located in the *Recommended Operating Conditions* table. Each V_{CC} terminal should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, a 0.1 μ F capacitor is recommended. If there are multiple V_{CC} terminals then 0.01 μ F or 0.022 μ F capacitors are recommended for each power terminal. It is ok to parallel multiple bypass capacitors to reject different frequencies of noise. Multiple bypass capacitors may be paralleled to reject different frequencies of noise. The bypass capacitor should be installed as close to the power terminal as possible for the best results. ## 12 Layout 10 ## 12.1 Layout Guidelines When using multiple bit logic devices, inputs should not float. In many cases, functions or parts of functions of digital logic devices are unused. Some examples are when only two inputs of a triple-input AND gate are used, or when only 3 of the 4-buffer gates are used. Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. Specified in Figure 7 are rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally they will be tied to GND or V_{CC} , whichever makes more sense or is more convenient. Datasheet of SN74LVC2G17DBVR - IC BUFF DL SCHMIT TRIG SOT23-6 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com www.ti.com SN74LVC2G17 SCES381N - JANUARY 2002-REVISED JANUARY 2015 ## 12.2 Layout Example Figure 7. Layout Diagram Datasheet of SN74LVC2G17DBVR - IC BUFF DL SCHMIT TRIG SOT23-6 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com TEXAS INSTRUMENTS #### SN74LVC2G17 SCES381N-JANUARY 2002-REVISED JANUARY 2015 www.ti.com ## 13 Device and Documentation Support #### 13.1 Trademarks NanoFree is a trademark of Texas Instruments. All other trademarks are the property of their respective owners. ## 13.2 Electrostatic Discharge Caution These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. ## 13.3 Glossary SLYZ022 — TI Glossary. This glossary lists and explains terms, acronyms and definitions. ## 14 Mechanical, Packaging, and Orderable Information The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser based versions of this data sheet, refer to the left hand navigation. Product Folder Links: SN74LVC2G17 12 Datasheet of SN74LVC2G17DBVR - IC BUFF DL SCHMIT TRIG SOT23-6 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com PACKAGE OPTION ADDENDUM 5-Dec-2015 ### PACKAGING INFORMATION | Orderable Device | Status | Package Type | Package
Drawing | Pins | _ | Eco Plan | Lead/Ball Finish | MSL Peak Temp | Op Temp (°C) | Device Marking | Samples | |-------------------|--------|--------------|--------------------|------|--------------------|-----------------------------------|--------------------------|---------------------------|--------------|--------------------------------|---------| | SN74LVC2G17DBVR | ACTIVE | SOT-23 | DBV | 6 | Qty
3000 | (2)
Green (RoHS
& no Sb/Br) | (6)
CU NIPDAU CU SN | (3)
Level-1-260C-UNLIM | -40 to 125 | (C175 ~ C17F ~
C17K ~ C17R) | Samples | | SN74LVC2G17DBVRE4 | ACTIVE | SOT-23 | DBV | 6 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | C17F | Samples | | SN74LVC2G17DBVT | ACTIVE | SOT-23 | DBV | 6 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU CU SN | Level-1-260C-UNLIM | -40 to 125 | (C175 ~ C17F ~
C17K ~ C17R) | Samples | | SN74LVC2G17DBVTG4 | ACTIVE | SOT-23 | DBV | 6 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | C17F | Samples | | SN74LVC2G17DCK3 | ACTIVE | SC70 | DCK | 6 | 3000 | Pb-Free
(RoHS) | CU SNBI | Level-1-260C-UNLIM | -40 to 85 | (C7F ~ C7Z) | Samples | | SN74LVC2G17DCKR | ACTIVE | SC70 | DCK | 6 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | (C75 ~ C7F ~ C7K ~
C7R) | Samples | | SN74LVC2G17DCKRE4 | ACTIVE | SC70 | DCK | 6 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | (C75 ~ C7F ~ C7K ~
C7R) | Samples | | SN74LVC2G17DCKRG4 | ACTIVE | SC70 | DCK | 6 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | (C75 ~ C7F ~ C7K ~
C7R) | Samples | | SN74LVC2G17DCKT | ACTIVE | SC70 | DCK | 6 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | (C75 ~ C7F ~ C7K ~
C7R) | Samples | | SN74LVC2G17DCKTE4 | ACTIVE | SC70 | DCK | 6 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | (C75 ~ C7F ~ C7K ~
C7R) | Samples | | SN74LVC2G17DCKTG4 | ACTIVE | SC70 | DCK | 6 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | (C75 ~ C7F ~ C7K ~
C7R) | Samples | | SN74LVC2G17DRYR | ACTIVE | SON | DRY | 6 | 5000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | C7 | Samples | | SN74LVC2G17DSF2 | ACTIVE | SON | DSF | 6 | 5000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | C7 | Samples | | SN74LVC2G17DSFR | ACTIVE | SON | DSF | 6 | 5000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | C7 | Samples | | SN74LVC2G17YZPR | ACTIVE | DSBGA | YZP | 6 | 3000 | Green (RoHS
& no Sb/Br) | SNAGCU | Level-1-260C-UNLIM | -40 to 85 | (C77 ~ C7N) | Samples | (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. Addendum-Page 1 Datasheet of SN74LVC2G17DBVR - IC BUFF DL SCHMIT TRIG SOT23-6 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com PACKAGE OPTION ADDENDUM 5-Dec-2015 PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability ation and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free process Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): Tl defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight - (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. - (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. - (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. - (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis #### OTHER QUALIFIED VERSIONS OF SN74LVC2G17: Automotive: SN74LVC2G17-Q1 • Enhanced Product: SN74LVC2G17-EP NOTE: Qualified Version Definitions: • Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects Addendum-Page 2 Datasheet of SN74LVC2G17DBVR - IC BUFF DL SCHMIT TRIG SOT23-6 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com PACKAGE OPTION ADDENDUM INSTRUMENTS 5-Dec-2015 • Enhanced Product - Supports Defense, Aerospace and Medical Applications Datasheet of SN74LVC2G17DBVR - IC BUFF DL SCHMIT TRIG SOT23-6 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com ## PACKAGE MATERIALS INFORMATION www.ti.com 18-Jan-2016 #### TAPE AND REEL INFORMATION - A0 Dimension designed to accommodate the component width - B0 Dimension designed to accommodate the component length - K0 Dimension designed to accommodate the component thickness - W Overall width of the carrier tape - P1 Pitch between successive cavity centers #### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |-------------------|-----------------|--------------------|---|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | SN74LVC2G17DBVR | SOT-23 | DBV | 6 | 3000 | 178.0 | 9.0 | 3.23 | 3.17 | 1.37 | 4.0 | 8.0 | Q3 | | SN74LVC2G17DBVR | SOT-23 | DBV | 6 | 3000 | 180.0 | 9.2 | 3.17 | 3.23 | 1.37 | 4.0 | 8.0 | Q3 | | SN74LVC2G17DBVT | SOT-23 | DBV | 6 | 250 | 180.0 | 9.2 | 3.17 | 3.23 | 1.37 | 4.0 | 8.0 | Q3 | | SN74LVC2G17DBVTG4 | SOT-23 | DBV | 6 | 250 | 178.0 | 9.0 | 3.23 | 3.17 | 1.37 | 4.0 | 8.0 | Q3 | | SN74LVC2G17DCKR | SC70 | DCK | 6 | 3000 | 178.0 | 9.0 | 2.4 | 2.5 | 1.2 | 4.0 | 8.0 | Q3 | | SN74LVC2G17DCKR | SC70 | DCK | 6 | 3000 | 180.0 | 9.2 | 2.3 | 2.55 | 1.2 | 4.0 | 8.0 | Q3 | | SN74LVC2G17DCKT | SC70 | DCK | 6 | 250 | 180.0 | 9.2 | 2.3 | 2.55 | 1.2 | 4.0 | 8.0 | Q3 | | SN74LVC2G17DCKT | SC70 | DCK | 6 | 250 | 178.0 | 9.2 | 2.4 | 2.4 | 1.22 | 4.0 | 8.0 | Q3 | | SN74LVC2G17DRYR | SON | DRY | 6 | 5000 | 180.0 | 9.5 | 1.15 | 1.6 | 0.75 | 4.0 | 8.0 | Q1 | | SN74LVC2G17DSF2 | SON | DSF | 6 | 5000 | 180.0 | 9.5 | 1.16 | 1.16 | 0.5 | 4.0 | 8.0 | Q3 | | SN74LVC2G17DSFR | SON | DSF | 6 | 5000 | 180.0 | 9.5 | 1.16 | 1.16 | 0.5 | 4.0 | 8.0 | Q2 | | SN74LVC2G17YZPR | DSBGA | YZP | 6 | 3000 | 178.0 | 9.2 | 1.02 | 1.52 | 0.63 | 4.0 | 8.0 | Q1 | Datasheet of SN74LVC2G17DBVR - IC BUFF DL SCHMIT TRIG SOT23-6 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com ## **PACKAGE MATERIALS INFORMATION** www.ti.com 18-Jan-2016 ## *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |-------------------|--------------|-----------------|------|------|-------------|------------|-------------| | SN74LVC2G17DBVR | SOT-23 | DBV | 6 | 3000 | 180.0 | 180.0 | 18.0 | | SN74LVC2G17DBVR | SOT-23 | DBV | 6 | 3000 | 205.0 | 200.0 | 33.0 | | SN74LVC2G17DBVT | SOT-23 | DBV | 6 | 250 | 205.0 | 200.0 | 33.0 | | SN74LVC2G17DBVTG4 | SOT-23 | DBV | 6 | 250 | 180.0 | 180.0 | 18.0 | | SN74LVC2G17DCKR | SC70 | DCK | 6 | 3000 | 180.0 | 180.0 | 18.0 | | SN74LVC2G17DCKR | SC70 | DCK | 6 | 3000 | 205.0 | 200.0 | 33.0 | | SN74LVC2G17DCKT | SC70 | DCK | 6 | 250 | 205.0 | 200.0 | 33.0 | | SN74LVC2G17DCKT | SC70 | DCK | 6 | 250 | 180.0 | 180.0 | 18.0 | | SN74LVC2G17DRYR | SON | DRY | 6 | 5000 | 184.0 | 184.0 | 19.0 | | SN74LVC2G17DSF2 | SON | DSF | 6 | 5000 | 184.0 | 184.0 | 19.0 | | SN74LVC2G17DSFR | SON | DSF | 6 | 5000 | 184.0 | 184.0 | 19.0 | | SN74LVC2G17YZPR | DSBGA | YZP | 6 | 3000 | 220.0 | 220.0 | 35.0 | ## **MECHANICAL DATA** DBV (R-PDSO-G6) ## PLASTIC SMALL-OUTLINE PACKAGE - All linear dimensions are in millimeters. - This drawing is subject to change without notice. - Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation. - £ Falls within JEDEC MO−178 Variation AB, except minimum lead width. ## LAND PATTERN DATA DBV (R-PDSO-G6) ## PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad. - D. Publication IPC-7351 is recommended for alternate designs. - E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations. ## **MECHANICAL DATA** ## DCK (R-PDSO-G6) ## PLASTIC SMALL-OUTLINE PACKAGE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side. - D. Falls within JEDEC MO-203 variation AB. ## **LAND PATTERN DATA** # DCK (R-PDSO-G6) ## PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad. - D. Publication IPC-7351 is recommended for alternate designs. - E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations. NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994. - B. This drawing is subject to change without notice. - C. SON (Small Outline No-Lead) package configuration. ⚠ The exposed lead frame feature on side of package may or may not be present due to alternative lead frame designs. - E. This package complies to JEDEC MO-287 variation UFAD. - FX See the additional figure in the Product Data Sheet for details regarding the pin 1 identifier shape. ## **LAND PATTERN DATA** DRY (R-PUSON-N6) PLASTIC SMALL OUTLINE NO-LEAD - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads. - E. Maximum stencil thickness 0,127 mm (5 mils). All linear dimensions are in millimeters. - F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations. - G. Side aperture dimensions over—print land for acceptable area ratio > 0.66. Customer may reduce side aperture dimensions if stencil manufacturing process allows for sufficient release at smaller opening. ## MECHANICAL DATA ## DSF (S-PX2SON-N6) ## PLASTIC SMALL OUTLINE NO-LEAD - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. - 2. This drawing is subject to change without notice. - 3. Reference JEDEC registration MO-287, variation X2AAF. ## LAND PATTERN DATA NOTES: All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads. If 2 mil solder mask is outside PCB vendor capability, it is advised to omit solder mask. - E. Maximum stencil thickness 0,1016 mm (4 mils). All linear dimensions are in millimeters. - F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations. - G. Suggest stencils cut with lasers such as Fiber Laser that produce the greatest positional accuracy. - H. Component placement force should be minimized to prevent excessive paste block deformation. ## **YZP0006** ## **PACKAGE OUTLINE** ## DSBGA - 0.5 mm max height DIE SIZE BALL GRID ARRAY ## NOTES: NanoFree Is a trademark of Texas Instruments. - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M - per ASME Y14.5M. 2. This drawing is subject to change without notice. - 3. NanoFree[™] package configuration. ## **EXAMPLE BOARD LAYOUT** **YZP0006** DSBGA - 0.5 mm max height DIE SIZE BALL GRID ARRAY NOTES: (continued) 4. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information, see Texas Instruments literature number SBVA017 (www.ti.com/lit/sbva017). ## **EXAMPLE STENCIL DESIGN** **YZP0006** DSBGA - 0.5 mm max height DIE SIZE BALL GRID ARRAY NOTES: (continued) 5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. # **Distributor of Texas Instruments: Excellent Integrated System Limited**Datasheet of SN74LVC2G17DBVR - IC BUFF DL SCHMIT TRIG SOT23-6 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com #### **IMPORTANT NOTICE** Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. #### Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Computers and Peripherals **Data Converters** dataconverter.ti.com www.ti.com/computers **DLP® Products** Consumer Electronics www.ti.com/consumer-apps www.dlp.com DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Power Mgmt Space, Avionics and Defense www.ti.com/space-avionics-defense Security www.ti.com/security Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com **Products** Logic OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u> logic.ti.com Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated