

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Vishay Semiconductor/Diodes Division VS-4ECH06-M3/9AT

For any questions, you can email us directly: <u>sales@integrated-circuit.com</u>

Distributor of Vishay Semiconductor/Diodes Division: Excellent Integrated System Limite

Datasheet of VS-4ECH06-M3/9AT - DIODE GEN PURP 600V 4A DO214AB Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

ISHAY

Vishay Semiconductors

Hyperfast Rectifier, 4 A FRED Pt[®]

www.vishay.com

DO-214AB (SMC)

PRODUCT SUMMARY				
Package	DO-214AB (SMC)			
I _{F(AV)}	4 A			
V _R	600 V			
V _F at I _F	1.15 V			
t _{rr} typ.	30 ns			
T _J max.	175 °C			
Diode variation	Single die			

FEATURES

- Hyperfast recovery time, reduced Qrr and soft recoverv
- 175 °C maximum operating junction temperature
- For PFC CRM/CCM, snubber operation
- Low forward voltage drop
- Low leakage current
- Meets MSL level 1, per J-STD-020, LF maximum peak of 260 °C
- Designed and qualified according to JEDEC[®]-JESD 47
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

DESCRIPTION / APPLICATIONS

State of the art hyperfast recovery rectifiers designed with optimized performance of forward voltage drop, hyperfast recovery time, and soft recovery.

The planar structure and the platinum doped life time control guarantee the best overall performance, ruggedness and reliability characteristics.

These devices are intended for use in PFC boost stage in the AC/DC section of SMPS, inverters or as freewheeling diodes.

Their extremely optimized stored charge and low recovery current minimize the switching losses and reduce power dissipation in the switching element and snubbers.

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Peak repetitive reverse voltage	V _{RRM}		600	V	
Average rectified forward current	I _{F(AV)}	$T_{L} = 99 \ ^{\circ}C \ ^{(1)}$	4	v	
Non-repetitive peak surge current	I _{FSM}	T _J = 25 °C	90	А	
Operating junction and storage temperatures	T _J , T _{Stg}		-55 to +175	°C	

Note

⁽¹⁾ Mounted on PCB with minimum pad size

ELECTRICAL SPECIFICATIONS (T _J = 25 °C unless otherwise specified)						
PARAMETER	SYMBOL	MBOL TEST CONDITIONS MIN.		TYP.	MAX.	UNITS
Breakdown voltage, blocking voltage	V _{BR} , V _R	I _R = 100 μA	600	-	-	
Forward voltage		$I_F = 4 A$	-	1.6	1.85	V
Forward voltage	V _F	I _F = 4 A, T _J = 150 °C	-	1.15	1.35	
Reverse leakage current I _R	$V_{R} = V_{R}$ rated	-	-	3		
	IR	$T_J = 150 \text{ °C}, V_R = V_R \text{ rated}$	-	-	100	μΑ
Junction capacitance	CT	V _R = 600 V	-	7.8	-	pF

Revision: 06-Aug-15

1

e?

RoHS

COMPLIANT HALOGEN

FREE

www.vishay.com

VS-4ECH06-M3

Vishay Semiconductors

DYNAMIC RECOVERY CHARACTERISTICS ($T_J = 25$ °C unless otherwise specified)							
PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNITS
		$I_F = 1.0 \text{ A}, \text{ d}I_F/\text{d}t = 100 \text{ A}/\mu\text{s}, V_R = 30 \text{ V}$		-	30	-	ns
		$I_F = 1.0 \text{ A}, \text{ d}I_F/\text{d}t = 50 \text{ A}/\mu\text{s}, V_R = 30 \text{ V}$		-	35	-	
Reverse recovery time	t _{rr}	$I_F = 0.5 \text{ A}, I_R = 1 \text{ A}, I_{rr} = 0.25 \text{ A}$		-	-	35	
		T _J = 25 °C		-	22	-	
		T _J = 125 °C		-	37	-	
Peak recovery current	T _J = 25 °C	$I_F = 4 A$	-	3.4	-	Α	
	IRRM	T _J = 125 °C	dl _F /dt = 200 A/µs V _R = 390 V	-	5.2	-	A
Devenue al company de la company de	0	T _J = 25 °C		-	38	-	nC
neverse recovery charge	Reverse recovery charge Q _{rr}	T _J = 125 °C		-	104	-	

THERMAL - MECHANICAL SPECIFICATIONS						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Maximum junction and storage temperature range	T _J , T _{Stg}		-55	-	175	°C
Thermal resistance, junction to case	R _{thJC} ⁽¹⁾		-	-	14	°C/W
Thermal resistance, junction to ambient	R _{thJA} ⁽¹⁾		-	-	80	0/11
Approximate Weight			0.24		g	
Approximate weight		0.4		0.008		oz.
Marking device		Case style DO-214AB (SMC)		41	-16	

Note

⁽¹⁾ Mounted on PCB with minimum pad size

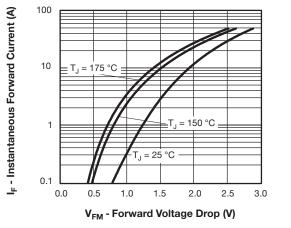


Fig. 1 - Typical Forward Voltage Drop Characteristics

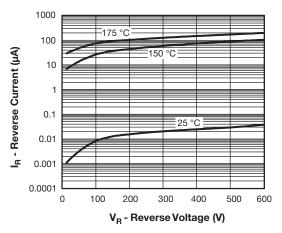
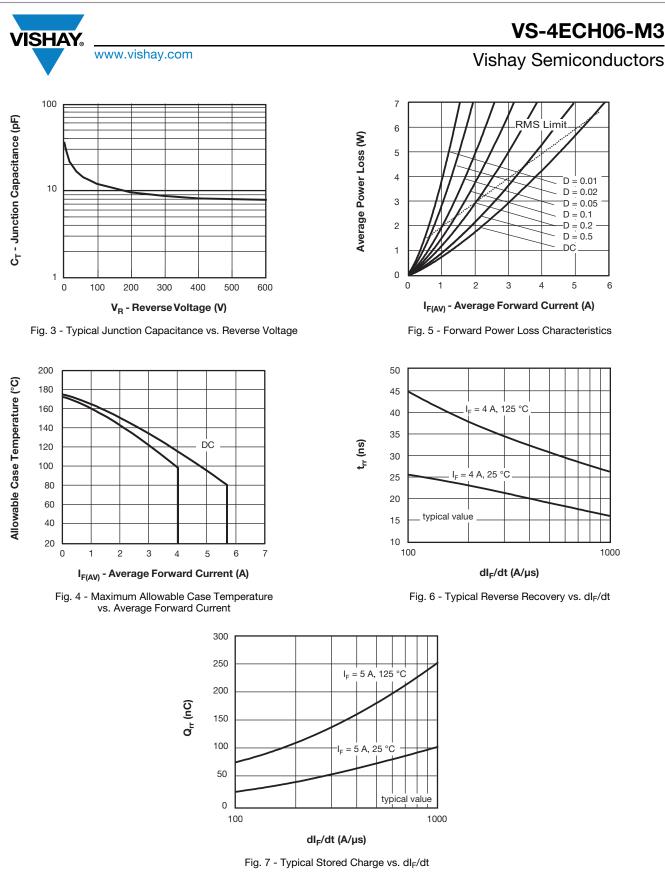



Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage

Revision: 06-Aug-15

Document Number: 94777 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

3

Document Number: 94777

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

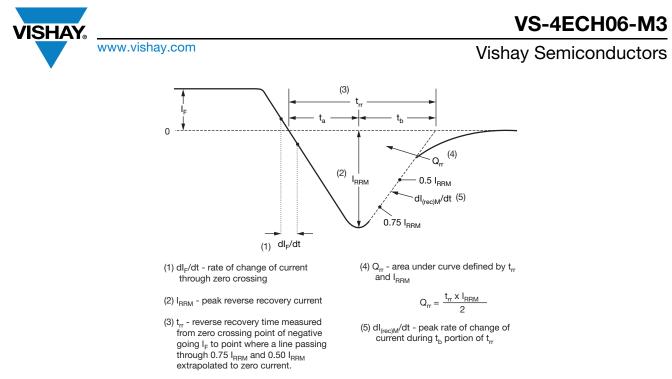
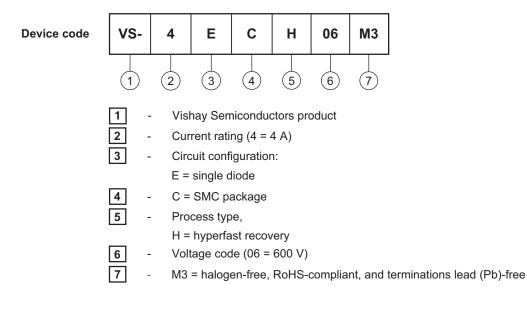



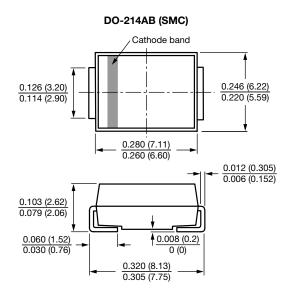
Fig. 8 - Reverse Recovery Waveform and Definitions

ORDERING INFORMATION TABLE

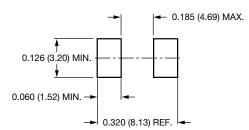
ORDERING INFORMATION (Example)				
PREFERRED P/N	QUANTITY PER TUBE	MINIMUM ORDER QUANTITY	PACKAGING DESCRIPTION	
VS-4ECH06-M3/9AT	9AT	3500	13"diameter plastic tape and reel	

LINKS TO RELATED DOCUMENTS				
Dimensions	www.vishay.com/doc?95402			
Part marking information	www.vishay.com/doc?95472			
Packaging information	www.vishay.com/doc?95404			

Revision: 06-Aug-15 Document Number: 94777 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000



Outline Dimensions


Vishay Semiconductors

SMC

DIMENSIONS in inches (millimeters)

Mounting Pad Layout

www.vishay.com

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.