

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

[M/A-Com Technology Solutions](#)

[MAAM-011185-TR1000](#)

For any questions, you can email us directly:

sales@integrated-circuit.com

MAAM-011185

CATV Return Path Differential Amplifier 5 - 300 MHz

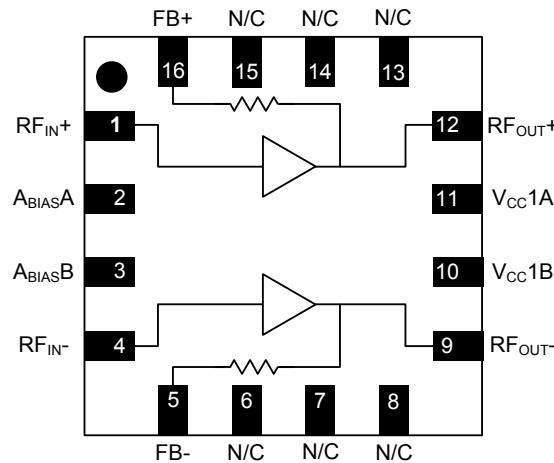
Rev. V2

Features

- 21.2 dB Gain
- 5.0 V Bias
- 3.1 dB Noise Figure
- External Bias Current Control
- Low Distortion
- Wide Bandwidth for DOCSIS 3.1
- Lead-Free 3 mm 16-Lead PQFN Package
- RoHS* Compliant and 260°C Reflow Compatible

Description

The MAAM-011185 is a balanced GaAs MMIC amplifier assembled in a lead-free 3 mm 16-lead PQFN plastic package.


The amplifier is ideally suited for use in CATV return path applications, including DOCSIS 3.1 systems: it offers low distortion and low noise figure with high gain. It typically provides 3.1 dB noise figure, 21.2 dB gain, and 30 dB MER up to 57 dBmV per channel for 16-Channel 64 QAM signaling while drawing 290 mA DC current @ 5 V bias.

Ordering Information^{1,2}

Part Number	Package
MAAM-011185-TR1000	1000 piece reel
MAAM-011185-TR3000	3000 piece reel
MAAM-011185-001SMB	Sample Board

1. Reference Application Note M513 for reel size information.
2. All sample boards include 5 loose parts.

Functional Schematic

Pin Configuration³

Pin No.	Pin Name	Description
1	RF _{IN} +	RF Input +
2	A _{BIASA}	Active Bias A
3	A _{BIASB}	Active Bias B
4	RF _{IN} -	RF Input -
5	FB-	Feedback -
6	N/C	No Connection
7	N/C	No Connection
8	N/C	No Connection
9	RF _{OUT} -	RF Output (DC Bias) -
10	V _{CC} 1B	V _{CC} Bias 1B
11	V _{CC} 1A	V _{CC} Bias 1A
12	RF _{OUT} +	RF Output (DC Bias) +
13	N/C	No Connection
14	N/C	No Connection
15	N/C	No Connection
16	FB+	Feedback +
17	Pad ⁴	RF and DC Ground

3. All pins listed as 'No Connection' should be grounded.
4. The exposed pad centered on the package bottom must be connected to RF and DC ground.

* Restrictions on Hazardous Substances, European Union Directive 2011/65/EU.

MAAM-011185

CATV Return Path Differential Amplifier

5 - 300 MHz

Rev. V2

Electrical Specifications⁵: $T_A = +25^\circ\text{C}$, $V_{CC} = 5 \text{ V}$, $I_{CC} = 290 \text{ mA}$, $Z_0 = 75 \Omega$

Parameter	Test Conditions	Units	Min.	Typ.	Max.
Gain	$P_{IN} = -10 \text{ dBm}$, 100 MHz $P_{IN} = -10 \text{ dBm}$, 205 MHz $P_{IN} = -10 \text{ dBm}$, 250 MHz	dB	20.5 20.5 —	21.5 21.2 21.0	22.5 22.5 —
Input Return Loss	5 - 300 MHz	dB	—	21	—
Output Return Loss	5 - 300 MHz	dB	—	21	—
Reverse Isolation	5 - 300 MHz	dB	—	25	—
Noise Figure	5 - 205 MHz 205 - 300 MHz	dB	—	3.1 3.3	—
P1dB	$I_{CC} = 290 \text{ mA}$, 5 - 300 MHz $I_{CC} = 320 \text{ mA}$, 5 - 300 MHz	dBm	—	27.0 27.3	—
OIP3	12 dBm P_{OUT} per tone, 6 MHz spacing, $I_{CC} = 290 \text{ mA}$, 5 - 300 MHz $I_{CC} = 320 \text{ mA}$, 5 - 300 MHz	dBm	—	43 45	—
OIP2	12 dBm P_{OUT} per tone, 6 MHz spacing, $I_{CC} = 290 \text{ mA}$, 5 - 205 MHz $I_{CC} = 320 \text{ mA}$, 5 - 205 MHz $I_{CC} = 290 \text{ mA}$, 205 - 300 MHz $I_{CC} = 320 \text{ mA}$, 205 - 300 MHz	dBm	—	80 82 76 78	—
P_{OUT} @ 30 dB MER ⁵	16 Channels, $I_{CC} = 290 \text{ mA}$, 5 - 205 MHz $I_{CC} = 320 \text{ mA}$, 5 - 205 MHz	dBmV/Channel	55.5 —	57.0 58.0	—
I_{CC} ⁶	$R_2 = 1.33 \text{ k}\Omega$	mA	—	290	320

5. Modulation Error Ratio, 64 QAM 5.12 MS/s. See 'Typical Performance Curves' on page 5 of this datasheet for an example MER vs. output power relationship.
6. Data corresponds to the typical application circuit and component values shown on page 3 of this datasheet. Parameters shown at nominal $I_{CC} = 290 \text{ mA}$ unless otherwise noted. I_{CC} is the total DC current draw from the V_{CC} supply. As shown on page 3, it is distributed to pins 9 and 12 by balun T2 and pins 10 and 11 directly. Resistor R_2 determines the DC voltage of A_{BIASAB} and thereby I_{CC} at approximately 0.25 mA/ Ω . See page 5 for a typical I_{CC} vs. R_2 relationship assuming $V_{CC} = 5 \text{ V}$.

Absolute Maximum Ratings^{7,8}

Parameter	Absolute Maximum
Input Power	11 dBm
V_{CC}	6 V
Junction Temperature ^{9,10}	+150°C
Operating Temperature	-40°C to +85°C
Storage Temperature	-65°C to +125°C

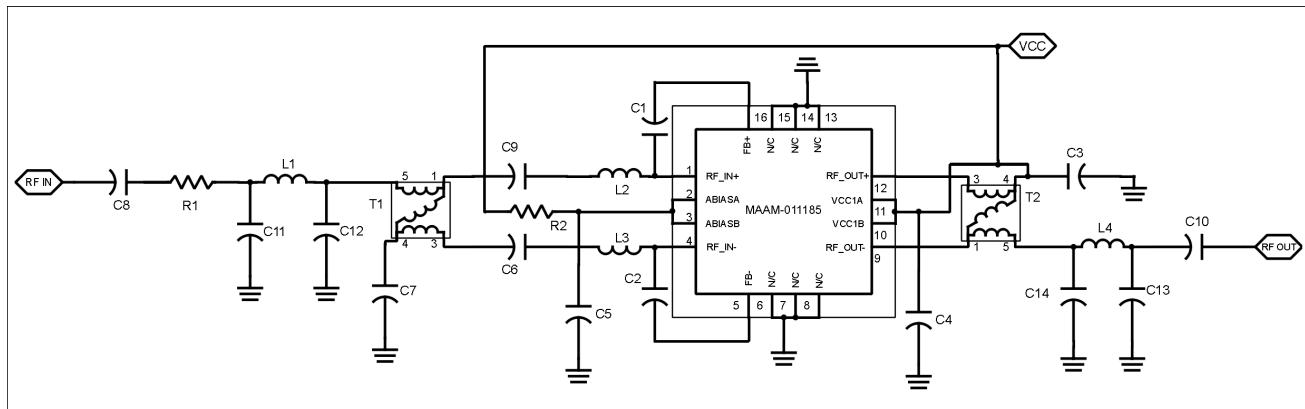
7. Exceeding any one or a combination of these limits may cause permanent damage to this device.
8. MACOM does not recommend sustained operation near these survivability limits.
9. Operating at nominal conditions with $T_J \leq 150^\circ\text{C}$ will ensure $MTTF > 1 \times 10^6$ hours.
10. Junction Temperature (T_J) = $T_C + \Theta_{JC} * (V * I)$
 Typical thermal resistance (Θ_{JC}) = 15° C/W.
 - For $T_C = +25^\circ\text{C}$, $T_J = 47^\circ\text{C}$ @ 5 V, 290 mA
 - For $T_C = +85^\circ\text{C}$, $T_J = 107^\circ\text{C}$ @ 5 V, 290 mA

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

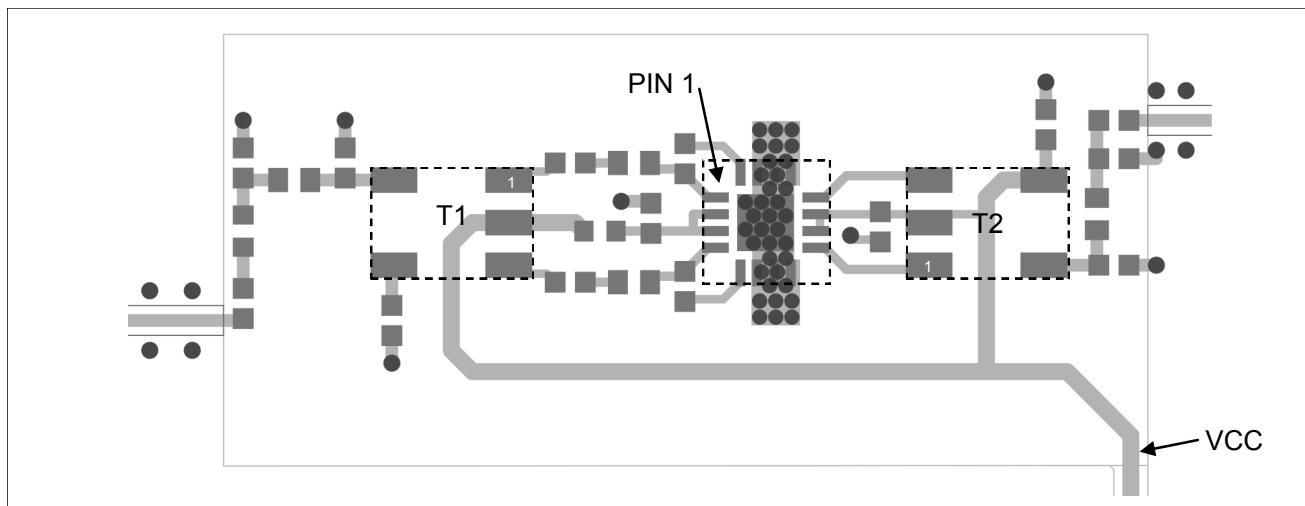
Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.


MAAM-011185

MACOM

CATV Return Path Differential Amplifier 5 - 300 MHz

Rev. V2

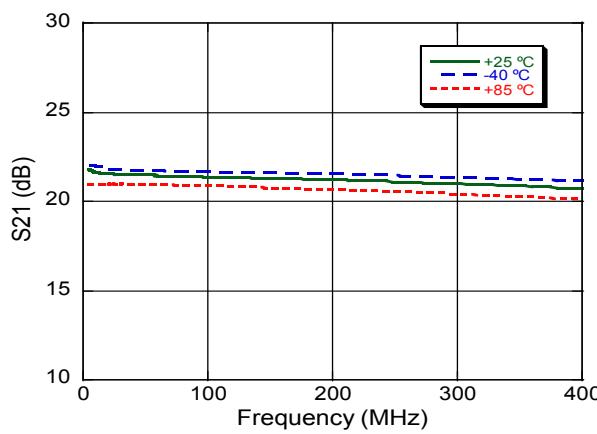

Typical Application Circuit: Schematic

Typical Application Circuit: Component Values

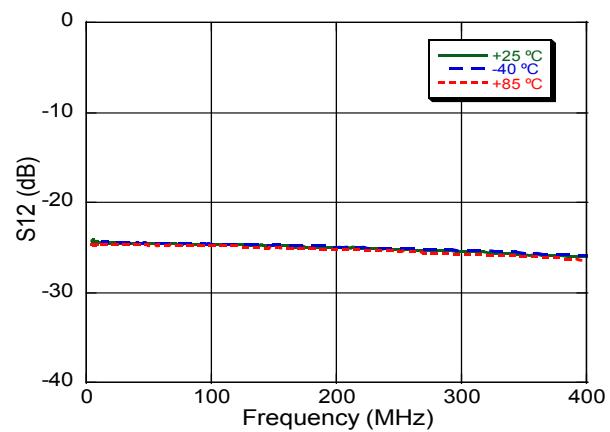
Component	Value
C1 - C9	100 nF
C10	1500 pF
C11, C13	2.0 pF
C12	2.5 pF
C14	1.0 pF
R1	2 Ω
R2	1.33 kΩ
L1	22 nH
L2, L3	3.3 nH
L4	6.2 nH
T1, T2	MABA-007748-CT1160 1:1 Balun (MACOM)

Sample Board Layout

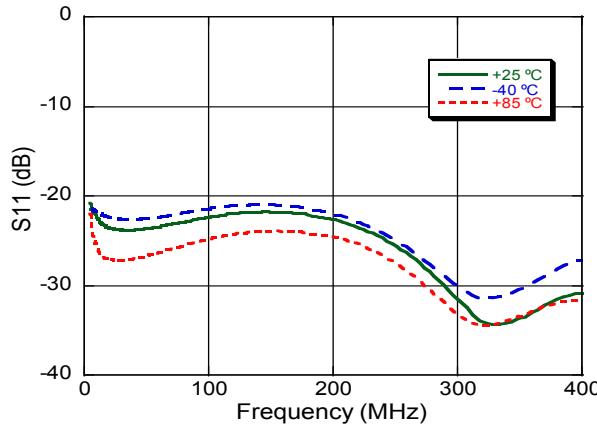
MAAM-011185

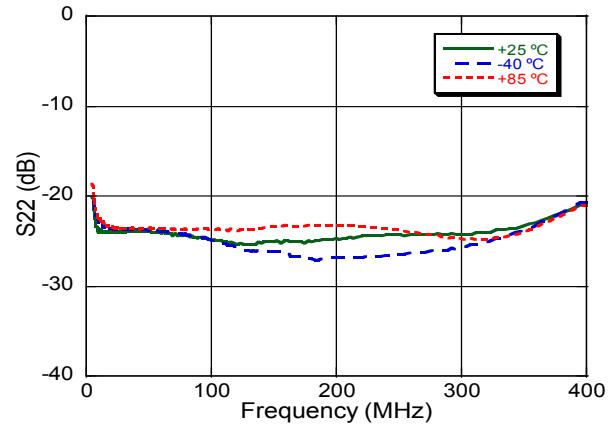

MACOM™

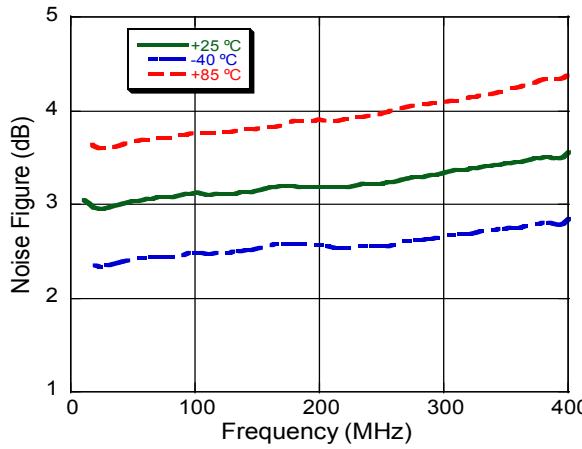
CATV Return Path Differential Amplifier
5 - 300 MHz


Rev. V2

Typical Performance Curves: Small-Signal


Gain

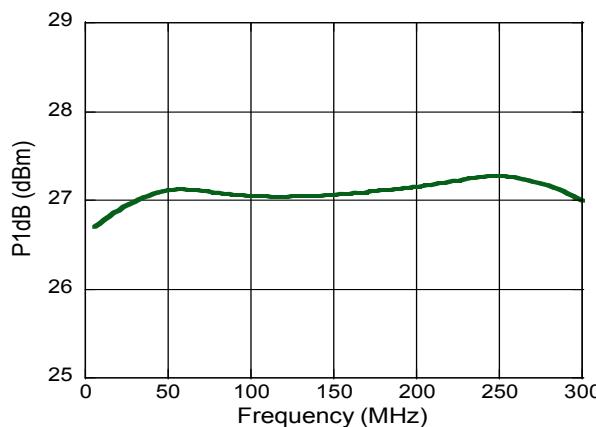

Reverse Isolation


Input Return Loss

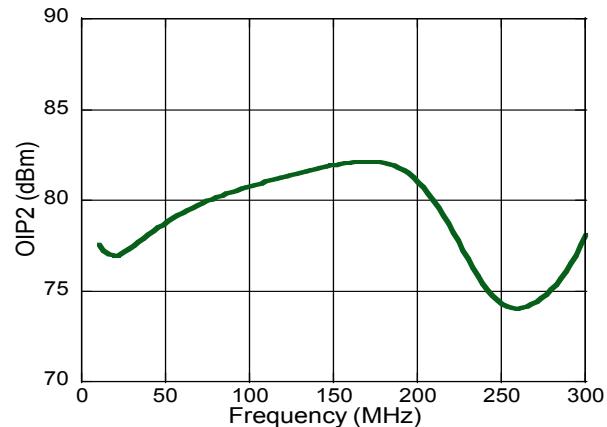
Output Return Loss

Noise Figure

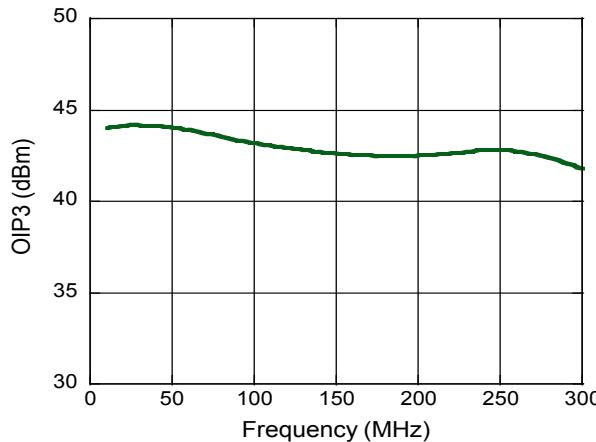
MAAM-011185

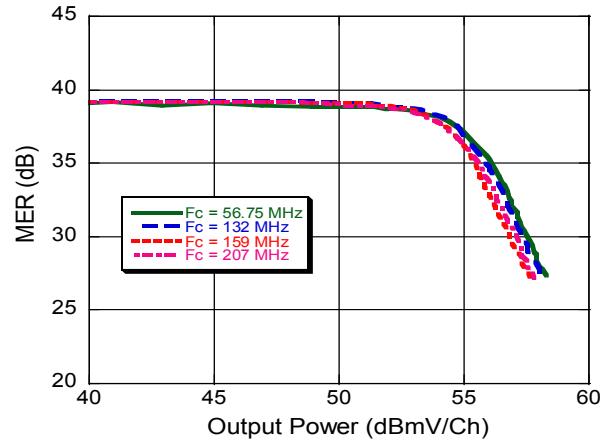

MACOM™

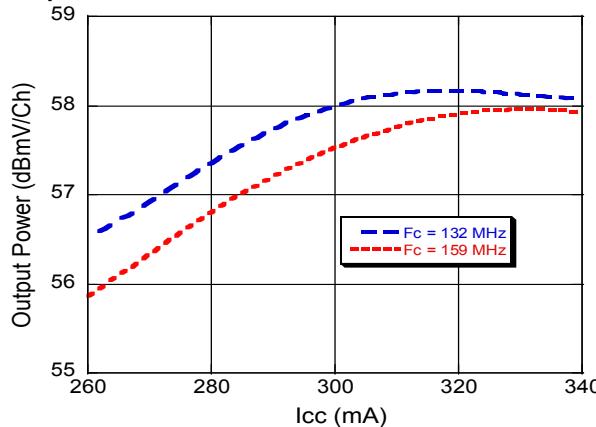
CATV Return Path Differential Amplifier
5 - 300 MHz

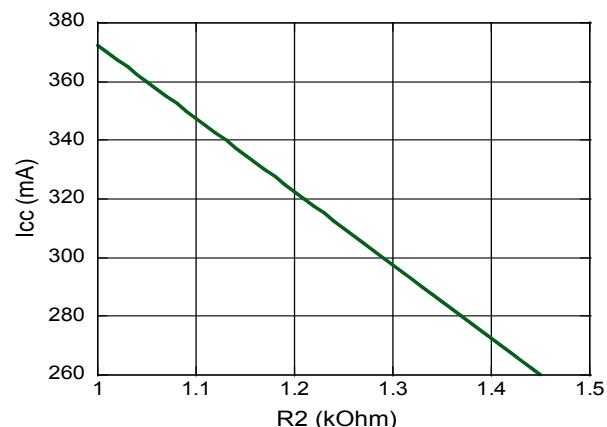

Rev. V2

Typical Performance Curves: Large Signal


P1dB


OIP2 @ 12 dBm P_{OUT}

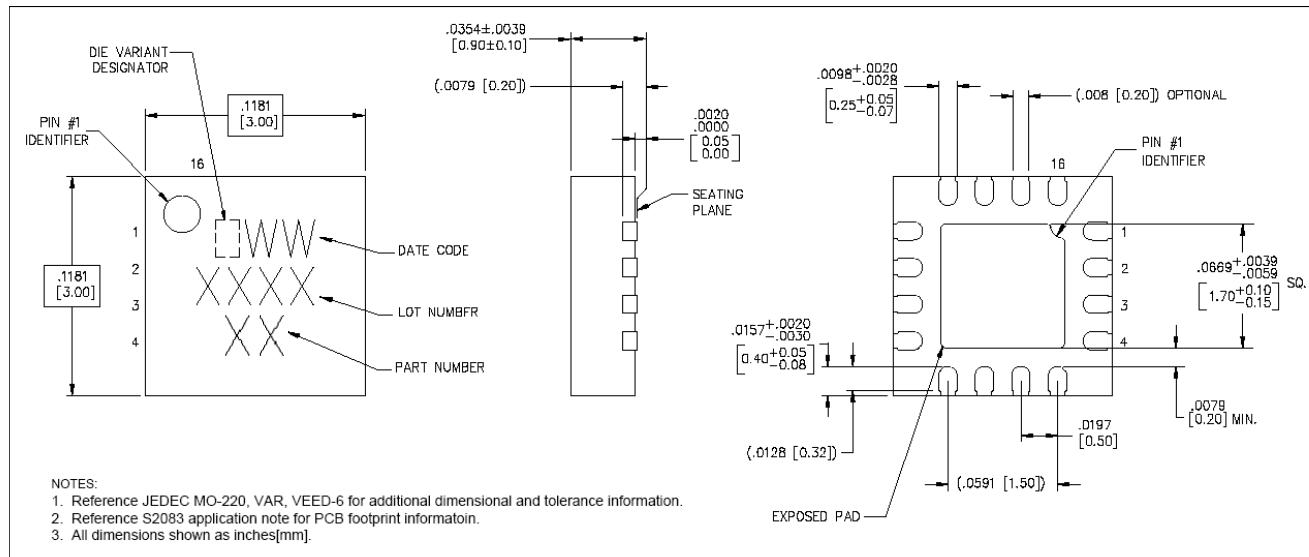

OIP3 @ 12 dBm P_{OUT}


Modulation Error Ratio (64 QAM, 16 Channel)¹¹

Output Power at 30 dB MER vs. I_{cc}¹¹

I_{cc} vs. Resistor R2 at V_{cc} = 5 V

11. F_c is the center frequency of the measured channel, which is the 9th of 16 consecutive 64-QAM channels.


MAAM-011185

MACOM™

CATV Return Path Differential Amplifier
5 - 300 MHz

Rev. V2

Lead-Free 3 mm 16-Lead PQFN[†]

[†]Reference Application Note S2083 for lead-free solder reflow recommendations.

Meets JEDEC moisture sensitivity 1 requirements.

Plating is 100% matte tin plating over copper.

MAAM-011185

CATV Return Path Differential Amplifier
5 - 300 MHz

Rev. V2

M/A-COM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.