

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Vishay Semiconductor/Diodes Division VS-50WQ10FNTRHM3

For any questions, you can email us directly: <u>sales@integrated-circuit.com</u>

www.vishay.com

VS-50WQ10FNHM3

Vishay Semiconductors

Schottky Rectifier, 5.5 A

D-PAK (TO-252AA)

PRODUCT SUMMARY					
Package	D-PAK (TO-252AA)				
I _{F(AV)}	5.5 A				
V _R	100 V				
V _F at I _F	See Electrical table				
I _{RM}	4 mA at 125 °C				
T _J max.	150 °C				
Diode variation	Single die				
E _{AS}	6 mJ				

FEATURES

- Low forward voltage drop
- Guard ring for enhanced ruggedness and long term reliability
- Popular D-PAK outline
- Small foot print, surface mountable
- High frequency operation
- AEC-Q101 qualified
- Meets JESD 201 class 2 whisker test
- Meets MSL level 1, per J-STD-020, LF maximum peak of 260 °C
- Material categorization: For definitions of compliance please see <u>www.vishay.com/doc?99912</u>

DESCRIPTION

The VS-50WQ10FNHM3 surface mount Schottky rectifier has been designed for applications requiring low forward drop and small foot prints on PC board. Typical applications are in disk drives, switching power supplies, converters, freewheeling diodes, battery charging, and reverse battery protection.

MAJOR RATINGS AND CHARACTERISTICS						
SYMBOL	CHARACTERISTICS	VALUES	UNITS			
I _{F(AV)}	Rectangular waveform	5.5	А			
V _{RRM}		100	V			
I _{FSM}	t _p = 5 μs sine	330	А			
V _F	5 A _{pk} , T _J = 125 °C	0.63	V			
TJ	Range	- 40 to 150	°C			

VOLTAGE RATINGS						
PARAMETER	SYMBOL	VS-50WQ10FNHM3	UNITS			
Maximum DC reverse voltage	V _R	100	V			
Maximum working peak reverse voltage	V _{RWM}	100	v			

ABSOLUTE MAXIMUM RATINGS							
PARAMETER	SYMBOL	TEST COND	ITIONS	VALUES	UNITS		
Maximum average forward current See fig. 5	$I_{F(AV)}$ 50 % duty cycle at T _C = 135 °C, rectangular waveform		5.5				
Maximum peak one cycle non-repetitive surge current	1	5 µs sine or 3 µs rect. pulse	Following any rated load condition and with rated	330	A		
See fig. 7			V _{RRM} applied	110			
Non-repetitive avalanche energy	E _{AS}	T _J = 25 °C, I _{AS} = 0.5 A, L = 40 mH		6.0	mJ		
Repetitive avalanche current	I _{AR}	Current decaying linearly to zero in 1 μ s Frequency limited by T _J maximum V _A = 1.5 x V _B typical		0.5	А		

Revision: 21-Aug-13

1

Document Number: 94730

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

RoHS

COMPLIANT

HALOGEN

FREE

VISHAY.

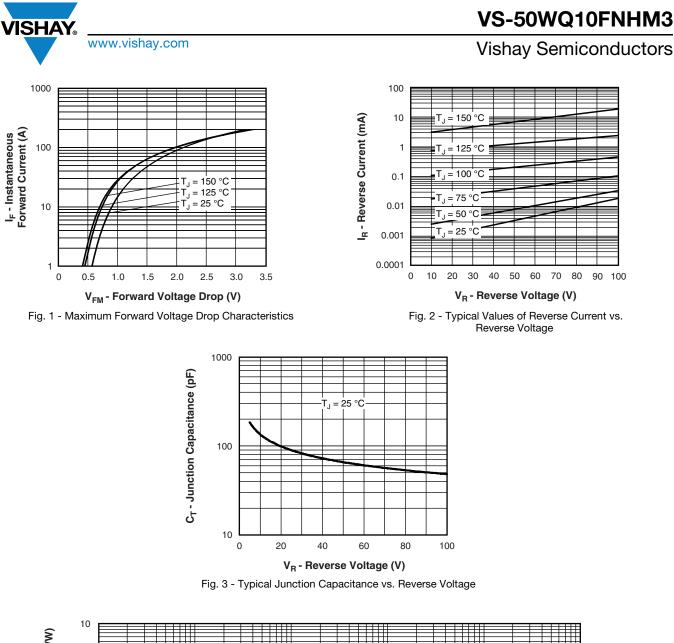
VS-50WQ10FNHM3

www.vishay.com

Vishay Semiconductors

ELECTRICAL SPECIFICATIONS							
PARAMETER	SYMBOL	TEST COND	ITIONS	VALUES	UNITS		
		5 A	T.I = 25 °C	0.77	v		
Maximum forward voltage drop	V _{FM} ⁽¹⁾	10 A	IJ=25 C	0.91			
See fig. 1	VFM ()	5 A	T.I = 125 °C	0.63			
		10 A	$I_{\rm J} = 125$ C	0.74			
Maximum reverse leakage current	I _{RM} ⁽¹⁾	T _J = 25 °C		1	mA		
See fig. 2	IRM ("	T _J = 125 °C	$V_R = Rated V_R$	4			
Threshold voltage	V _{F(TO)}	T T m in m		0.47	V		
Forward slope resistance	r _t	T _J =T _J maximum 21.46 r			mΩ		
Typical junction capacitance	CT	$V_{\rm R}$ = 5 $V_{\rm DC}$ (test signal range 100 kHz to 1 MHz), 25 °C 183 pF			pF		
Typical series inductance	L _S	Measured lead to lead 5 mm from package body 5.0 nH					

Note


 $^{(1)}\,$ Pulse width < 300 $\mu s,$ duty cycle < 2 $\,\%$

THERMAL - MECHANICAL SPECIFICATIONS					
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Maximum junction and storage temperature range	T _J ⁽¹⁾ , T _{Stg}		- 40 to 150	°C	
Maximum thermal resistance, junction to case	R _{thJC}	DC operation See fig. 4	3.0	°C/W	
Approvimate weight			0.3	g	
Approximate weight			0.01	oz.	
Marking device		Case style D-PAK	50WQ ⁻	10FNH	

Note

(1) $\frac{dP_{tot}}{dT_J} < \frac{1}{R_{thJA}}$ thermal runaway condition for a diode on its own heatsink

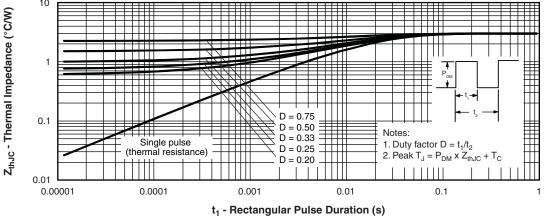


Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics

Revision: 21-Aug-13

Document Number: 94730

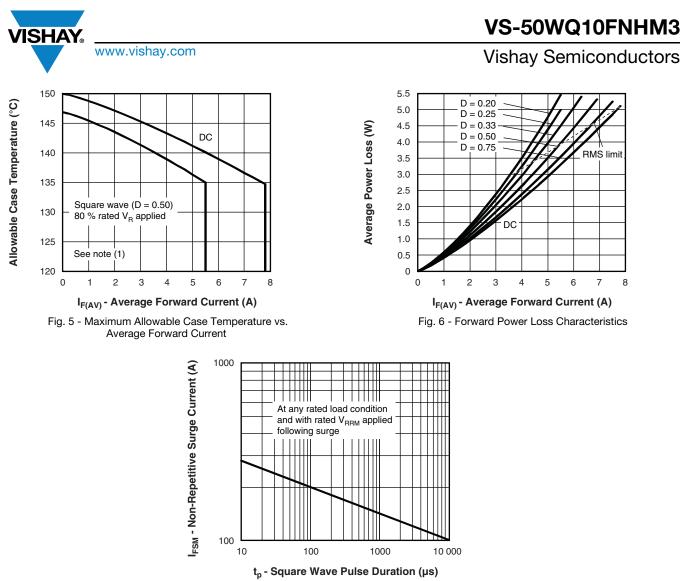


Fig. 7 - Maximum Non-Repetitive Surge Current

Note

 $\begin{array}{l} \mathsf{Pd} = \mathsf{Forward} \ \mathsf{power} \ \mathsf{loss} = \mathsf{I}_{\mathsf{F}(\mathsf{AV})} \times \mathsf{V}_{\mathsf{FM}} \ \mathsf{at} \ (\mathsf{I}_{\mathsf{F}(\mathsf{AV})}/\mathsf{D}) \ (\mathsf{see} \ \mathsf{fig.} \ \mathsf{6}); \\ \mathsf{Pd}_{\mathsf{REV}} = \mathsf{Inverse} \ \mathsf{power} \ \mathsf{loss} = \mathsf{V}_{\mathsf{R1}} \times \mathsf{I}_{\mathsf{R}} \ (\mathsf{1} - \mathsf{D}); \ \mathsf{I}_{\mathsf{R}} \ \mathsf{at} \ \mathsf{V}_{\mathsf{R1}} = \mathsf{80} \ \% \ \mathsf{rated} \ \mathsf{V}_{\mathsf{R}} \end{array}$

⁽¹⁾ Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$;

www.vishay.com

VS-50WQ10FNHM3

Vishay Semiconductors

ORDERING INFORMATION TABLE

VS-	50	W	Q	10	FN	TRL	н	М3
1	2	3	4	5	6	(7)	8	9
1 -	- Visl	nay Sen	niconduo	ctors pro	oduct			
2 -	- Cur	rent rati	ng (5.5 /	A)				
3 -	- Pac	kage id	entifier:					
	VV =	D-PAK	ζ.					
4 -	- Sch	ottky "C)" series					
5 -	· Volt	age rati	ng (10 =	= 100 V)				
6 -	- FN	= TO-2	52AA (D	-PAK)				
7 -	• N	one = T	ube					
	• TI	R = Tap	e and re	el				
	• TI	RL = Ta	pe and r	eel (left	oriente	d)		
	• TI	RR = Ta	pe and	reel (rig	ht orien	ted)		
8 -	• Н=	AEC-Q	101 qua	alified				
9	- Env	vironme	ntal digit					
	M3	= Haloc	en-free.	RoHS-	complia	ant, and	termina	tions lea
	1 · · · · · · · · · · · · · · · · · · ·	1 - Visl 2 - Cur 3 - Pac 3 - Pac W = 4 - Sch 5 - Volt 6 - FN 7 - No 7 - No 7 - No 7 - No 7 - TF 8 - H = 9 - Env	1 2 3 1 - Vishay Sen 2 - Current rati 3 - Package id 3 - Package id 4 - Schottky "G 5 - Voltage rati 6 - FN = TO-25 7 - • None = T • TR = Tap • TRL = Ta • TRR = Ta • TRR = Ta • H = AEC-Q 9 - Environment	1 2 3 4 1 - Vishay Semiconduct 2 - Current rating (5.5.7) 3 - Package identifier: W = D-PAK 4 - Schottky "Q" series 5 - Voltage rating (10 = 6 - FN = TO-252AA (D 7 - • None = Tube • TR = Tape and restrict • TRL = Tape and restrict • TRR = Tape and restrict • TR = AEC-Q101 quage 9 - • Environmental digit	1 2 3 4 5 1 - Vishay Semiconductors pro- 2 - Current rating (5.5 A) 3 - Package identifier: W = D-PAK 4 - Schottky "Q" series 5 - Voltage rating (10 = 100 V) 6 - FN = TO-252AA (D-PAK) 7 - • None = Tube • TR = Tape and reel • TRL = Tape and reel (left • TRR = Tape and reel (rigit) • H = AEC-Q101 qualified 9 - Environmental digit:	1 2 3 4 5 6 1 - Vishay Semiconductors product 2 - Current rating (5.5 A) 3 - Package identifier: W = D-PAK 4 - Schottky "Q" series 5 - Voltage rating (10 = 100 V) 6 - FN = TO-252AA (D-PAK) 7 - • None = Tube • TR = Tape and reel • TRL = Tape and reel • TRR = Tape and reel (left oriente • TRR = Tape and reel (right oriente • TR = AEC-Q101 qualified 9 -	1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 - Vishay Semiconductors product 2 - Current rating (5.5 A) 3 - Package identifier: W = D-PAK 4 - Schottky "Q" series 5 - Voltage rating (10 = 100 V) 6 - FN = TO-252AA (D-PAK) 7 - • None = Tube • TR = Tape and reel • TRL = Tape and reel (left oriented) • TRR = Tape and reel (right oriented) • TRR = Tape and reel (right oriented) • H = AEC-Q101 qualified 9 - Environmental digit:	1 2 3 4 5 6 7 8 1 - Vishay Semiconductors product 2 - Current rating (5.5 A) 3 - Package identifier: W = D-PAK 4 - Schottky "Q" series 5 - Voltage rating (10 = 100 V) 6 - FN = TO-252AA (D-PAK) 7 - None = Tube • TR = Tape and reel • TRL = Tape and reel (left oriented) • TRR = Tape and reel (right oriented) • H = AEC-Q101 qualified

ORDERING INFORMATION (Example)							
PREFERRED P/N	QUANTITY PER T/R	MINIMUM ORDER QUANTITY	PACKAGING DESCRIPTION				
VS-50WQ10FNHM3	75	3000	Antistatic plastic tube				
VS-50WQ10FNTRHM3	2000	2000	13" diameter reel				
VS-50WQ10FNTRRHM3	3000	3000	13" diameter reel				
VS-50WQ10FNTRLHM3	3000	3000	13" diameter reel				

LINKS TO RELATED DOCUMENTS				
Dimensions	www.vishay.com/doc?95519			
Part marking information	www.vishay.com/doc?95518			
Packaging information	www.vishay.com/doc?95033			

Document Number: 94730

www.vishay.com

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.