

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

[Vishay Semiconductor/Diodes Division](#)
[BAV19WS-E3-18](#)

For any questions, you can email us directly:

sales@integrated-circuit.com

www.vishay.com

BAV19WS, BAV20WS, BAV21WS

Vishay Semiconductors

Small Signal Switching Diodes, High Voltage

MECHANICAL DATA

Case: SOD-323

Weight: approx. 4.3 mg

Packaging codes/options:

18/10K per 13" reel (8 mm tape), 10K/box

08/3K per 7" reel (8 mm tape), 15K/box

FEATURES

- Silicon epitaxial planar diodes
- For general purpose
- AEC-Q101 qualified
- Base P/N-E3 - RoHS-compliant, commercial grade
- Base P/N-HE3 - RoHS-compliant, AEC-Q101 qualified
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

RoHS
COMPLIANT

PARTS TABLE

PART	TYPE DIFFERENTIATION	ORDERING CODE	TYPE MARKING	INTERNAL CONSTRUCTION	REMARKS
BAV19WS	$V_R = 100$ V	BAV19WS-E3-08 or BAV19WS-E3-18 BAV19WS-HE3-08 or BAV19WS-HE3-18	A8	Single diode	Tape and reel
BAV20WS	$V_R = 150$ V	BAV20WS-E3-08 or BAV20WS-E3-18 BAV20WS-HE3-08 or BAV20WS-HE3-18	A9	Single diode	Tape and reel
BAV21WS	$V_R = 200$ V	BAV21WS-E3-08 or BAV21WS-E3-18 BAV21WS-HE3-08 or BAV21WS-HE3-18	AA	Single diode	Tape and reel

ABSOLUTE MAXIMUM RATINGS ($T_{amb} = 25$ °C, unless otherwise specified)

PARAMETER	TEST CONDITION	PART	SYMBOL	VALUE	UNIT
Continuous reverse voltage		BAV19WS	V_R	100	V
		BAV20WS	V_R	150	V
		BAV21WS	V_R	200	V
Repetitive peak reverse voltage		BAV19WS	V_{RRM}	120	V
		BAV20WS	V_{RRM}	200	V
		BAV21WS	V_{RRM}	250	V
Forward continuous current ⁽¹⁾			I_F	250	mA
Rectified current (average) half wave rectification with resistive load ⁽¹⁾			$I_{F(AV)}$	200	mA
Repetitive peak forward current ⁽¹⁾	$f \geq 50$ Hz, $\theta = 180^\circ$		I_{FRM}	625	mA
Surge forward current	$t < 1$ s, $T_J = 25$ °C		I_{FSM}	1	A
Power dissipation			P_{tot}	200	mW

Note

⁽¹⁾ Valid provided that leads are kept at ambient temperature

THERMAL CHARACTERISTICS ($T_{amb} = 25$ °C, unless otherwise specified)

PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT
Thermal resistance junction to ambient air		R_{thJA}	625	K/W
Thermal resistance junction to lead		R_{thJL}	450	K/W
Junction temperature		T_j	150	°C
Storage temperature range		T_{stg}	-65 to +150	°C
Operating temperature range		T_{op}	-55 to +150	°C

ELECTRICAL CHARACTERISTICS ($T_{amb} = 25 \text{ }^{\circ}\text{C}$, unless otherwise specified)							
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
Forward voltage	$I_F = 100 \text{ mA}$		V_F			1	V
	$I_F = 200 \text{ mA}$		V_F			1.25	V
Reverse leakage current	$V_R = 100 \text{ V}$	BAV19WS	I_R			100	nA
	$V_R = 100 \text{ V}, T_J = 100 \text{ }^{\circ}\text{C}$	BAV19WS	I_R			15	µA
	$V_R = 150 \text{ V}$	BAV20WS	I_R			100	nA
	$V_R = 150 \text{ V}, T_J = 100 \text{ }^{\circ}\text{C}$	BAV20WS	I_R			15	µA
	$V_R = 200 \text{ V}$	BAV21WS	I_R			100	nA
	$V_R = 200 \text{ V}, T_J = 100 \text{ }^{\circ}\text{C}$	BAV21WS	I_R			15	µA
Dynamic forward resistance	$I_F = 10 \text{ mA}$		r_f			5	Ω
Diode capacitance	$V_R = 0, f = 1 \text{ MHz}$		C_D			1.5	pF
Reverse recovery time	$I_F = 30 \text{ mA}, I_R = 30 \text{ mA}, I_{RR} = 3 \text{ mA}, R_L = 100 \Omega$		t_{rr}			50	ns

TYPICAL CHARACTERISTICS ($T_{amb} = 25 \text{ }^{\circ}\text{C}$, unless otherwise specified)

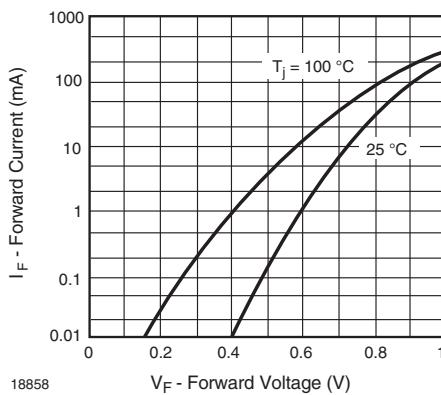


Fig. 1 - Forward Current vs. Forward Voltage

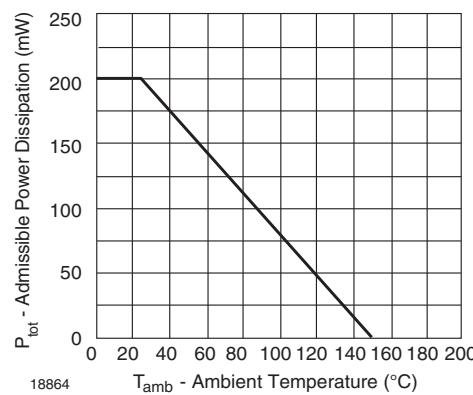


Fig. 3 - Admissible Power Dissipation vs. Ambient Temperature

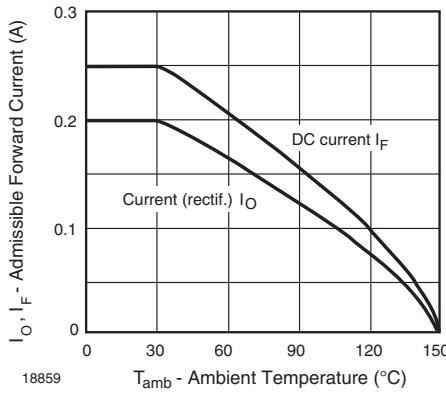


Fig. 2 - Admissible Forward Current vs. Ambient Temperature

Fig. 4 - Dynamic Forward Resistance vs. Forward Current

BAV19WS, BAV20WS, BAV21WS

Vishay Semiconductors

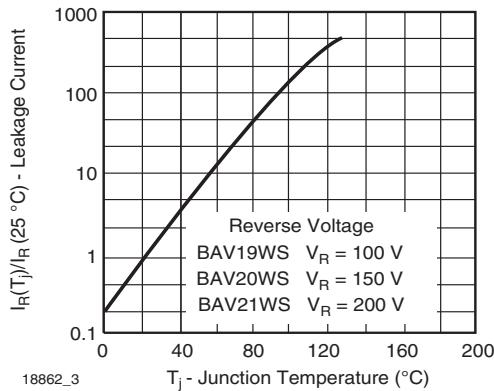


Fig. 5 - Leakage Current vs. Junction Temperature

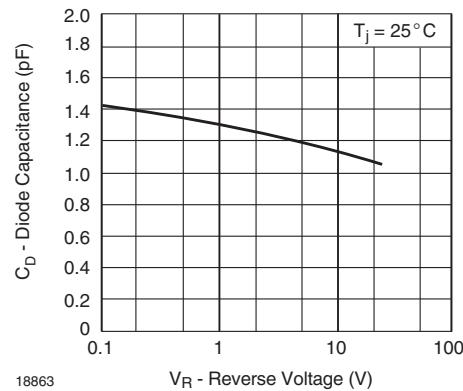
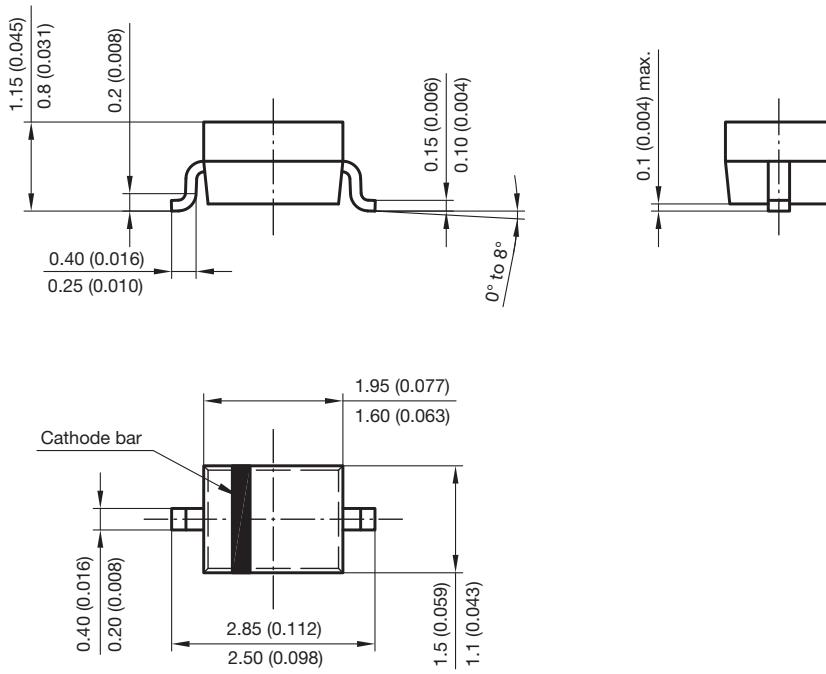
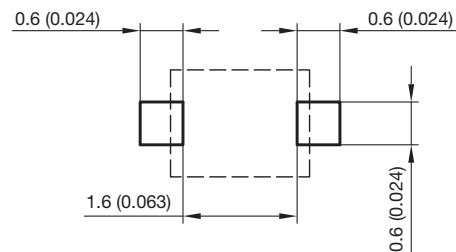




Fig. 6 - Capacitance vs. Reverse Voltage

PACKAGE DIMENSIONS in millimeters (inches): **SOD-323**

Foot print recommendation:

Document no.:S8-V-3910.02-001 (4)
Created - Date: 24.August.2004
Rev. 5 - Date: 23.Sept.2009
17443

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.