

FSA8069

Audio Jack IC Featuring Impedance and Moisture Detection

Features

- Detection:
 - Accessory Plug-In
 - Send / End Key Press
 - Impedance Detection
 - Prevents False Detection due to Moisture
- V_{DD} : 3.0 V to 4.5 V
- V_{IO} : 1.6 V to V_{DD}
- THD (MIC): 0.01% Typical
- 15 kV Air Gap ESD
- Detects 7 Steps of Headset Impedance
- Integrates LDO for MIC Bias Circuit
- MIC Switch Removes Audio Jack “Pop” and “Click” Caused by MIC Bias

Description

The FSA8069 is an audio jack detection switch for 3.5 mm and 2.5 mm headsets. The FSA8069 features impedance detection and moisture sensing, which prevents false detection of accessories in the audio jack. An integrated MIC switch allows a processor to configure attached accessories. An LDO provides DC bias to microphone and remote key circuit in accessory. The FSA8069 detects seven headset impedance steps and supports configurable gain in the amplifier according to the type of load. The architecture is designed to allow headphones to be used for listening to music from mobile handsets, personal media players, and portable peripheral devices.

Applications

- Any Device with 3.5 mm and 2.5 mm Audio Jack
- Cellular Phones, Smart Phones, and Tablets
- MP3, GPS, and PMP

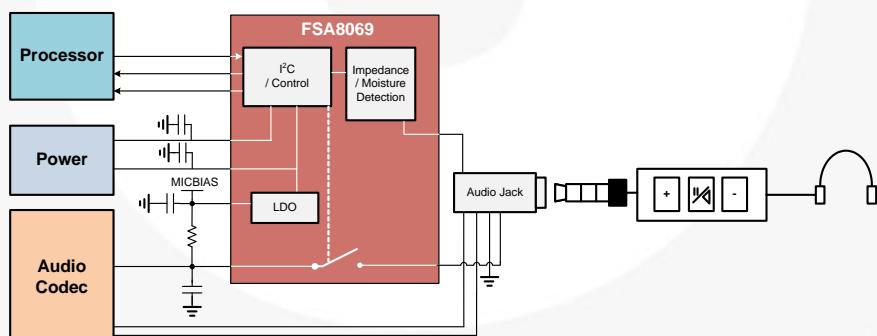


Figure 1. Block Diagram

Ordering Information

Part Number	Operating Temperature Range	Top Mark	Package	Packing Method
FSA8069UCX ⁽¹⁾	-40°C to 85°C	MX	12-Ball WLCSP, 1.415 mm x 1.615 mm, 0.4 mm Pitch	Tape & Reel

Notes:

1. Includes backside lamination.

Typical Application Diagram

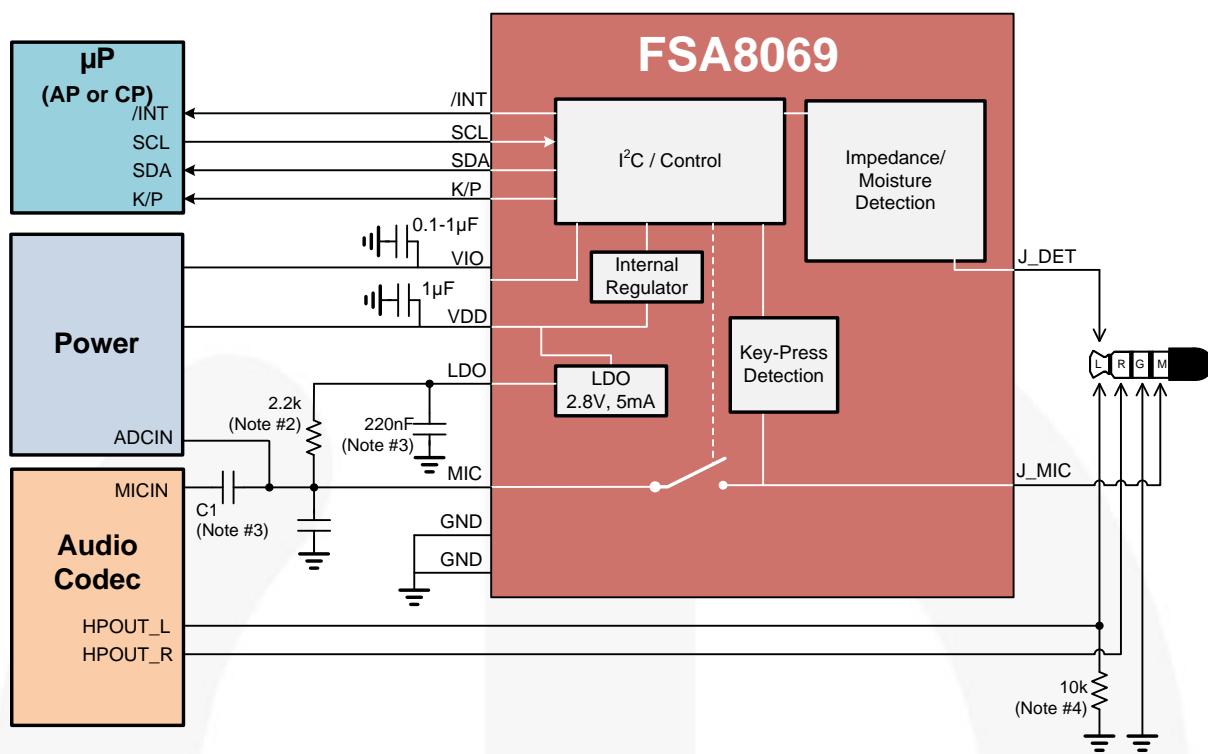


Figure 2. System Diagram

Notes:

2. 2.2 kΩ can generally be used in applications to bias the accessory microphone. Two separate resistors totaling 2.2 kΩ with a large capacitor between them can improve noise rejection performance, as shown in Figure 7.
3. A DC-blocking capacitor (typically 1 μF) should be used when the codec requires AC-coupled input only. This capacitor can be removed and be tied to directly without C1 if the MICIN of the codec supports DC-coupled input.
4. A pull-down resistor allows the FSA8069 to detect Hi-Z (open cable) type accessories due to J_DET contact to left when an accessory is inserted.

Pin Configuration

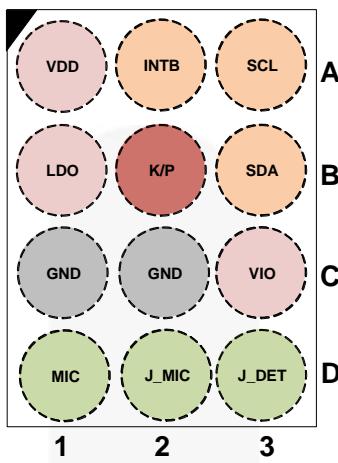


Figure 3. Pin Assignment (Through View)

Pin Definitions

Name	Pin #	Type	Description
VDD	A1	Power	Device supply (3.0 V to 4.5 V)
VIO	C3	Power	I/O supply (1.6 V to V_{DD})
LDO	B1	Power	LDO output (2.8 V)
J_DET	D3	Detection Input	Input from the audio jack; plug insert / removal detection pin
MIC	D1	Signal Path	Microphone switch path that connects to the microphone input of the codec
J_MIC	D2	Signal Path	Microphone switch path that connects to the audio jack
SDA	B3	DATA	I^2C data
SCL	A3	DATA	I^2C clock
INTB	A2	Output	Interrupt output LOW: interrupt is asserted (active) HIGH: interrupt is not asserted
K/P	B2	Output	Indicates state of headset key for a 4-pole jack when a key is being pressed HIGH: Key is being pressed LOW: Key is not being pressed
GND	C1, C2	Power	Device ground

Application Information

Moisture Detection

Moisture in the audio jack can cause the phone to incorrectly route audio signals to the audio jack rather than the phone speaker or microphone. Users perceive this as a dropped call or muted phone. The FSA8069 protects against this type of false plug insertion notification and asserts a Moisture Change interrupt in Interrupt1 (0x04h) Register.

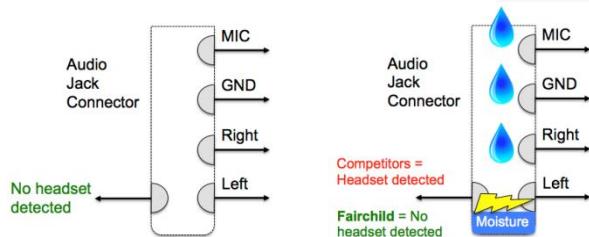


Figure 4. Moisture Impedance Detection

Music Mode

When a 4-pole headset is inserted into the audio jack and a music/listening application is used, the MIC bias is normally enabled for headset button press detection (i.e. mute, volume change, etc.). This consumes power due to a constant path from the MIC bias resistor and microphone in the headset to GND. Fairchild has developed a Music Mode to enable the MIC switch periodically to monitor for a pressed button. This results in a power savings for battery-sensitive devices, such as cell phones or MP3 players. The FSA8069 enters Music Mode when the Music Mode Enable bit in CONTROL(02h) is set and a plug is inserted. Music Mode reduces MIC bias current by approximately 90% with the default Music Mode timing (0Bh) register value.

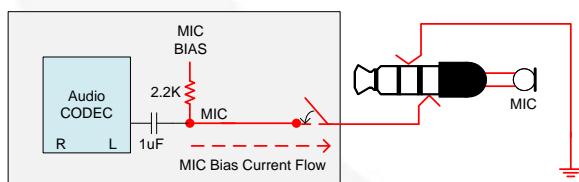


Figure 5. MIC Bias Leakage Path

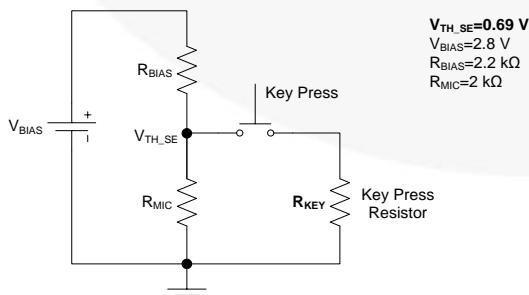


Figure 6. Example Key-Press Resistor Calculations and Values

Headset Impedance Detection Range

FSA8069 detects jack insertion and removal by monitoring impedance on the J_DET pin. The accessory types is updated in the Status (03H) register.

Table 1. Impedance Detection Range

Accessory Type	Impedance Step	Target Range [Ω]
Headset #1	Step 0	0 to 24
Headset #2	Step 1	24 to 42
Headset #3	Step 2	42 to 100
Headset #4	Step 3	100 to 200
Headset #5	Step 4	200 to 450
Headset #6	Step 5	450 to 1,000
Line_In/Out (CarKit)	Step 6	1000 to 15,000

LDO Operation

The integrated microphone bias LDO is set to 2.8 V. The LDO can be used to bias a microphone accessory and is enabled / disabled by the I²C register bit LDO ENABLE in the COLTROL register(02h)). This LDO requires a 0.22 μF to 1 μF coupling capacitor on the output. The coupling capacitor should be placed close to the LDO pin.

Headset Key-Press Operation

The headset key-press comparator threshold is a function of the MIC bias voltage, MIC bias resistor, and the MIC impedance. All of these variables must be considered when calculating the key-press resistor value. Figure 6 is an example of how to calculate the key-press resistor value.

$$R_{KEY} \leq \frac{1}{\left(\frac{V_{TH_SE}}{V_{BIAS}} - \frac{V_{BIAS} - V_{TH_SE}}{R_{BIAS}} \right)} - \frac{1}{R_{MIC}}$$

$$R_{KEY} \leq 1100 \Omega$$

Recommended LDO Bias Circuit and MIC Switch PCB Layout

PCB layout can degrade the audio quality and be a contributory factor in audible noise coupling issues, high-frequency noise (ESD/ EMI) issues, and signal losses. To avoid unexpected noise issues and to achieve stable regulator output, all external components should be placed as close to the FSA8069 as possible.

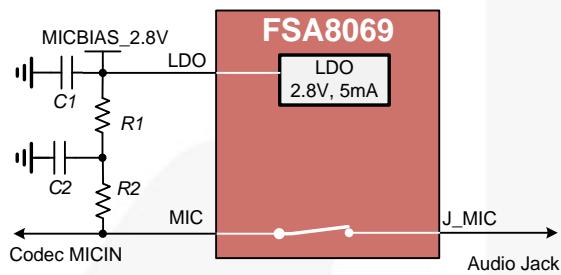


Figure 7. MIC Bias and MIC Switch Circuit

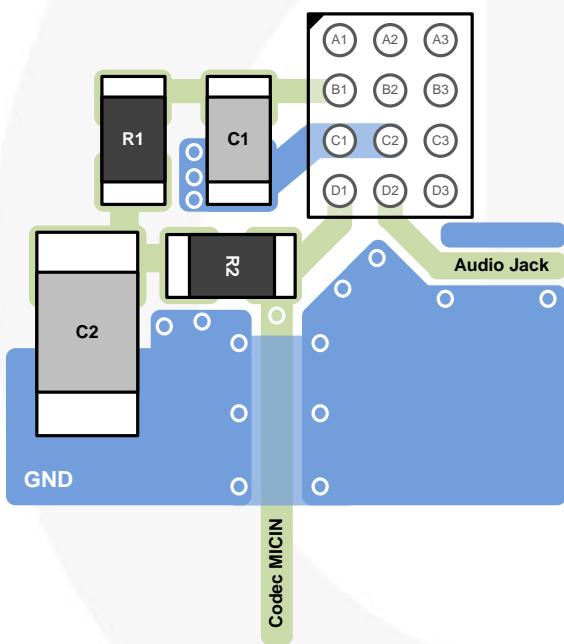


Figure 8. Recommended PCB Layout Placement

Decrease the spacing between the traces for MIC and ground signals between the audio jack to increase the inductive coupling of these signals. In effect, this creates a low-frequency band-pass filter that shunts ESD energy to ground before it reaches internal components. Where feasible, lay the MIC trace as a shielded stripline; as shown in Figure 9.

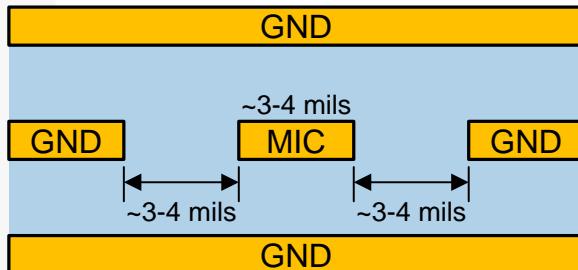


Figure 9. MIC PCB Trace as Shield Strip Line

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Min.	Max.	Unit
V_{DD}, V_{IO}	Supply Voltage from Battery	-0.5	6.0	V
V_{SW}	Switch I/O Voltage (MIC, J_MIC)	-0.5	$V_{DD}+0.5$	V
V_{JD}	Input Voltage for J_DET Input	-1.5	$V_{DD}+0.5$	V
I_{IK}	Input Clamp Diode Current	-50		mA
I_{SW}	Switch I/O Current		50	mA
T_{STG}	Storage Temperature Range	-65	+150	°C
T_J	Maximum Junction Temperature		+150	°C
T_L	Lead Temperature (Soldering, 10 Seconds)		+260	°C
ESD	IEC 61000-4-2 System ESD	Air Gap	15	kV
		Contact	8	
	Human Body Model, ANSI/ESDA/JEDEC JS-001-2012	J_DET, J_MIC, V_{DD} , V_{IO} , GND	8	
		All Other Pins	2	
	Charged Device Model, JEDEC JESD22-C101	All Pins	1	

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
V_{DD}	Battery Supply Voltage	3.0	4.5	V
V_{IO}	Parallel I/O Supply Voltage	1.6	V_{DD}	V
V_{SW}	Switch Input Voltage (J_MIC, MIC)	0	3.0	V
T_A	Operating Temperature	-40	+85	°C
J_{DET}_{AudioV}	Audio Voltage Range on J_DET Pin	-1.4	+1.4	V
C_{OUT}	LDO Output Capacitance	220		nF
$R_{J_{DET}}$	Resistance on Audio Accessory Left Channel to Generate Valid Attach		15.75	kΩ

DC Electrical Characteristics

All typical values are at $T_A=25^\circ\text{C}$, $C_{IN,VDD}=1.0\ \mu\text{F}$, $C_{IN,VIO}=0.1\ \mu\text{F}$, and $C_{OUT,LDO}=0.22\ \mu\text{F}$ unless otherwise specified.

Symbol	Parameter	V_{DD} (V)	Conditions	$T_A = -40$ to $+85^\circ\text{C}$			Unit
				Min.	Typ.	Max.	
MIC Switch							
R_{ON}	MIC Switch On Resistance	3.8	$I_{OUT}=30\ \text{mA}$, $V_{IN}=2.2\ \text{V}$		0.50		Ω
$R_{FLAT(ON)}$	On Resistance Flatness	3.8	$I_{OUT}=30\ \text{mA}$, $V_{IN}=1.6\ \text{V}$ to V_{DD}		0.30	1.50	
I_{OFF}	Power-Off Leakage Current Through Switch	0	MIC, J_MIC Ports $V_A=4.3\ \text{V}$			3	μA
I_{ON}	Input Leakage Current MIC, J_MIC switch ON	3.0 to 4.5	Inputs V_{MIC} , $V_{JMIC}=3.0\ \text{V}$, Other Side of Switch Port Floating			1	μA
I_{OZ}	Off Leakage Current	4.5	MIC and J_MIC Port $V_{IN}=3.0\ \text{V}$			1	μA
Key Press							
V_{COMP}	Comparator Threshold for Key Detection	3.0 to 4.5	Detection Threshold (0Fh) [3:0]=1001 (790 mV)		0.79		V
J_DET							
$J_{DET_{Tolerance}}$	Tolerance between Impedance Detection Steps (see Table 1)	3.0 to 4.5	Impedance Detection Mode		5%		
Parallel I/O (KP, INTB)							
V_{OH}	Output High Voltage		$I_{OH}=-100\ \mu\text{A}$	$0.8 \times V_{IO}$			V
V_{OL}	Output Low Voltage		$I_{OL}=+100\ \mu\text{A}$			$0.2 \times V_{IO}$	
I²C Controller DC Characteristics Fast Mode (400 kHz)							
V_{IL}	Low-Level Input Voltage					$0.3 \times V_{IO}$	V
V_{IH}	High-Level Input Voltage			$0.7 \times V_{IO}$			V
V_{OL1}	Low-Level Output Voltage at 3 mA Sink Current (Open-Drain)		$V_{IO}>2\ \text{V}$	0		0.4	V
			$V_{IO}<2\ \text{V}$			$0.2 \times V_{IO}$	V
I_{I2C}	Input Current of I ² C_SDA and I ² C_SCL Pins, Input Voltage 0.26 V to 2.34 V			-10		+10	μA
Current							
$I_{DD-SLNA}$	Battery Supply Sleep Mode Current with No Accessory Attached and LDO Disabled	3.0 to 4.5	Static Current during Sleep Mode		1.5		μA
$I_{DD-SLWA}$	Battery Supply Sleep Mode Current with Accessory Attached	3.0 to 4.5	Active Current		30		μA
$I_{DD,LDO}$	LDO Quiescent Current	3.0 to 4.5	$I_{LOAD}=0\ \text{mA}$, $C_{OUT}=0\ \text{pF}$, LDO Enabled		100		μA
LDO							
V_{OUT}	Output Voltage (Output=2.8 V)	3.0 to 4.5	$I_{LOAD}=1\ \text{mA}$	2.77	2.80	2.83	V
I_{OUT}	Maximum Output Current	3.0 to 4.5		5			mA

AC Electrical Characteristics

All typical values are for $V_{CC}=3.3$ V at $T_A=25^\circ\text{C}$, $C_{IN_VDD}=1.0 \mu\text{F}$, $C_{IN_VIO}=0.1 \mu\text{F}$, and $C_{OUT_LDO}=0.22 \mu\text{F}$ unless otherwise specified. Not production tested.

Symbol	Parameter	V_{DD} (V)	Conditions	Typical	Unit
MIC Switch					
THD	Total Harmonic Distortion	3.0	$R_T=600 \Omega$, $f=20$ Hz to 20 kHz, $V_{IN}=2.0$ V +0.5 V_{PP} Sine	0.01	%
OIRR	Off Isolation	3.0	$f=20$ kHz, $R_S=600 \Omega$, $C_L=0$ pF, $R_T=600 \Omega$	-85	dB
PSRR _{sw}	Power Supply Rejection Ratio (at 217 Hz)	4.0	Power Supply Noise 300 mV _{PP} , 87.5% Duty Cycle,	-80	dB
Timing Characteristics					
t_{POLL}	ON Time of MIC Switch for Sensing SEND / END Key Press Oscillator Stable Time	3.0 to 4.5	I^2C Register Adjustable ($t_{POLL}[3:0]$)	15 (Default)	ms
t_{WAIT}	Period of MIC Switching for Sensing SEND / END Key Press	3.0 to 4.5	I^2C Register Adjustable ($t_{WAIT}[3:0]$)	150 (Default)	ms
t_{DET_IN}	Debounce Time after J_DET Changes State from HIGH to LOW	3.0 to 4.5	I^2C Register Adjustable ($t_{DET_IN}[3:0]$)	25 (Default)	ms
$t_{MIC_SW_OPEN}$	Time of MIC Switch Open after J_DET Changes State from LOW to HIGH	3.0 to 4.5		30	μs
t_{KBK}	Debounce Time for Sensing SEND / END Key Press / Release	3.0 to 4.5	I^2C Register Adjustable ($t_{KBK}[3:0]$)	30 (Default)	ms
t_{DET_REM}	Debounce Time from Changing J_DET State from LOW to HIGH to Detect Jack Removal	3.0 to 4.5	I^2C Register Adjustable ($t_{DET_REM}[3:0]$)	1 (Default)	ms
t_{EXTRA}	Additional Time to Keep Switch Closed in Music Mode after Key Release	3.0 to 4.5		600	ms
t_{REG_DFT}	Time to Set Registers to Defaults from Falling and Rising V_{IO}	3.0 to 4.5		1	ms
LDO					
$PSRR_{LDO}$	Power Supply Rejection Ratio (at 217 Hz)	4.5	Power Supply Noise 300 mV _{PP} , 87.5% Duty Cycle, $C_{OUT}=1 \mu\text{F}$	-80	dB

I²C Specifications

Symbol	Parameter	Fast Mode		
		Min.	Max.	Unit
f_{SCL}	I ² C_SCL Clock Frequency	0	400	kHz
$t_{HD;STA}$	Hold Time (Repeated) START Condition	0.6		μs
t_{LOW}	Low Period of I ² C_SCL Clock	1.3		μs
t_{HIGH}	High Period of I ² C_SCL Clock	0.6		μs
$t_{SU;STA}$	Set-up Time for Repeated START Condition	0.6		μs
$t_{HD;DAT}$	Data Hold Time	0	0.9	μs
$t_{SU;DAT}$	Data Set-up Time ⁽⁶⁾	100		ns
t_r	Rise Time of I ² C_SDA and I ² C_SCL Signals ⁽⁶⁾	$20+0.1C_b$	300	ns
t_f	Fall Time of I ² C_SDA and I ² C_SCL Signals ⁽⁶⁾	$20+0.1C_b$	300	ns
$t_{SU;STO}$	Set-up Time for STOP Condition	0.6		μs
t_{BUF}	Bus-Free Time between STOP and START Conditions	1.3		μs
t_{SP}	Pulse Width of Spikes that Must Be Suppressed by the Input Filter	0	50	ns

Notes:

6. A Fast-Mode I²C-Bus® device can be used in a Standard-Mode I²C-Bus system, but the requirement $t_{SU;DAT} \geq 250$ ns must be met. This is automatically the case if the device does not stretch the LOW period of the I²C_SCL signal. If a device does stretch the LOW period of the I²C_SCL signal, it must output the next data bit to the I²C_SDA line $t_{r_{max}} + t_{SU;DAT} = 1000 + 250 = 1250$ ns (according to the Standard Mode I²C-Bus specification) before the I²C_SCL line is released.
7. C_b equals the total capacitance of one bus line in pF. If mixed with high-speed devices, faster fall times are allowed according to the I²C specification.

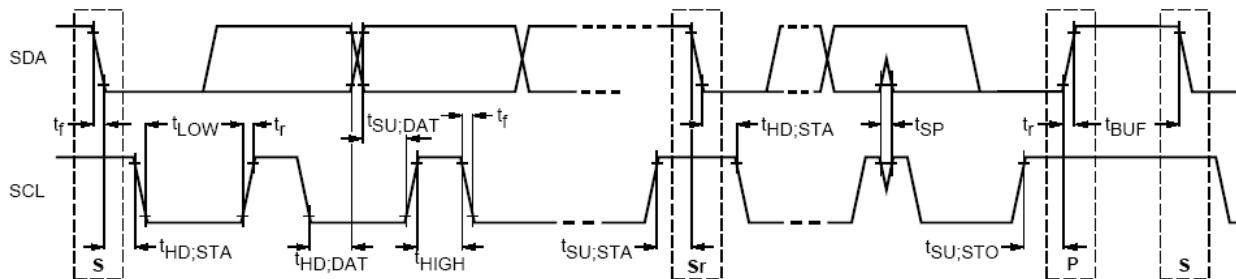


Figure 10. Definition of Timing for Full-Speed Mode Devices on the I²C Bus

Table 2. I²C Slave Address

Name	Size (Bits)	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Slave Address	8	0	1	0	0	0	1	1	Read/Write

Register Map

Addr.	Register	Type	Reset Values	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
01H	Device ID	R	0000XXXX	Version ID				Reserved*			
02H	Control	R/W	XXXX0010	Reserved	Reserved	Reserved	Reserved	LDO Enable	Key Detection Enable	Reserved for Future Applications	Music Mode Enable
03H	Status	R	XXXX0000	Reserved	Reserved	Reserved	Reserved	Impedance Attached Status	Impedance status [2:0] 000: Impedance Type 0 (16 Ω) 001: Impedance Type 1 (32 Ω) 010: Impedance Type 2 (64 Ω) 011: Impedance Type 3 (150 Ω) 100: Impedance Type 4 (300 Ω) 101: Impedance Type 5 (600 Ω) 110: Impedance Type 6 (2 kΩ) 111: Moisture Detection		
04H	Interrupt 1	R/C	XXXXXX000	Reserved	Reserved	Reserved	Reserved	Reserved	Moisture Change	Plug removal	Plug insertion
05H	Interrupt 2	R/C	XX000000	Reserved	Reserved	Reserved	Reserved	Key Release	Reserved	Reserved	Key Press
07H	Interrupt Mask 1	R/W	XXXXXX000	Reserved	Reserved	Reserved*	Reserved*	Reserved*	Moisture Change Mask	Plug Removal Mask	Plug Insertion Mask
08H	Interrupt Mask 2	R/W	XX000000	Reserved	Reserved	Reserved	Reserved	Key Release Mask	Reserved	Reserved	Key Press Mask
0AH	J_DET Timing	R/W	00001001	Insert (t _{DET-IN})				Removal (t _{DET-REM})			
0BH	Music Mode Timing	R/W	00101000	Key-Press Polling Time (t _{POLL})				Key-Press Waiting Time (t _{WAIT})			
0CH	Key Debounce Timing	R/W	XXXX0101	Reserved	Reserved	Reserved	Reserved	Key-Press Debounce Timing (t _{KBK})			
0EH	Reserved	R/W	XXXX1000	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
0FH	Detection Thresholds	R/W	10011000	Key Threshold [3:0]				Reserved	Reserved	Reserved	Reserved
10H	Reset	R/W	XXXXXXXX0	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reset

Notes:

8. Do not use registers that are blank and reserved.
9. Write "0" to undefined register bits.
10. Values read from undefined register bits are not defined and are invalid.

Register Definition

Table 3. Address: 01H

Type: Read

DEVICE ID			Default	xxxx0000
Bit #	Name	Size	Function	
3:0	Reserved	4	Do Not Use	
7:4	Version ID	4	0000 = Version 0.0 0001 = Version 0.1	

Table 4. Address: 02H

Type: Read/Write

CONTROL			Default	xxxx0010
Bit #	Name	Size	Function	
0	Music Mode Enable	1	0: Music Mode disabled (MIC switch keep closed or opened) 1: Music Mode enabled (MIC switch repeats open and close if plug inserted completely)	
1	Reserved	1	Do Not Use Reserved for future applications, default = 1	
2	Key Detection Enable	1	0: Key detection disabled (Default) 1: Key detection enabled	
3	LDO Enable	1	0: LDO disabled (Default) 1: LDO enabled	
7:4	Reserved	4	Do Not Use	

Table 5. Address: 03H

Type: Read

STATUS			Default	xxxx0000
Bit #	Name	Size	Function	
2:0	Impedance Status	3	Only valid at Impedance Accessory Attached bit set 000: Impedance Type 0 (16 Ω) (Default) 001: Impedance Type 1 (32 Ω) 010: Impedance Type 2 (64 Ω) 011: Impedance Type 3 (150 Ω) 100: Impedance Type 4 (300 Ω) 101: Impedance Type 5 (600 Ω) 110: Impedance Type 6 (2k Ω) 111: Moisture detected	
3	Impedance Accessory Attached	1	0: Accessory not attached (Default) 1: Accessory attached and Impedance Status[2:0] valid	
7:4	Reserved	4	Do Not Use	

Table 6. Address: 04H

Type: Read/Clear

INTERRUPT 1			Default	xx000000
Bit #	Name	Size	Function	
0	Plug Insertion	1	0: Plug Insertion not detected (Default) 1: Plug Insertion detected	
1	Plug Removal	1	0: Plug removal not detected (Default) 1: Plug removal detected	
2	Moisture Change	1	0: Moisture status not changed (Default) 1: Moisture status changed	
7:4	Reserved	4	Do Not Use	

Table 7. Address: 05H

Type: Read/Clear

INTERRUPT 2			Default	xxxx0xx0
Bit #	Name	Size	Function	
0	Key Press	1	0: Key not pressed (Default) 1: Key pressed	
2:1	Reserved	2	Do Not Use	
3	Key Release	1	0: Key not released (Default) 1: Key released	
7:4	Reserved	4	Do Not Use	

Table 8. Address: 07H

Type: Read/Write

INTERRUPT MASK1			Default	xxxxx000
Bit #	Name	Size	Function	
0	Plug Insertion Mask	1	0: Plug insert detection not masked (Default) 1: Plug insert detection masked	
1	Plug Removal Mask	1	0: Plug removal detection not masked (Default) 1: Plug removal detect masked	
2	Moisture Change Mask	1	0: Moisture change not masked (Default) 1: Moisture change masked	
7:3	Reserved	5	Do Not Use	

Table 9. Address: 08H

Type: Read/Write

INTERRUPT MASK 2			Default	xxxx0xx0
Bit #	Name	Size	Function	
0	Key Press Mask	1	0: Key press not masked (Default) 1: Key press masked	
2:1	Reserved	2	Do Not Use	
3	Key Release Mask	1	0: Key release not masked (Default) 1: Key release masked	
7:4	Reserved	4	Do Not Use	

Table 10. Address: 0AH

Type: Read/Write

J_DET TIMING			Default	00001001
Bit #	Name	Size	Function	
3:0	$t_{DET_REM}[3:0]$ Plug Removal Debounce Timing	4	0000: 100 μ s 0001: 200 μ s 0010: 300 μ s 0011: 400 μ s 0100: 500 μ s 0101: 600 μ s 0110: 700 μ s 0111: 800 μ s 1000: 900 μ s 1001: 1000 μs 1010: 1200 μ s 1011: 1400 μ s 1100: 1600 μ s 1101: 1800 μ s 1110: 2000 μ s 1111: 5000 μ s	
7:4	$t_{DET_IN}[3:0]$ Plug Insertion Debounce Time	4	0000: 25 ms 0001: 50 ms 0010: 75 ms 0011: 100 ms 0100: 125 ms 0101: 150 ms 0110: 175 ms 0111: 200 ms 1000: 225ms 1001: 250 ms 1010: 275 ms 1011: 300 ms 1100: 325 ms 1101: 350 ms 1110: 375 ms 1111: 400 ms	

Table 11. Address: 0BH

Type: Read/Write

MUSIC MODE TIMING			Default	00101000
Bit #	Name	Size	Function	
3:0	$t_{WAIT}[3:0]$ Key Press Waiting Time in Music Mode	4	0000: 5 ms 0001: 10 ms 0010: 15 ms 0011: 20 ms 0100: 25 ms 0101: 30 ms 0110: 50 ms 0111: 100 ms 1000: 150 ms (Default) 1001: 200 ms 1010: 250 ms	

MUSIC MODE TIMING			Default	00101000
Bit #	Name	Size	Function	
			1011: 300 ms 1100: 350 ms 1101: 400 ms 1110: 450 ms 1111: 500 ms	
7:4	t_{POLL}[3:0] Key Press Polling Time in Music Mode	4	0000: 5 ms 0001: 10 ms 0010: 15 ms (Default) 0011: 20 ms 0100: 25 ms 0101: 30 ms 0110: 35 ms 0111: 40 ms 1000: 45 ms 1001: 50 ms 1010: 60 ms 1011: 70 ms 1100: 80 ms 1101: 90 ms 1110: 100 ms 1111: 150 ms	

Table 12. Address: 0CH

Type: Read/Write

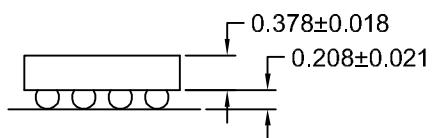
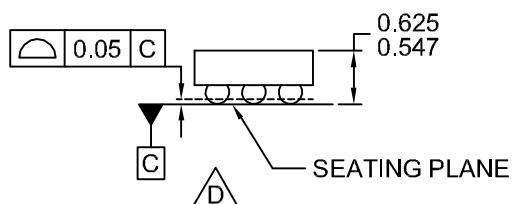
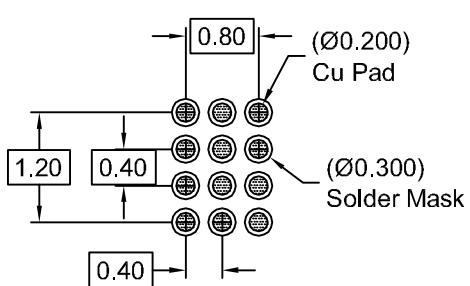
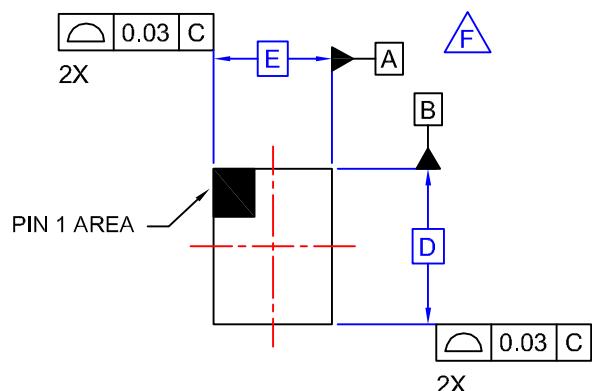
MIC DEBOUNCE TIME			Default	xxxx0101
Bit #	Name	Size	Function	
3:0	t_{KBK}[3:0] Key Press/ Release Debounce Timing	4	0000: 5 ms 0001: 10 ms 0010: 15 ms 0011: 20 ms 0100: 25 ms 0101: 30 ms (Default) 0110: 35 ms 0111: 40 ms 1000: 45 ms 1001: 50 ms 1010: 55 ms 1011: 60 ms 1100: 65 ms 1101: 70 ms 1110: 75 ms 1111: 80 ms	
7:4	Reserved	5	Do Not Use	

Table 13. Address: 0FH

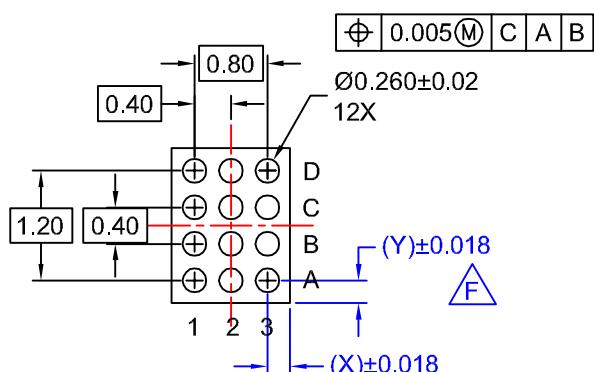
Type: Read/Write

DETECTION THRESHOLD			Default	1001xxxx
Bit #	Name	Size	Function	
3:0	Reserved	4	Do Not Use	
7:4	Key [3:0] Key Threshold	4	0000: 660 mV 0001: 680 mV 0010: 700 mV 0011: 710 mV 0100: 730 mV 0101: 750 mV 0110: 760 mV 0111: 770 mV 1000: 780 mV 1001: 790 mV (Default) 1010: 800 mV 1011: 810 mV 1100: 830 mV 1101: 850 mV 1110: 870 mV 1111: 890 mV	

Table 14. Address: 10H

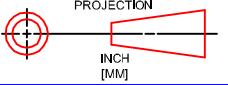




Type: Read/Write

RESET			Default	xxxxxxxx0
Bit #	Name	Size	Function	
0	Reset After reset, this bit is automatically cleared to '0'	4	0: No Change 1: Reset Device – Reset all I ² C register to default values.	
7:1	Reserved	7	Do Not Use	


Package Specific Dimensions

D	E	X	Y
1.615 mm	1.415 mm	0.3075 mm	0.2075 mm

REVISIONS			
REV	DESCRIPTION	DATE	APP'D / SITE
1	Initial drawing release.	8-19-09	L. England / FSME


SIDE VIEWS

BOTTOM VIEW

NOTES:

- NO JEDEC REGISTRATION APPLIES.
- DIMENSIONS ARE IN MILLIMETERS.
- DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.
- DATUM C IS DEFINED BY THE SPHERICAL CROWNS OF THE BALLS.
- PACKAGE NOMINAL HEIGHT IS 586 MICRONS ±39 MICRONS (547-625 MICRONS).
- FOR DIMENSIONS D, E, X, AND Y SEE PRODUCT DATASHEET.
- DRAWING FILENAME: MKT-UC012ACrev1.

APPROVALS	DATE	FAIRCHILD SEMICONDUCTOR™		
DRAWN L. England	8-19-09			
DFTG. CHK. S. Martin	8-19-09			
ENGR. CHK.				
PROJECTION		SCALE N/A	SIZE N/A	DRAWING NUMBER MKT-UC012AC
 INCH [MM]				REV 1
DO NOT SCALE DRAWING				SHEET 1 of 1

12BALL WLCSP, 3X4 ARRAY
0.4MM PITCH, 250UM BALL

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™
 AttitudeEngine™
 Awinda®
 AX-CAP®*
 BitSiC™
 Build it Now™
 CorePLUS™
 CorePOWER™
 CROSSVOLT™
 CTL™
 Current Transfer Logic™
 DEUXPEED®
 Dual Cool™
 EcosPARK®
 EfficientMax™
 ESBG™
 F®
 Fairchild®
 Fairchild Semiconductor®
 FACT Quiet Series™
 FACT®
 FastvCore™
 FETBench™
 FPS™
 FPF™
 Global Power Resource™
 GreenBridge™
 Green FPS™
 Green FPS™ e-Series™
 Gmax™
 GTO™
 IntelliMAX™
 ISOPLANAR™
 Making Small Speakers Sound Louder and Better™
 MegaBuck™
 MICROCOUPLER™
 MicroFET™
 MicroPak™
 MicroPak2™
 MillerDrive™
 MotionMax™
 MotionGrid™
 MTI®
 MTx®
 MVN®
 mWSaver®
 OptoHi™
 OPTOLOGIC®

OPTOPLANAR®
 Power Supply WebDesigner™
 PowerTrench®
 PowerXST™
 Programmable Active Droop™
 QFET®
 QS™
 Quiet Series™
 RapidConfigure™
 Saving our world, 1mW/W/kW at a time™
 SignalWise™
 SmartMax™
 SMART START™
 Solutions for Your Success™
 SPM®
 STEALTH™
 SuperFET®
 SuperSOT™-3
 SuperSOT™-6
 SuperSOT™-8
 SupreMOS®
 SyncFET™
 Sync-Lock™

SYSTEM GENERAL®
 TinyBoost®
 TinyBuck®
 TinyCalc™
 TinyLogic®
 TINYOPTO™
 TinyPower™
 TinyPWM™
 TinyWire™
 TranSiC™
 TriFault Detect™
 TRUECURRENT®*
 μSerDes™
 UHC®
 Ultra FRFET™
 UniFET™
 VCX™
 VisualMax™
 VoltagePlus™
 XS™
 Xsens™
 仙童®

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT [HTTP://WWW.FAIRCHILDSEMI.COM](http://WWW.FAIRCHILDSEMI.COM). FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. I77