

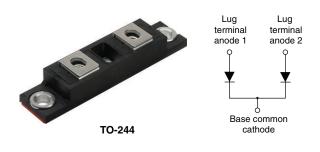
Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Vishay Semiconductor/Diodes Division VS-303CNQ100PBF

For any questions, you can email us directly: <u>sales@integrated-circuit.com</u>



www.vishay.com

VS-303CNQ100PbF

Vishay Semiconductors

High Performance Schottky Rectifier, 300 A

PRODUCT SUMMARY				
I _{F(AV)}	300 A			
V _R	100 V			
Package	TO-244			
Circuit	Two diodes common cathode			

FEATURES

- 175 °C T_J operation
- Center tap module
- Low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability
- UL approved file E222165
- Designed and qualified for industrial level
- Material categorization: For definitions of compliance please see <u>www.vishay.com/doc?99912</u>

DESCRIPTION

The VS-303CNQ... center tap Schottky rectifier module series has been optimized for low reverse leakage at high temperature. The proprietary barrier technology allows for reliable operation up to 175 °C junction temperature. Typical applications are in high current switching power supplies, plating power supplies, UPS systems, converters, freewheeling diodes, welding, and reverse battery protection.

MAJOR RATINGS AND CHARACTERISTICS						
SYMBOL	CHARACTERISTICS VALUES					
I _{F(AV)}	Rectangular waveform	300	А			
V _{RRM}		100	V			
I _{FSM}	$t_p = 5 \ \mu s \ sine$	22 000	А			
V _F	150 A_{pk} , T_J = 125 °C (per leg)	0.72	V			
TJ	Range	-55 to 175	°C			

VOLTAGE RATINGS						
PARAMETER	R SYMBOL VS-303CNQ100PbF UNIT					
Maximum DC reverse voltage	V _R	100	N/			
Maximum working peak reverse voltage	V _{RWM}					

ABSOLUTE MAXIMUM RATINGS								
PARAMETER		SYMBOL	TEST COND	VALUES	UNITS			
Maximum average forward current	per leg		50 % duty cycle at T_{C} = 138 °C, rectangular waveform -				150	
See fig. 5	per device	I _{F(AV)}			300	A		
Maximum peak one cycle r surge current per leg	non-repetitive		I _{FSM} 5 μs sine or 3 μs rect. pulse 10 ms sine or 6 ms rect. pulse Following any rated load condition and with rated V _{RRM} applied		22 000	~		
See fig. 7		FSM			2500			
Non-repetitive avalanche e	energy per leg	E _{AS}	T _J = 25 °C, I _{AS} = 13 A, L = 0.2 mH		15	mJ		
Repetitive avalanche curre	ent per leg	I _{AR}	Current decaying linearly to zero in 1 μs Frequency limited by T_J maximum V_A = 1.5 x V_R typical		1	А		

Revision: 26-Mar-14

Document Number: 94177

VISHAY.

www.vishay.com

VS-303CNQ100PbF

Vishay Semiconductors

ELECTRICAL SPECIFICATIONS							
PARAMETER	SYMBOL	TEST COND	VALUES	UNITS			
		150 A	T _J = 25 °C	0.91	V		
Maximum forward voltage drop per leg	V _{FM} ⁽¹⁾	300 A	1j=25 C	1.09			
See fig. 1	VFM	150 A	T ₁ = 125 °C	0.72			
		300 A	1j=125 0	0.85			
Maximum reverse leakage current per leg	I _{RM} ⁽¹⁾	T _J = 25 °C	$V_{\rm B}$ = Rated $V_{\rm B}$	4.5	m (
See fig. 2	IRM (17	T _J = 125 °C	$v_{\rm R} = naleu v_{\rm R}$	80	mA		
Maximum junction capacitance per leg	CT	$V_R = 5 V_{DC}$ (test signal range 1	4150	pF			
Typical series inductance per leg	L _S	From top of terminal hole to m	6.0	nH			
Maximum voltage rate of change	dV/dt	Rated V _R	10 000	V/µs			

Note

 $^{(1)}\,$ Pulse width < 300 $\mu s,$ duty cycle < 2 %

THERMAL - MECHANICAL SPECIFICATIONS						
PARAMETER		SYMBOL	MIN.	TYP.	MAX.	UNITS
Maximum junction and storage tempera	ature range	T _J , T _{Stg}	- 55	-	175	°C
Thermal resistance, junction to case -	per leg	D and	-	-	0.28	
merma resistance, junction to case –	per module	R _{thJC}	-	-	0.14	°C/W
Thermal resistance, case to heatsink		R _{thCS}	-	0.10	-	
Weight			-	68	-	g
			-	2.4	-	oz.
Mounting torque			35.4 (4)	-	53.1 (6)	
Mounting torque center hole Terminal torque			30 (3.4)	-	40 (4.6)	lbf ⋅ in (N ⋅ m)
			30 (3.4)	-	44.2 (5)	()
Vertical pull 2" lever pull			-	-	80	lbf ⋅ in
			-	-	35	חויוטו

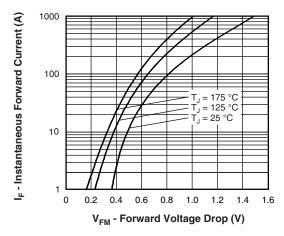
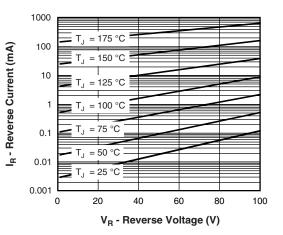
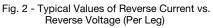




Fig. 1 - Maximum Forward Voltage Drop Characteristics (Per Leg)

Revision: 26-Mar-14

Document Number: 94177

www.vishay.com

VS-303CNQ100PbF

Vishay Semiconductors

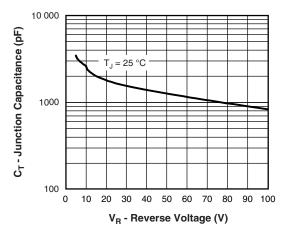


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage (Per Leg)

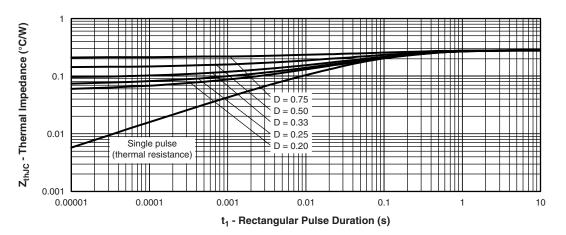
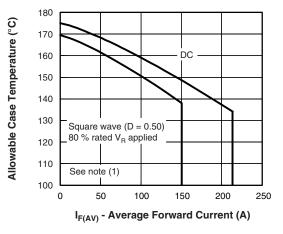
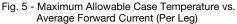
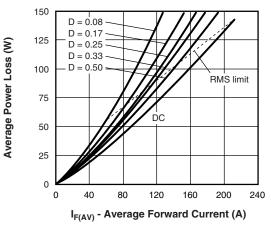
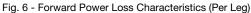






Fig. 4 - Maximum Thermal Impedance ZthJC Characteristics (Per Leg)

Revision: 26-Mar-14

Document Number: 94177

www.vishay.com

VS-303CNQ100PbF

Vishay Semiconductors

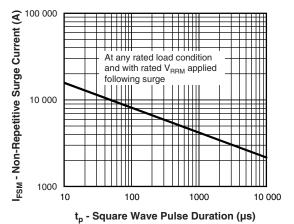


Fig. 7 - Maximum Non-Repetitive Surge Current (Per Leg)

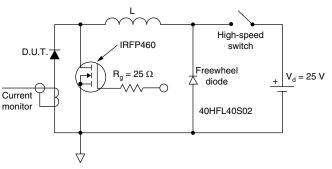


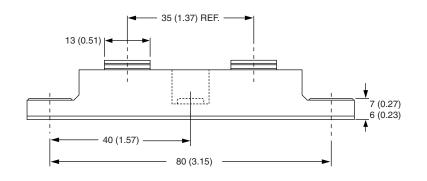
Fig. 8 - Unclamped Inductive Test Circuit

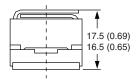
Note

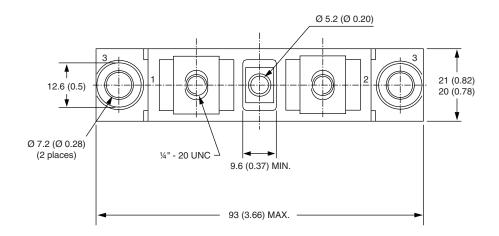
ORDERING INFORMATION TABLE

Device code	VS-	30	3	с	N	Q	100	PbF
	1	2	3	4	5	6	(7)	8
	1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 -	 Ave Pro C = N = Q = Volt 	nay Sen erage cu duct silid Circuit Not iso Schottł tage rati d (Pb)-f	rrent rat con ider configur lated ky rectifi ng (100	ing (x 1 ntification ation er diode	0) n		

LINKS TO RELATED DOCUMENTS						
Dimensions www.vishay.com/doc?95021						
Revision: 26-Mar-14 Document Number: 94177						


www.vishay.com


Outline Dimensions


Vishay Semiconductors

TO-244

DIMENSIONS in millimeters (inches)

www.vishay.com

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.