

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

ON Semiconductor NCN3411MTTWG

For any questions, you can email us directly: sales@integrated-circuit.com

NCN3411

4-Differential Channel 1:2 Mux/Demux Switch for PCI Express Gen3

The NCN3411 is a 4–Channel differential SPDT switch designed to route PCI Express Gen3 signals. When used in a PCI Express application, the switch can handle up to two PCIe lanes. Due to the ultra–low ON–state capacitance (2 pF typ) and resistance (7.5 Ω typ), these switches are ideal for switching high frequency data signals up to a signal bit rate of 8 Gbps. This switch pinout is designed to be used in BTX form factor desktop PCs and is available in a space–saving 3.5 x 9 x 0.75 mm WQFN42 package.

Features

- V_{DD} Power Supply from 1.5 V to 2.0 V
- 4 Differential Channels 2:1 MUX/DEMUX
- Compatible with PCIe 3.0
- Data Rate: Supports 8 Gbps
- Low Crosstalk -30 dB @ 4 GHz
- Low Bit-to-Bit Skew: 5 ps
- Low R_{ON} Resistance: 13 Ω max
- Low C_{ON} Capacitance: 2 pF
- Low Supply Current: 200 μA
- Off Isolation: -20 dB @ 4 GHz
- Space Saving Small WQFN-42 Package
- This is a Pb-Free Device

Typical Applications

- Notebook Computer
- Desktop computer
- Server/Storage Area Network

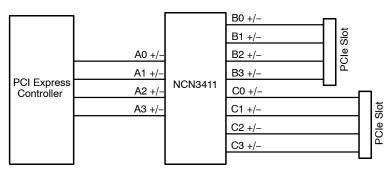


Figure 1. Application Schematic

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM

NCN3411 AWLYYWWG

WQFN42 CASE 510AP

XXXXX = Specific Device Code A = Assembly Location

WL = Wafer Lot
 YY = Year
 WW = Work Week
 G = Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping [†]
NCN3411MTTWG	WQFN42 (Pb-Free)	2000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

NCN3411

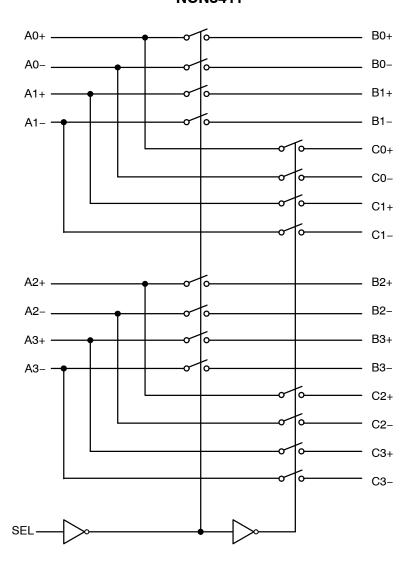


Figure 2. NCN3411 Functional Block Diagram (Top View)

TRUTH TABLE

Function	SEL	
A _N to B _N	L	
A _N to C _N	Н	

Datasheet of NCN3411MTTWG - IC TXRX 1CHAN USB 42WQFN

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

NCN3411

Datasheet of NCN3411MTTWG - IC TXRX 1CHAN USB 42WQFN

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

NCN3411

PIN FUNCTION AND DESCRIPTION

Pin	Pin Name	Description	
2 3	A0+ A0-	Signal I/0, Channel 0, Port A	
6 7	A1+ A1-	Signal I/0, Channel 1, Port A	
11 12	A2+ A2-	Signal I/0, Channel 2, Port A	
15 16	A3+ A3-	Signal I/0, Channel 3, Port A	
38 37	B0+ B0-	Signal I/0, Channel 0, Port B	
36 35	B1+ B1-	Signal I/0, Channel 1, Port B	
29 28	B2+ B2-	Signal I/0, Channel 2, Port B	
27 26	B3+ B3-	Signal I/0, Channel 3, Port B	
34 33	C0+ C0-	Signal I/0, Channel 0, Port C	
32 31	C1+ C1-	Signal I/0, Channel 1, Port C	
25 24	C2+ C2-	Signal I/0, Channel 2, Port C	
23 22	C3+ C3-	Signal I/0, Channel 3, Port C	
9	SEL	Operational Mode Select (When SEL = 0: A \rightarrow B, When SEL = 1: A \rightarrow C)	
5, 8, 13, 18, 20, 30, 40, 42	VDD	DC Supply: 1.5 V to 2.0 V	
1, 4, 10, 14, 17, 19, 21, 39, 41	GND	Power Ground	
Exposed Pad	-	The exposed pad on the backside of package is internally connected to GND. Externally the pad should also be user-connected to GND.	

Datasheet of NCN3411MTTWG - IC TXRX 1CHAN USB 42WQFN

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

NCN3411

MAXIMUM RATINGS

Parameter	Symbol	Rating	Units	
Power Supply Voltage	V _{DD}	-0.5 to 2.5	5 V _{DC}	
Input/Output Voltage Range of the Switch (A _N , B _N , C _N)	V _{IS}	−0.5 to V _{DD}	V _{DC}	
Selection Pin Voltages	V _{SEL}	−0.5 to V _{DD}	V_{DC}	
Continuous Current Through One Switch	I _{cc}	±120	mA	
Maximum Junction Temperature (Note 1)	T _J	150	°C	
Operating Ambient Temperature	T _A	-40 to +85	°C	
Storage Temperature Range	T _{stg}	−65 to +150	°C	
Thermal Resistance, Junction-to-Air	$R_{ hetaJA}$	75	°C/W	
Latch-up Current (Note 2)	I _{LU}	I _{LU} ±100		
Human Body Model (HBM) ESD Rating (Note 3)	ESD HBM	7000	V	
Machine Model (MM) ESD Rating (Note 3)	ESD MM	400	V	
Moisture Sensitivity (Note 4)	MSL	Level 1	-	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect

- 1. Power dissipation must be considered to ensure maximum junction temperature (T,ı) is not exceeded.
- Power dissipation must be considered to ensure maximum junction temperature (1,j)
 Latch up Current Maximum Rating: ±100 mA per JEDEC standard: JESD78.
 This device series contains ESD protection and passes the following tests:
 Human Body Model (HBM) ±7.0 kV per JEDEC standard: JESD22-A114 for all pins.
 Machine Model (MM) ±400 V per JEDEC standard: JESD22-A115 for all pins.

 Moisture Sensitivity Level (MSL): 1 per IPC/JEDEC standard: J-STD-020A.

Datasheet of NCN3411MTTWG - IC TXRX 1CHAN USB 42WQFN

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

NCN3411

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE ($T_A = -40$ °C to +85°C, $V_{DD} = 1.5$ V to 2.0 V, GND = 0V)

Symbol	Pins	Parameters	Conditions (Note 5)	Min.	Typ (Note 6)	Max.	Units
POWER S	UPPLY	1			1	I	
V_{DD}	V _{DD} , GND	Supply Voltage Range	With respect to GND	1.5	1.8	2.0	V
I _{DD}	V _{DD} , GND	Quiescent Supply Current	V_{DD} = 2 V, V_{SEL} = GND or V_{DD}		200	300	μΑ
DATA SWI	TCH PERFORM	ANCE			•		•
V _{IS}	A_N, B_N, C_N	Data Input/Output Voltage Range		0		1.2	V
R _{ON}	B _N	On Resistance (B _N)	$V_{DD} = 1.5 \text{ V}, V_{IS} = 0 \text{ V to } 1.2 \text{ V},$ $I_{IS} = 15 \text{ mA}$		7.5	13	Ω
R _{ON}	C _N	On Resistance (C _N)	$V_{DD} = 1.5 \text{ V}, V_{IS} = 0 \text{ V to } 1.2 \text{ V},$ $I_{IS} = 15 \text{ mA}$		8.0	13	Ω
R _{ON(flat)}	B _N	On Resistance Flatness	V_{DD} = 1.5 V, V_{IS} = 0 V to 1.2 V, I_{IS} = 15 mA (Note 7)		0.1	1.24	Ω
R _{ON(flat)}	C _N	On Resistance Flatness	$V_{DD} = 1.5 \text{ V}, V_{IS} = 0 \text{ V to } 1.2 \text{ V},$ $I_{IS} = 15 \text{ mA (Note 7)}$		0.1	1.24	Ω
ΔR_{ON}	B _N	On Resistance Matching(B _N)	V _{DD} = 1.5 V, V _{IS} = 0 V, I _{IS} = 15 mA (Note 7)			0.35	Ω
ΔR_{ON}	C _N	On Resistance Matching(C _N)	V _{DD} = 1.5 V, V _{IS} = 0 V, I _{IS} = 15 mA (Note 7)			0.35	Ω
C _{ON}	A _N to B _N , A _N to C _N	On Capacitance	f = 1 MHz, Switch On, Open Output		2.0		pF
C _{OFF}	A_N to B_N , A_N to C_N	Off Capacitance	f = 1 MHz, Switch Off		1.5		pF
I _{ON}	A_N to B_N , A_N to C_N	On Leakage Current	V_{DD} = 2 V, V_{AN} = 0 V, 1.2 V, Switch On to B_N/C_N , B_N/C_N pins are unconnected	-1		+1	μА
I _{OFF}	A_N to B_N , A_N to C_N	Off Leakage Current	$V_{DD} = 2 \text{ V}, V_{AN} = 0 \text{ V}, 1.2 \text{ V}, \text{ Switch}$ Off to B_N/C_N , $V_{BN}/V_{CN} = 1.2 \text{ V}, 0 \text{ V}$	-1		+1	μΑ
LOGIC IN	PUT CHARACTE	ERISTICS (SEL Pin)				•	
V_{IH}	SEL	Input HIGH Voltage	(Note 7)	0.65 x V _{DD}		V _{DD}	V
V_{IL}	SEL	Input LOW Voltage	(Note 7)	0		0.35 x V _{DD}	٧
V _{IK}	SEL	Clamp Diode Voltage	V _{DD} = Max, I _{SEL} = -18mA		-0.7	-1.2	V
I _{IH}	SEL	Input HIGH Current	$V_{DD} = Max, V_{SEL} = V_{DD}$			±5	μΑ
I _{IL}	SEL	Input LOW Current	V _{DD} = Max, V _{SEL} = GND			±5	μΑ
SWITCHIN	IG CHARACTER	RISTICS					
t _{SELON}	SEL, A _N , B _N /C _N	Line Enable Time	SEL to A_N , B_N , C_N $R_L = 50 \Omega$, $C_L = 20 pF$		8.0		ns
t _{SELOFF}	SEL, A _N , B _N /C _N	Line Disable Time	SEL to A_N , B_N , C_N $R_L = 50 \Omega$, $C_L = 20 pF$		5.0		ns
t _{b-b}	A _N , B _N /C _N	Bit-to-bit skew	Within the same differential pair		5.0		ps
t _{ch-ch}	A _N , B _N	Channel-to channel skew	Maximum skew between all channels		50		ps

- 5. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
 6. Typical values are at V_{DD} = 1.8 V, T_A = 25°C ambient and maximum loading.
 7. Guaranteed by design and/or characterization.

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

NCN3411

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE ($T_A = -40$ °C to +85°C, $V_{DD} = 1.5$ V to 2.0 V, GND = 0V)

Symbol	Pins	Parameters	Conditions (Note 5)	Min.	Typ (Note 6)	Max.	Units
DYNAMIC	ELECTRICAL CH	IARACTERISTICS OVER OF	PERATING RANGE	•	•		•
BR	A _N to B _N , A _N to C _N	Signal Bit Rate			8.0		Gbps
D _{IL}		Differential Insertion Loss	f = 4 GHz		-2.0		dB
A _N to C _N		f = 100 MHz		-0.7		dB	
D _{CTK}	A _N , B _N , C _N	C _N Differential Crosstalk	f = 4 GHz		-30		dB
			f = 100 MHz		-58		dB
D _{ISO}	D _{ISO} A _N to B _N , Differential O		f = 4 GHz		-20		dB
		f = 100	f = 100 MHz		-58		dB
D _{RL}			f = 4 GHz		-9.0		dB
	A _N to C _N		f = 100 MHz		-22		dB

- 5. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
- 6. Typical values are at V_{DD} = 1.8 V, T_A = 25°C ambient and maximum loading.
- 7. Guaranteed by design and/or characterization.

TYPICAL OPERATING CHARACTERISTICS

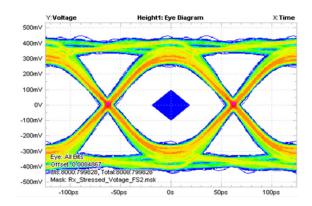


Figure 4. Reference PCIe 3.0 Eye Diagram without Switch at 8 Gbps, 800 mV_{pp} Differential Swing

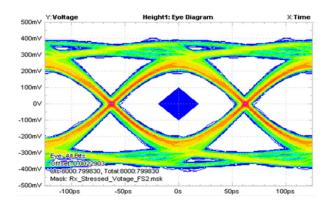


Figure 5. PCIe 3.0 Eye Diagram through NCN3411 at 8 Gbps, 800 mV_{pp} Differential Swing

NCN3411

TYPICAL OPERATING CHARACTERISTICS

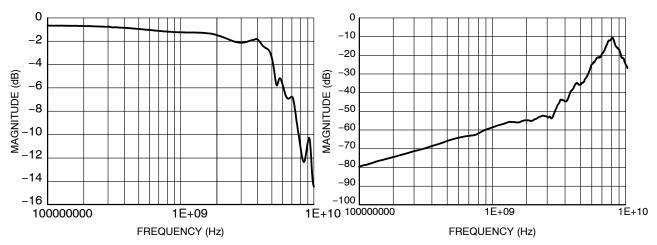


Figure 6. Differential Insertion Loss

Figure 7. Differential Crosstalk

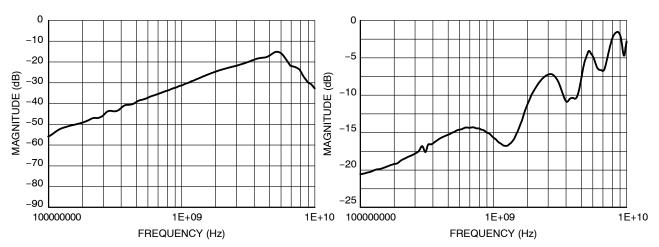


Figure 8. Differential Off Isolation

Figure 9. Differential Return Loss

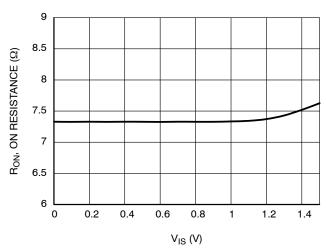


Figure 10. R_{ON} vs. V_{IS}

Datasheet of NCN3411MTTWG - IC TXRX 1CHAN USB 42WQFN

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

NCN3411

PARAMETER MEASUREMENT INFORMATION

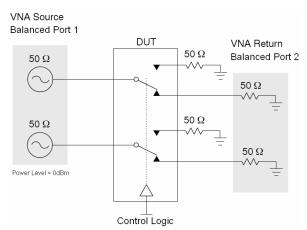


Figure 11. Differential Insertion Loss (S_{DD21}) and Differential Return Loss (S_{DD11})

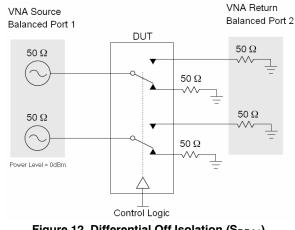


Figure 12. Differential Off Isolation (S_{DD21})

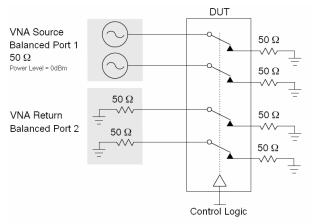


Figure 13. Differential Crosstalk (S_{DD21})

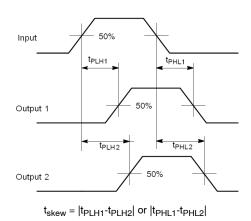
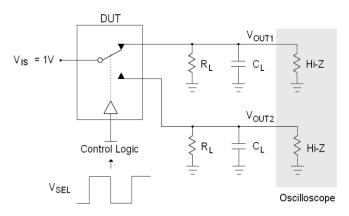



Figure 14. Bit-to-Bit and Channel-to-Channel Skew

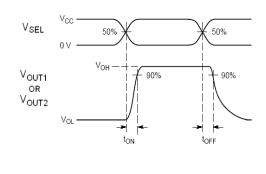
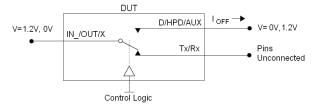



Figure 15. t_{ON} and t_{OFF}

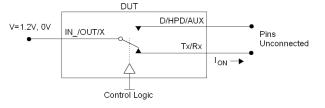
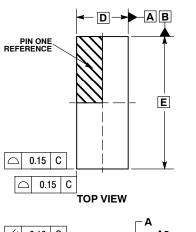
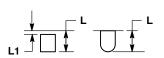
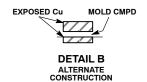


Figure 17. On State Leakage


Datasheet of NCN3411MTTWG - IC TXRX 1CHAN USB 42WQFN


Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

NCN3411

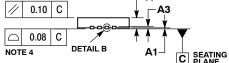

PACKAGE DIMENSIONS

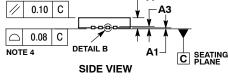
WQFN42 3.5x9, 0.5P CASE 510AP-01 **ISSUE O**

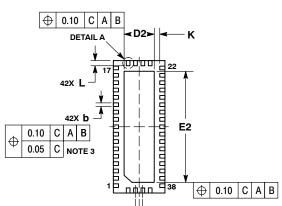
DETAIL A ALTERNATE TERMINAL CONSTRUCTIONS

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME V14 5M 1994
- Y 14.5M, 1994.


 2. CONTROLLING DIMENSION: MILLIMETERS.


 3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 MM FROM TERMINAL TIP.
 COPLANARITY APPLIES TO THE EXPOSED PAD
- AS WELL AS THE TERMINALS.


	MILLIMETERS		
DIM	MIN	MAX	
Α	0.70	0.80	
A1	0.00	0.05	
А3	0.20	REF	
b	0.20	0.30	
D	3.50 BSC		
D2	1.95	2.15	
Е	9.00	BSC	
E2	7.45	7.65	
е	0.50 BSC		
K	0.20		
L	0.30	0.50	
L1	0.00	0.15	

RECOMMENDED **MOUNTING FOOTPRINT***

9.30

BOTTOM VIEW

0.63 #0-0-0-0-0-#0-0-0-0-0-0-0-0.50 3.80 2.16 00000000000000000 42X -PACKAGE OUTLINE 0.35

DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC products ould create a situation where personal injury or death may occur. Should be supported as the support of the science of the support of the support of the science of the support of the science of the support of the suppor associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

e/2

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative