

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

[ON Semiconductor](#)
[KAF-40000-CXA-JD-AA](#)

For any questions, you can email us directly:

sales@integrated-circuit.com

KAF-40000

7304 (H) x 5478 (V) Full Frame CCD Image Sensor

Description

The KAF-40000 Image Sensor is a high performance, 40-megapixel CCD. Based on the TRUESENSE 6.0 micron Full Frame CCD Platform, the sensor features ultra-high resolution, broad dynamic range, and a four-output architecture. A lateral overflow drain suppresses image blooming, while an integrated Pulse Flush Gate clears residual charge on the sensor with a single electrical pulse. A Fast Dump Gate can be used to selectively remove a line of charge to facilitate partial image readout. The sensor also utilizes the TRUESENSE Transparent Gate Electrode to improve sensitivity compared to the use of a standard front side illuminated polysilicon electrode.

The sensor shares a common pin-out and electrical configuration with the KAF-50100 Image Sensor, allowing a single camera design to support both members of this sensor family.

Table 1. GENERAL SPECIFICATIONS

Parameter	Typical Value
Architecture	Full Frame CCD (Square Pixels)
Total Number of Pixels	7410 (H) x 5566 (V) = 41.2 Mp
Number of Effective Pixels	7336 (H) x 5510 (V) = 40.4 Mp
Number of Active Pixels	7304 (H) x 5478 (V) = 40.0 Mp
Pixel Size	6.0 μ m (H) x 6.0 μ m (V)
Active Image Size	45.76 mm (H) x 35.34 mm (V) 54.78 mm (Diagonal), 645 1.3x Optical Format
Aspect Ratio	4:3
Horizontal Outputs	4
Saturation Signal	42 ke ⁻
Output Sensitivity	31 μ V/e ⁻
Quantum Efficiency (Peak R, G, B)	42%, 44%, 38%
Read Noise (f = 18 MHz)	13 e ⁻
Dark Signal (T = 60°C)	42 pA/cm ²
Dark Current Doubling Temperature	5.5°C
Dynamic Range (f = 18 MHz)	70.2 dB
Estimated Linear Dynamic Range (f = 18 MHz)	69.3 dB
Charge Transfer Efficiency	
Horizontal	0.999995
Vertical	0.999999
Blooming Protection (4 ms Exposure Time)	1400X Saturation Exposure
Maximum Date Rate	18 MHz
Package	Ceramic PGA
Cover Glass	MAR Coated, 2 Sides

NOTE: All Parameters are specified at T = 40°C unless otherwise noted.

ON Semiconductor®

www.onsemi.com

Figure 1. KAF-40000 CCD Image Sensor

Features

- TRUESENSE Transparent Gate Electrode for High Sensitivity
- Ultra-High Resolution
- Board Dynamic Range
- Low Noise Architecture
- Large Active Imaging Area

Application

- Digitization
- Mapping/Aerial
- Photography

ORDERING INFORMATION

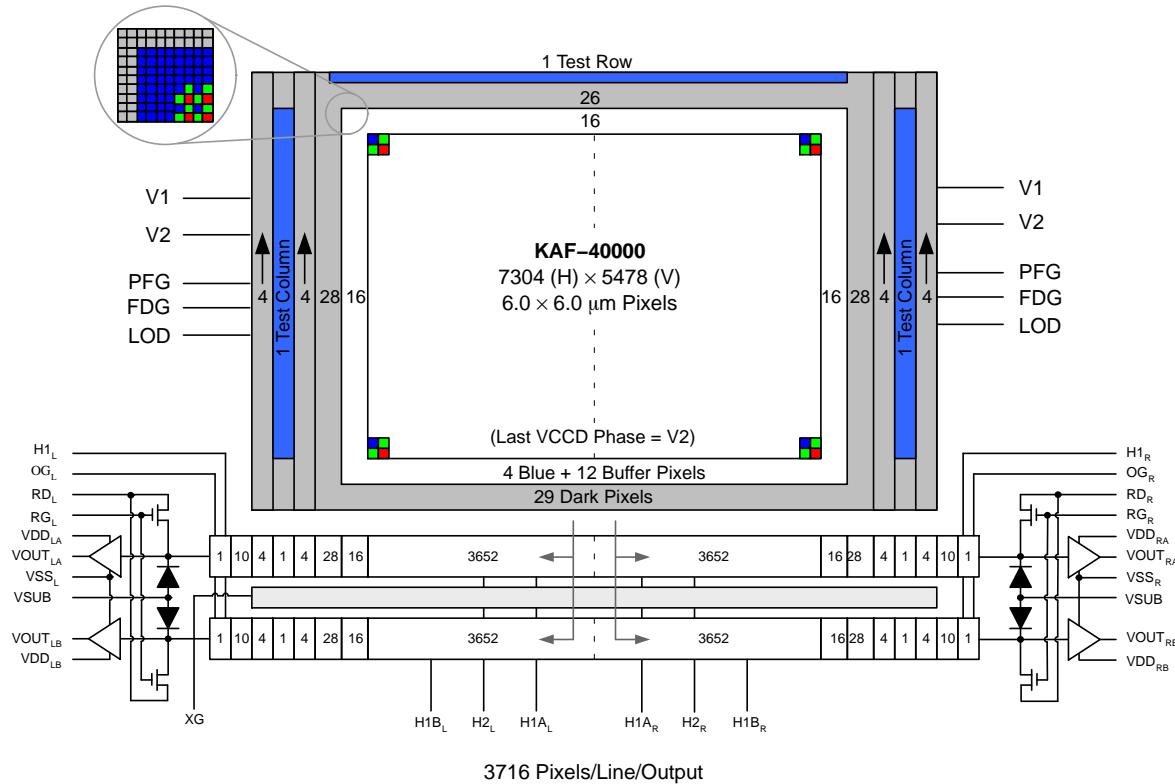
See detailed ordering and shipping information on page 2 of this data sheet.

KAF-40000

ORDERING INFORMATION

Table 2. ORDERING INFORMATION

Part Number	Description	Marking Code
KAF-40000-FXA-JD-AA	Gen2 Color (Bayer RGB), Microlens, Enhanced, ESD, Ceramic PGA, Clear Cover Glass with AR Coating (Both Sides), Standard Grade	KAF-40000-FX Serial Number
KAF-40000-FXA-JD-AE	Gen2 Color (Bayer RGB), Microlens, Enhanced, ESD, Ceramic PGA, Clear Cover Glass with AR Coating (Both Sides), Engineering Sample	
KAF-40000-CXA-JD-AA*	Gen1 Color (Bayer RGB), Microlens, Enhanced, ESD, Ceramic PGA, Clear Cover Glass with AR Coating (Both Sides), Standard Grade	KAF-40000-CX Serial Number
KAF-40000-CXA-JD-AE*	Gen1 Color (Bayer RGB), Microlens, Enhanced, ESD, Ceramic PGA, Clear Cover Glass with AR Coating (Both Sides), Engineering Sample	


*Not recommended for new designs.

See the ON Semiconductor *Device Nomenclature* document (TND310/D) for a full description of the naming convention used for image sensors. For reference documentation, including information on evaluation kits, please visit our web site at www.onsemi.com.

KAF-40000

DEVICE DESCRIPTION

Architecture

Figure 2. Block Diagram

Dark Reference Pixels

Surrounding the periphery of the device is a border of light shielded pixels creating a dark region. Existing within this dark region are light shielded pixels that include 28 leading dark pixels on every line. There are also 29 full dark lines at the start and 26 full dark lines at the end of every frame. Under normal circumstances, these pixels do not respond to light and may be used as a dark reference.

Dummy Pixels

Within each horizontal shift register there are 20 leading pixels. These are designated as dummy pixels and should not be used to determine a dark reference level. These pixels are noted on the block diagram as the leading pixels in a horizontal line sequence: 1 + 10 + 4 + 1 (CTE monitor pixel) + 4.

Active Buffer Pixels

Forming the outer boundary of the effective active pixel region, there are 16 unshielded active buffer pixels between the photoactive area and the dark reference. These pixels are light sensitive but they are not tested for defects and

non-uniformities. For the leading 16 active column pixels, the first 4 pixels are covered with blue pigment while the remaining active buffer pixels are arranged in a Bayer pattern (R, GR, GB, B).

CTE Monitor Pixels

Two CTE test columns, at the leading end of each output, and one CTE test row are included for manufacturing test purposes.

Image Acquisition

An electronic representation of an image is formed when incident photons falling on the sensor plane create electron-hole pairs (charge) within the device. These photon-induced electrons are collected locally by the formation of potential wells at each pixel site. The number of electrons collected is linearly dependent on light level and exposure time and non-linearly dependent on wavelength. When the pixel's capacity is reached, excess electrons are discharged into the lateral overflow drain (LOD) to prevent crosstalk or 'blooming'. During the integration period, the V1 and V2 register clocks are held at a constant (low) level.

KAF-40000

Charge Transport

The integrated charge from each pixel in the Vertical CCD (VCCD) is transported to the output using a two-step process. Each remaining line (row) of charge is first transported from the VCCD to a dual parallel split horizontal register (HCCD) using the V1 and V2 register clocks. The transfer to the HCCD occurs on the falling edge of V2 while H1A is held high. This line of charge may be readout immediately (dual split) or may be passed through a transfer gate (XG) into a second (B) HCCD register while the next line loads into the first (A) HCCD register (dual parallel split). Readout of each line in the HCCD is always split at the middle and, thus, either two or four outputs are used. Left (or right) outputs carry image content from pixels in the left (or right) columns of the VCCD. A separate connection to the last H1 phase (H1L) is provided to improve the transfer speed of charge to the output amplifier. On each falling edge of H1L, a new charge packet is sensed by the output amplifier. Left and right HCCDs are electrically isolated from each other except for the common transfer gate (XG).

Pulsed Flush Gate/Fast Dump Gate

The Pulsed Flush Gate (PFG) feature is used to drain the charge of all pixels prior to exposure. The exception is pixels

in the Fast Dump Gate (FDG) row that are drained using the separate FDG pin. Draining is accomplished by first clocking V2 high while V1 is held low. This forces all charge into the V2 phase of the pixel. While V2 is high, PFG (or FDG) may be clocked high to begin draining the signal from the pixel to the LOD. Charge transfer out of the pixel is fully completed only after V2 has been clocked low plus some characteristic time.

Horizontal Register

Output Structure

The output consists of a floating diffusion connected to a three-stage source follower. Charge presented to the floating diffusion (FD) is converted into a voltage and is current amplified in order to drive off-chip loads. The resulting voltage change seen at the output is linearly related to the amount of charge placed on the FD. Once the signal has been sampled by the system electronics, the reset gate (RG) is clocked to remove the signal and FD is reset to the potential applied by reset drain (RD). Increased signal at the floating diffusion reduces the voltage seen at the output pin. To activate the output structure, an off-chip current source must be added to the VOUT pin of the device. See Figure 4.

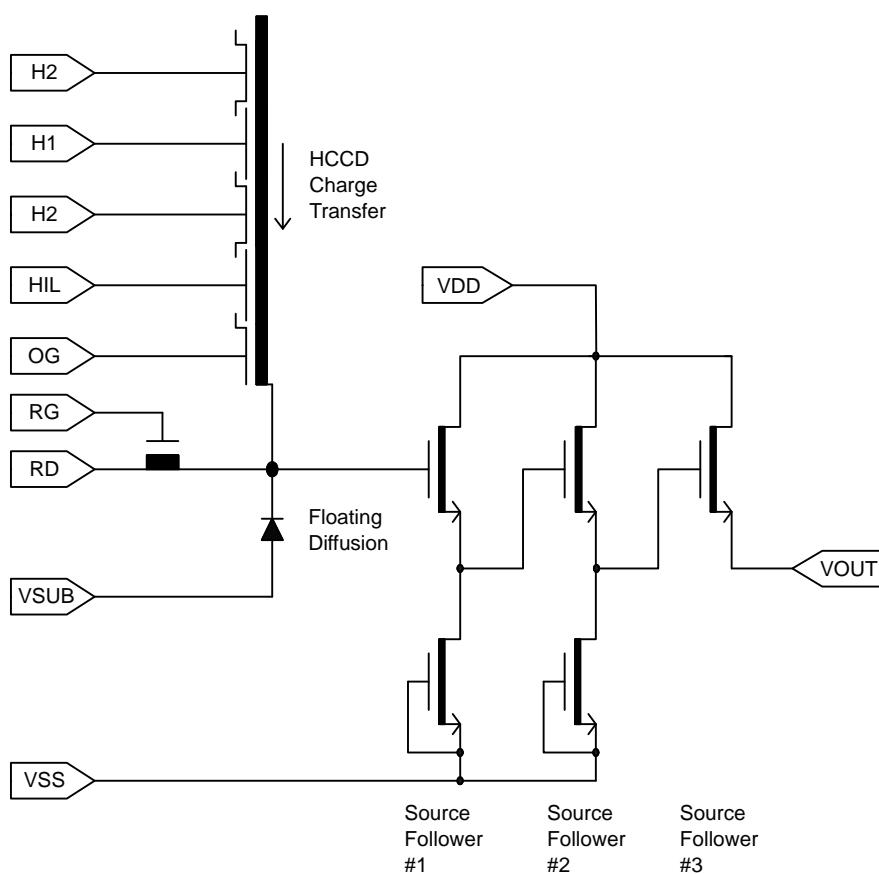
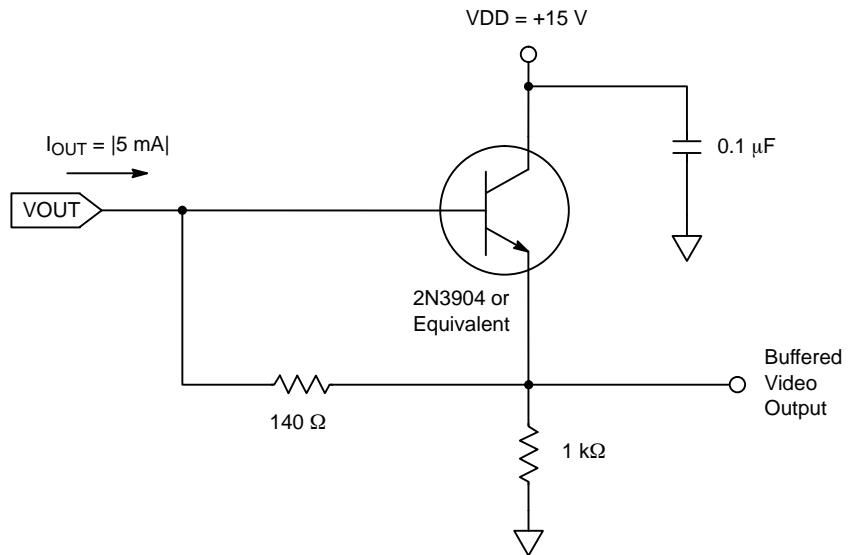



Figure 3. Output Architecture (Each Output)

KAF-40000*Output Load*

NOTE: Component values may be revised based on operating conditions and other design considerations.

Figure 4. Recommended Output Structure Load Diagram

KAF-40000

Physical Description

Pin Description and Device Orientation

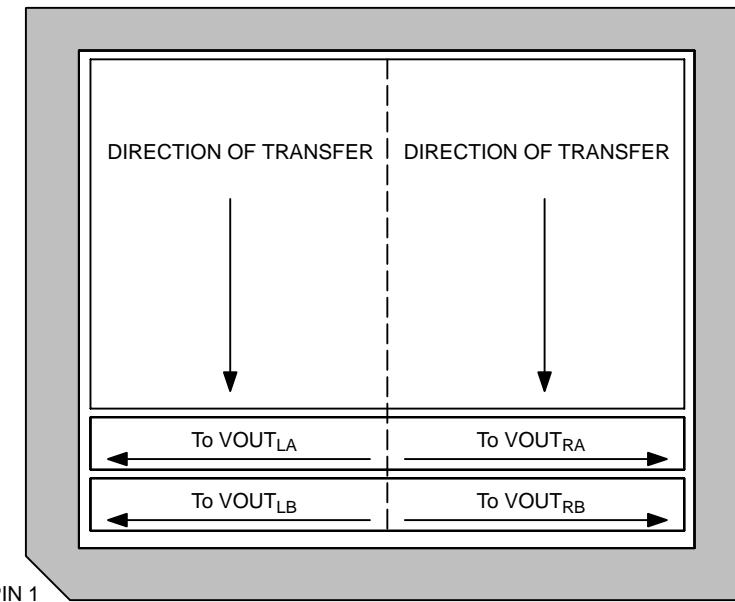
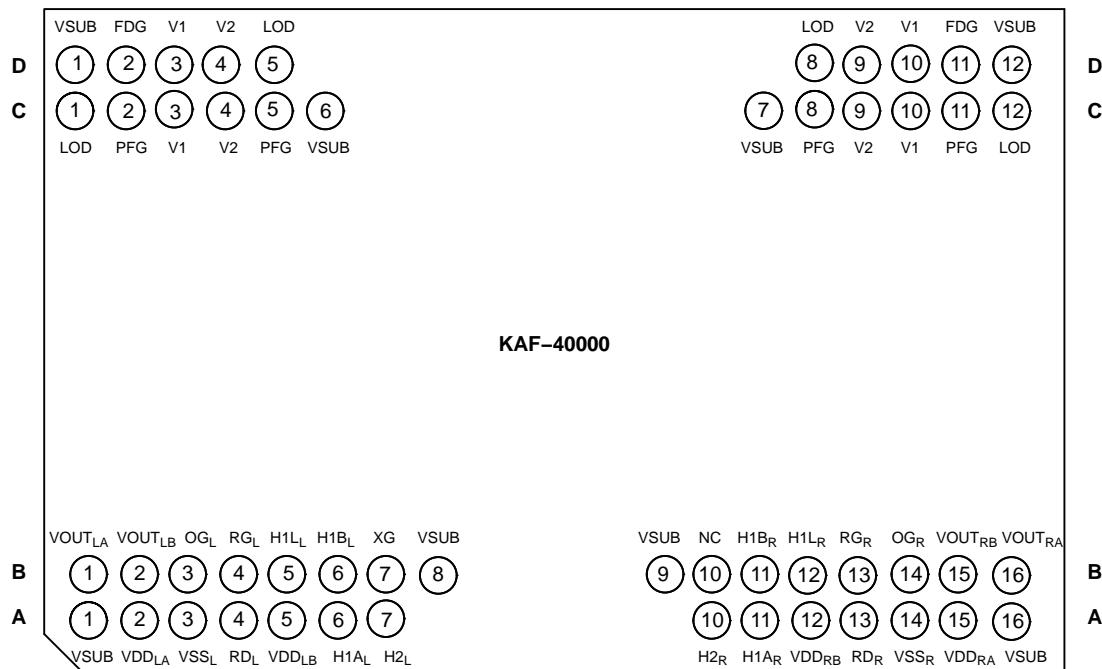



Figure 5. Image Transfer Diagram Viewed from the Top (Cover Glass Side)

Notes:

1. Pins with the same name are nominally tied together on the circuit board and have the same operating conditions. In addition, pins labeled with left ('L') and ('R') designations may also be tied together except for VOUT pins.
2. To achieve optimal output signal matching, electrical layout of the PCB should be made as symmetrical as possible relative to the left and right sides of the sensor.

Figure 6. Pinout Diagram

KAF-40000

Table 3. PIN DESCRIPTION

Pin	Name	Description
A1	VSUB	Substrate
A2	VDDLA	Output Amplifier Supply, Left A
A3	VSSL	Output Amplifier Return, Left
A4	RDL	Reset Drain, Left
A5	VDDLB	Output Amplifier Supply, Left B
A6	H1AL	Horizontal Phase 1, A Left
A7	H2L	Horizontal Phase 2, Left
A10	H2R	Horizontal Phase 2, Right
A11	H1AR	Horizontal Phase 1, A Right
A12	VDDRB	Output Amplifier Supply, Right B
A13	RDR	Reset Drain, Right
A14	VSSR	Output Amplifier Return, Right
A15	VDDRA	Output Amplified Supply, Right A
A16	VSUB	Substrate

B1	VOUTLA	Video Output, Left A
B2	VOUTLB	Video Output, Left B
B3	OGL	Output Gate, Left
B4	RGL	Reset Gate, Left
B5	H1LL	Horizontal Phase 1, Last Gate, Left
B6	H1BL	Horizontal Phase 1, B Left
B7	XG	Horizontal Transfer Gate
B8	VSUB	Substrate
B9	VSUB	Substrate
B10	NC	No Connection
B11	H1BR	Horizontal Phase 1, B Right
B12	H1LR	Horizontal Phase 1, Last Gate, Right
B13	RGR	Reset Gate, Right
B14	OGR	Output Gate, Right
B15	VOUTRB	Video Output, Right B
B16	VOUTRA	Video Output, Right A

Pin	Name	Description
C1	LOD	Lateral Overflow Drain
C2	PFG	Pulse Flush Gate
C3	V1	Vertical Phase 1
C4	V2	Vertical Phase 2
C5	PFG	Pulse Flush Gate
C6	VSUB	Substrate
C7	VSUB	Substrate
C8	PFG	Pulse Flush Gate
C9	V2	Vertical Phase 2
C10	V1	Vertical Phase 1
C11	PFG	Pulse Flush Gate
C12	LOD	Lateral Overflow Drain

D1	VSUB	Substrate
D2	FDG	Fast Dump Gate
D3	V1	Vertical Phase 1
D4	V2	Vertical Phase 2
D5	LOD	Lateral Overflow Drain
D8	LOD	Lateral Overflow Drain
D9	V2	Vertical Phase 2
D10	V1	Vertical Phase 1
D11	FDG	Fast Dump Gate
D12	VSUB	Substrate

NOTE: The leads are on a 0.100" spacing.

KAF-40000

IMAGING PERFORMANCE

Table 4. TYPICAL OPERATIONAL CONDITIONS

Description	Test Condition – Unless Otherwise Noted	Units	Notes
Readout Time ($t_{READOUT}$)	2093	ms	Includes 140 Overclock Pixels Includes 178 Overclock Lines
Integration Time (t_{INT})	Variable 33 200 250 1000	ms	Low Light Tests Saturation Tests Brightfield Tests Darkfield and Linearity Tests
Frame Time ($t_{READOUT} + t_{INT}$)	Variable 2126 (2093 + 33) 2293 (2093 + 200) 2343 (2093 + 250) 3093 (2093 + 1000)	ms	Low Light Tests Saturation Tests Brightfield Tests Darkfield and Linearity Tests
Line Time (t_{LINE})	364.3	μ s	Includes 140 Overclock Pixels
Horizontal Clock Frequency	12 (as Tested)	MHz	Guaranteed for 18 MHz Operation
Temperature – Room	20	°C	Room Temperature
Temperature – Device	29	°C	Typical Device Operating Temperature at Test Room Temperature
Operation	Nominal Operating Levels		Dual Parallel Split Mode

Table 5. SPECIFICATIONS

Description	Symbol	Min.	Nom.	Max.	Units	Verification Plan ¹⁵
Saturation Signal (Note 1)	N_{SAT} N_{e^-SAT} Q/V	1075	1300 42 31		mV e^- μ V/ e^-	Die
Photoresponse Non-Linearity (Note 2)	PRNL		5	10	%	Die
Photoresponse Non-Uniformity (Note 3)	PRNU		8.5	25	% p-p	Die
Readout Dark Signal (Note 4)	$V_{DARK,READ}$		18	20	mV/s	Die
Integration Dark Signal (Note 5)	$V_{DARK,INT}$		3	10	mV/s	Die
Dark Signal Non-Uniformity (Notes 6, 16)	DSNU		1	4	mV p-p	Die
Dark Signal Doubling Temperature (Note 4)	ΔT		5.5		°C	Design
Read Noise (Note 7)	NR		13		e^- rms	Design
Dynamic Range (Note 8)	DR		70.2		dB	Design
Estimated Linear Dynamic Range	DR _{LIN} (Est.)		69.3		dB	Design
Red-Green Hue Shift Blue-Green Hue Shift (Note 9)	$RG_{HueUnif}$ $BG_{HueUnif}$		5	12	%	Die
Horizontal Charge Transfer Efficiency (Note 10)	HCTE	0.999995				Die
Vertical Charge Transfer Efficiency	VCTE	0.999999	0.999998			Die
Blooming Protection (Note 11)	X_{AB}	800	1400		$x E_{SAT}$	Design
DC Offset, Output Amplifier (Note 12)	V_{ODC}	6.0	7.5	9.5	V	Die
Output Amplifier Bandwidth (Note 13)	f_{-3dB}		220		MHz	Design
Output Impedance, Amplifier	R_{OUT}	100	145	300	Ω	Die
Reset Feedthrough	V_{RFT}		0.5		V	Design

KAF-40000

Table 5. SPECIFICATIONS (continued)

Description	Symbol	Min.	Nom.	Max.	Units	Verification Plan ¹⁵
KAF-40000-FXA CONFIGURATION GEN2 COLOR						
Peak Quantum Efficiency	QE _{MAX}	–	39	–	% QE	Design
Red		–	45	–		
Green		–	37	–		
Blue		–	–	–		
Peak Quantum Efficiency Wavelength	λ QE	–	600	–	nm	Design
Red		–	530	–		
Green		–	470	–		
Blue		–	–	–		
KAF-40000-CXA CONFIGURATION GEN1 COLOR (Note 17)						
Peak Quantum Efficiency	QE _{MAX}	–	37	–	% QE	Design
Red		–	41	–		
Green		–	37	–		
Blue		–	–	–		
Peak Quantum Efficiency Wavelength	λ QE	–	600	–	nm	Design
Red		–	520	–		
Green		–	470	–		
Blue		–	–	–		

1. Increasing output load currents to improve bandwidth will decrease these values.
2. Worst-case deviation (from 15 mV & 90% N_{SAT} min) relative to a linear fit applied between 0 and 65% of V_{SAT}.
3. Difference between the maximum and minimum average signal levels of 168 × 168 blocks within the sensor on a per color basis as a % of average signal level.
4. T = 60°C. t_{INT} = 0. Average non-illuminated signal with respect to over-clocked horizontal register signal.
5. T = 60°C. Average non-illuminated signal with respect to over-clocked vertical register signal.
6. T = 60°C. Absolute difference between the maximum and minimum average signal levels of 168 × 168 blocks within the sensor.
7. rms deviation of horizontal over-clocked pixels measured in the dark.
8. 20Log (N_e⁻_{SAT} / NR)
9. Gradual variations in hue (red with respect to green pixels and blue with respect to green pixels) in regions of interest (168 × 168 blocks) within the sensor. The specification refers to the largest value of the response difference.
10. Measured per transfer above and below (~70% V_{SAT} min) saturation exposure levels. Typically, no degradation in HCCD CTE is observed up to 18 MHz.
11. X_{AB} is the number of times above the V_{SAT} illumination level that the sensor will bloom by spot size doubling. The spot size is 10% of the imager height. X_{AB} is measured at 4 ms.
12. Video level offset with respect to ground.
13. Last stage only. Assumes 5 pF off-chip load.
14. Amplitude of feed-through in V_{OUT} during RG clocking.
15. A “die” parameter is measured on every sensor during production testing. A “design” parameter is quantified during design verification and not guaranteed by specification.
16. t_{INT} = 1000 ms.
17. This color filter set configuration (Gen1) is not recommended for new designs.

KAF-40000

TYPICAL PERFORMANCE CURVES

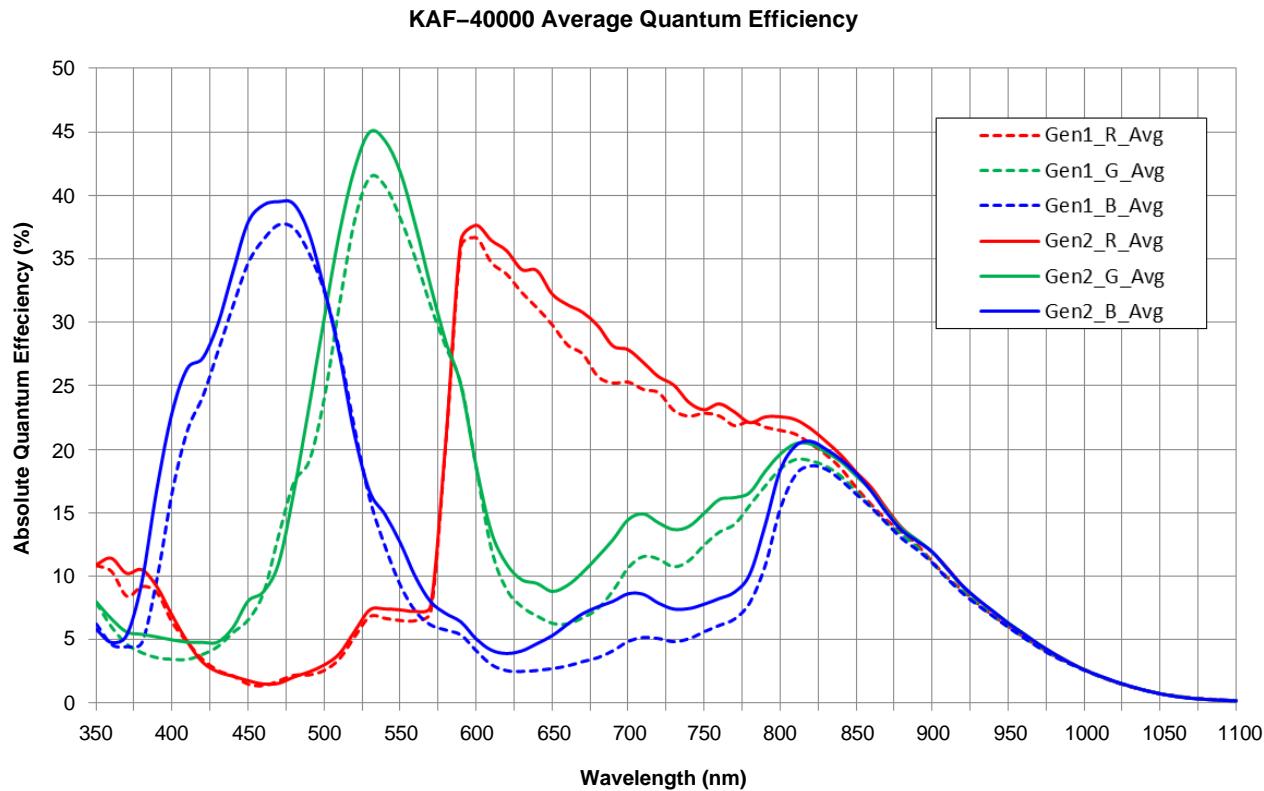


Figure 7. Spectral Response

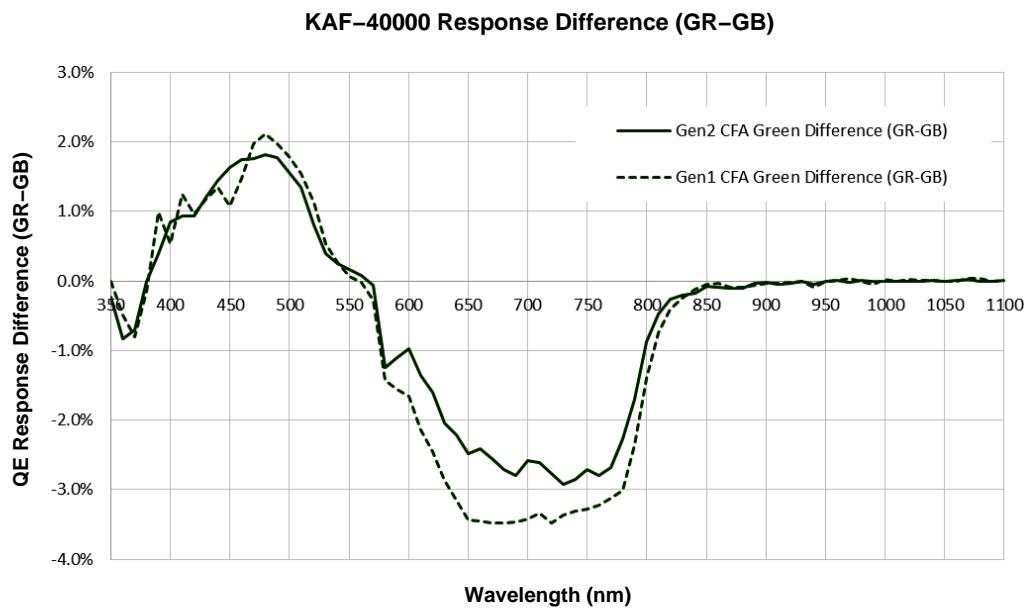
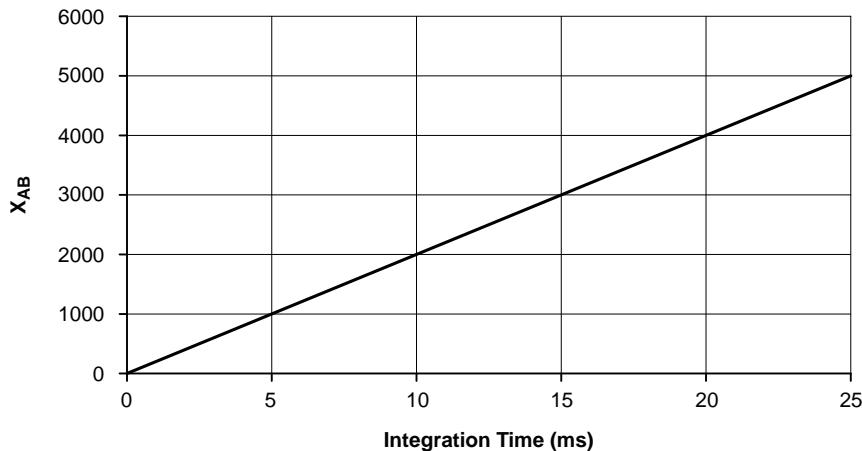



Figure 8. Typical GR-GB QE Difference

KAF-40000**KAF-40000 Anti-Blooming Performance****Figure 9. Minimum Expected Anti-Blooming Performance**

KAF-40000

DEFECT DEFINITIONS

Operating Conditions

Bright defect tests performed at $T = 25^\circ\text{C}$, $t_{\text{INT}} = 250$ ms and $t_{\text{READOUT}} = 2093$ ms.
 Dark defect tests performed at $T = 25^\circ\text{C}$, $t_{\text{INT}} = 1,000$ ms and $t_{\text{READOUT}} = 2093$ ms.

Table 6. SPECIFICATIONS

Classification	Points	Clusters	Single Columns	Includes Dead Columns
Standard Grade	< 4,000	< 50	< 20	Yes

Point Defects

A pixel that deviates by more than 36 mV above neighboring pixels under non-illuminated conditions.

A pixel that deviates by more than 7% above or 11% below neighboring pixels under illuminated conditions

Cluster Defect

A grouping of not more than 10 adjacent point defects.

Cluster defects are separated by no less than 4 good pixels in any direction.

Column Defect

A grouping of more than 10 point defects along a single column.

A column that deviates by more than 1.2 mV above neighboring columns under non-illuminated conditions.

A column that deviates by more than 1.5% above or below neighboring columns under illuminated conditions.

Column defects are separated by no less than 4 good columns. No multiple column defects (double or more) will be permitted.

Column and cluster defects are separated by at least 4 good columns in the x direction.

Dead Column

A column that deviates by more than 50% below neighboring columns under illuminated conditions.

Saturated Column

A column that deviates by more than 120 mV above neighboring columns under non-illuminated conditions. No saturated columns are allowed.

KAF-40000

OPERATION

Table 7. ABSOLUTE MAXIMUM RATINGS

Description	Symbol	Minimum	Maximum	Units
Diode Pin Voltages (Notes 1, 2)	V_{DIODE}	-0.5	20	V
Gate Pin Voltages (Notes 1, 3)	V_{GATE1}	-14.3	14.5	V
RG Pin Voltage (Note 1)	V_{RG}	-0.5	14.5	V
Overlapping Gate Voltages (Note 4)	V_{1-2}	-14.3	14.5	V
Non-Overlapping Gate Voltages (Note 5)	V_{q-q}	-14.3	14.5	V
Output Bias Current (Note 6)	I_{OUT}		-30	mA
LOD Diode Voltage (Note 1)	V_{LODT}	-0.5	13.5	V
Operating Temperature (Note 7)	T_{OP}	0	60	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Referenced to pin VSUB.
2. Includes pins: RD, VDD, VSS, VOUT.
3. Includes pins: V1, V2, H1A, H1B, H1L, H2, OG, PFG, FDG, XG.
4. Voltage difference between overlapping gates. Includes: V1 to V2, H1/H1L to H2, H1L to OG, V1 to H2, PFG to V1/V2, FDG to V1/V2, XG to H1A/H1B/H2.
5. Voltage difference between non-overlapping gates. Includes: V1 to H1A/H1B/H1L, V2 to XG, H2 to PFG/FDG, PFG to FDG.
6. Avoid shorting output pins to ground or any low impedance source during operation. Amplifier bandwidth increases at higher currents and lower load capacitance at the expense of reduced gain (sensitivity). Operation at these values will reduce MTTF (Mean Time to Failure).
7. Noise performance will degrade at higher temperatures.

Power-up Sequence

The sequence chosen to perform an initial power-up is not critical for device reliability. A coordinated sequence may minimize noise and the following sequence is recommended:

1. Connect the ground pins (VSUB).
2. Supply the appropriate biases and clocks to the remaining pins.

Table 8. DC BIAS OPERATING CONDITIONS

Description	Symbol	Minimum	Nominal	Maximum	Units	Maximum DC Current (mA)
Reset Drain (Note 1)	V_{RD}	11.3	11.5	11.7	V	$I_{RD} = 0.01$
Output Amplifier Return (Note 1)	V_{SS}	0.5	0.7	1.0	V	$I_{SS} = 3.0$
Output Amplifier Supply (Note 1)	V_{DD}	14.5	15.0	15.5	V	$I_{OUT} + I_{SS}$
Substrate	V_{SUB}		0		V	0.01
Output Gate (Note 1)	V_{OG}	-2.2	-2.0	-1.8	V	0.01
Lateral Drain (Note 1)	V_{LOD}	9.8	10.0	10.2	V	0.01
Video Output Current (Note 2)	I_{OUT}		5	10	mA	

1. Subscripts (L, R, LA, LB, RA, RB, T, B) have not been included in the symbol list.
2. An output load sink must be applied to VOUT to activate output amplifier – see Figure 4.

KAF-40000

AC Operating Conditions

Table 9. CLOCK LEVELS

Description	Symbol	Level	Minimum	Nominal	Maximum	Units
V1	V1L	Low	-9.2	-9.0	-8.8	V
	V1H	High	2.3	2.5	2.7	V
V2	V2L	Low	-9.2	-9.0	-8.8	V
	V2H	High	3.3	3.5	3.7	V
H1A	H1L	Low	-4.2	-4.0	-3.8	V
	H1H	High	1.8	2.0	2.2	V
H1B	H1L	Low	-4.2	-4.0	-3.8	V
	H1H	High	1.8	2.0	2.2	V
H1L	H1L _{LOW}	Low	-6.2	-6.0	-5.8	V
	H1L _{HIGH}	High	1.8	2.0	2.2	V
H2	H2L	Low	-4.2	-4.0	-3.8	V
	H2H	High	1.8	2.0	2.2	V
RG	VRGL	Low	0.8	1.0	1.2	V
	VRGH	High	7.8	8.0	8.2	V
PFG	PFGL	Low	-9.2	-9.0	-8.8	V
	PFGH	High	4.8	5.0	5.2	V
FDG	FDGL	Low	-9.2	-9.0	-8.8	V
	FDGH	High	4.8	5.0	5.2	V
XG	XGL	Low	-4.7	-4.5	-4.3	V
	XGH	High	2.8	3.0	3.2	V

1. Subscripts (L, R) have not been included in this symbol column.
2. All pins draw less than 10 μ A DC current. Capacitance values relative to SUB (substrate).
3. Capacitance values of left/right combined.

KAF-40000

Capacitance Model

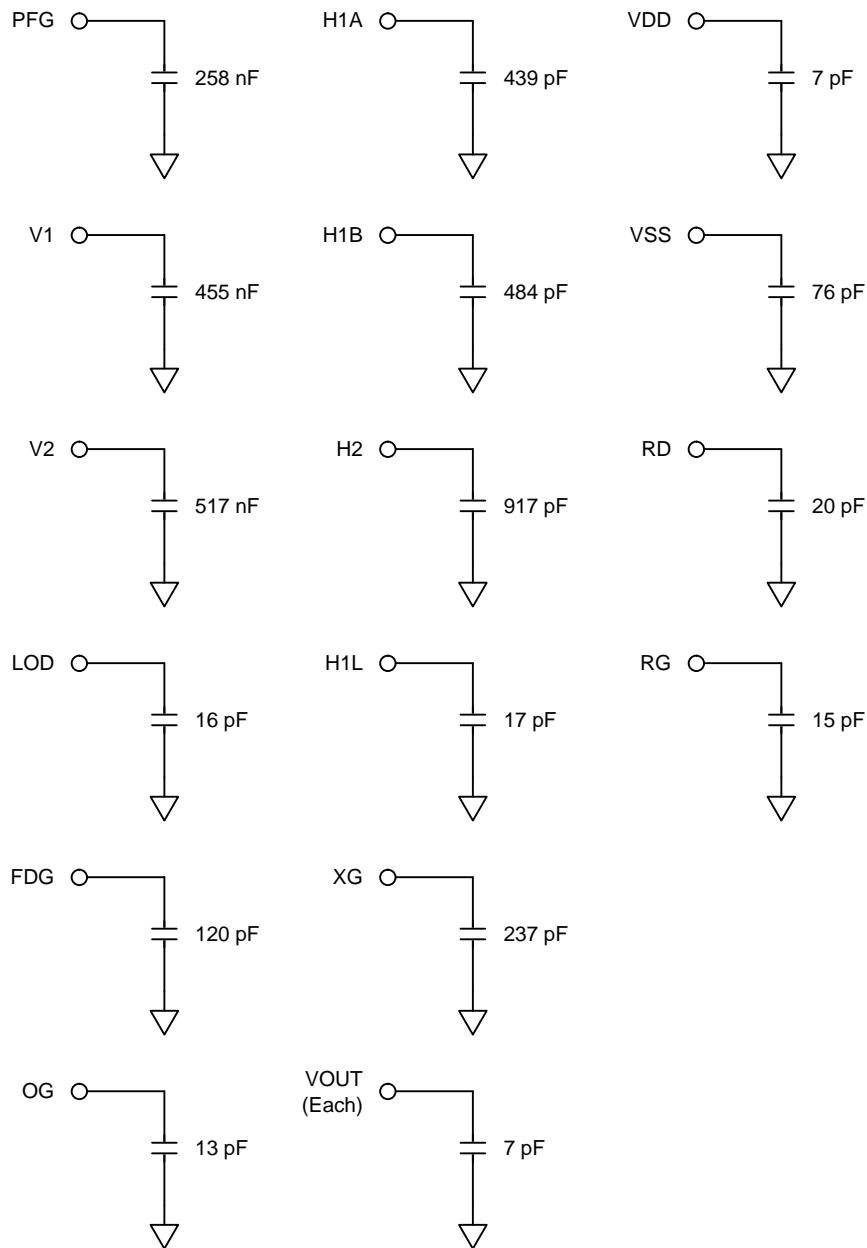


Figure 10. Lumped Capacitance Value Model – KAF-40000

NOTE: A simplified pin capacitance model is provided by ON Semiconductor as a guideline for circuit design and tends to overstate the effective capacitance experienced by the clock driver. This model should be used as a reference. Although it is a moderately accurate target, it does not represent the values required for any automated circuit analysis.

KAF-40000

TIMING

Table 10. REQUIREMENTS AND CHARACTERISTICS

Description	Symbol	Minimum	Nominal	Maximum	Units
H1, H2 Clock Frequency (Note 1, 2)	f_H			18	MHz
V1, V2 Clock Frequency (Note 1, 2)	f_V			25	kHz
V1–V2 Cross-over	V_{VCR}	0	1.0	2.7	V
H1–H2 Cross-over	V_{HCR}	-2.0	-1.0	0	V
H1, H2 Setup Time	t_{HS}	5			μ s
V2–H1A Delay	t_{D1}	5			μ s
H1A–XG Delay	t_{D2}	30			μ s
XG–V2 Delay	t_{D3}	5			μ s
H1, H2 Rise, Fall Times (Note 5, 6)	t_{H1r}, t_{H1f}	5		10	%
H1L Rise – H2 Fall Crossover (Note 9)	V_{H1LCR}	-2.0	-1.0	1.0	V
V1, V2 Rise, Fall Times (Note 5)	t_{V1r}, t_{V1f}	5		10	%
RG Clock Pulse Width (Note 7)	t_{RGw}	5			ns
RG Rise, Fall Times (Note 5)	t_{RGr}, t_{RGf}	5		10	%
V1, V2 Clock Pulse Width (Notes 2, 3, 4)	t_{Vw}	16	20		μ s
Pixel Period (1 Count) (Note 2)	t_e	55.56			ns
H1L–VOUT Delay	t_{HV}		10		ns
RG–VOUT Delay	t_{RV}		5		ns
Readout Time (Note 8)	$t_{READOUT - DS}$ $t_{READOUT - DPS}$	1.35 0.76			s
Frame Rate (Note 8)	$t_F - DS$ $t_F - DPS$	0.7 1.3			fps
Line Rate (Note 8)	$t_{LINEDS - DS}$ $t_{LINEDP - DPS}$	242.2 274.4			μ s
PFG Holdoff Time	t_{PFG}	180			μ s
FDG Holdoff Time	t_{FDG}	20			μ s

- 50% duty cycle values.
- CTE will degrade above the maximum frequency.
- Longer times will degrade noise performance.
- Measured where V_{CLOCK} is at 0 V.
- Relative to the pulse width (based on 50% of high/low levels).
- The maximum specification or 10 ns whichever is greater based on the frequency of the horizontal clocks.
- RG should be clocked continuously.
- DS = Dual Split DPS = Dual Parallel Split.
- The charge capacity near the output could be degraded if the voltage at the clock crossover point is outside this range.

KAF-40000

Edge Alignment

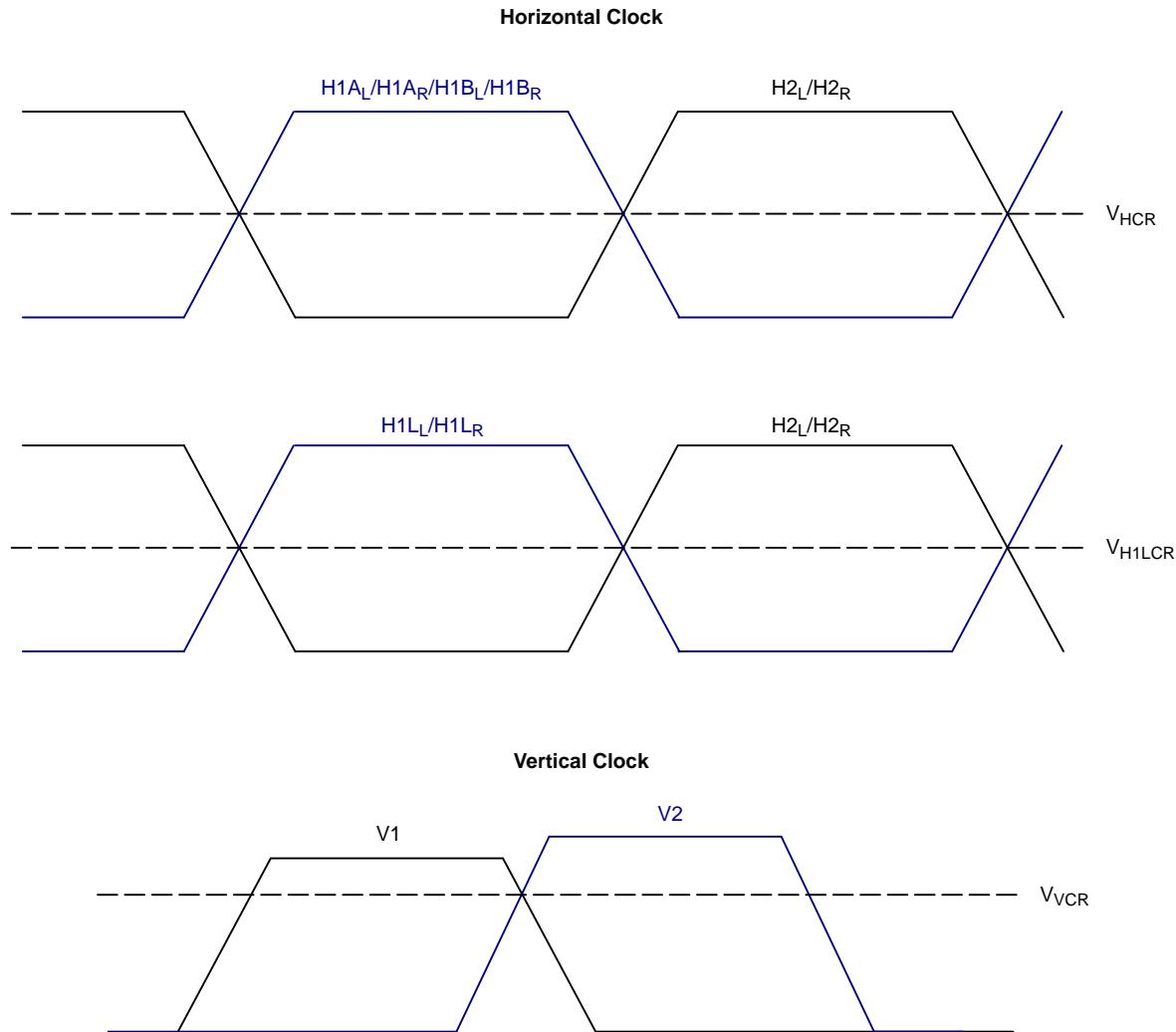
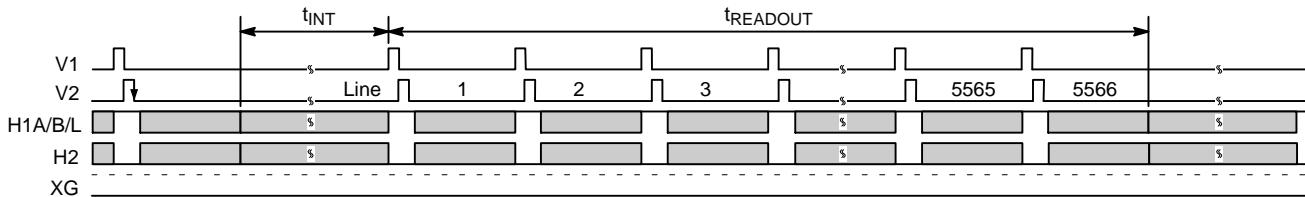
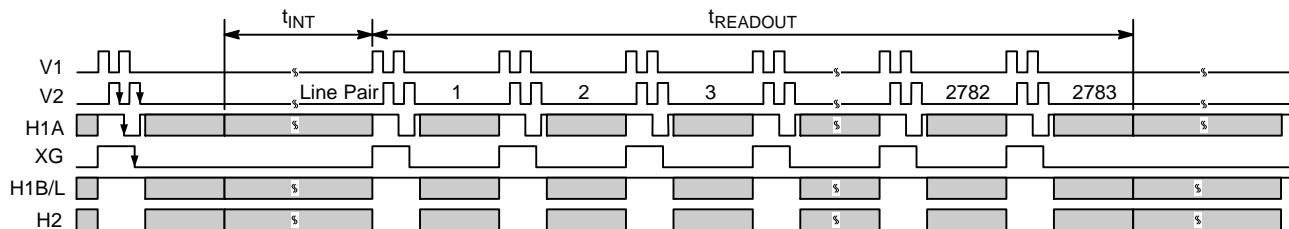


Figure 11. Timing Edge Alignment


KAF-40000

Frame Timing


Dual split timing reads the pixels out of VOUTLA and VOUTRA. H1B may be grounded in this operating mode.

Dual-Parallel Split timing reads pixels out of all four outputs with even lines reading out of VOUTLA and VOUTRA and odd lines reading out of VOUTLB and VOUTRB.

Frame Timing – Dual Split

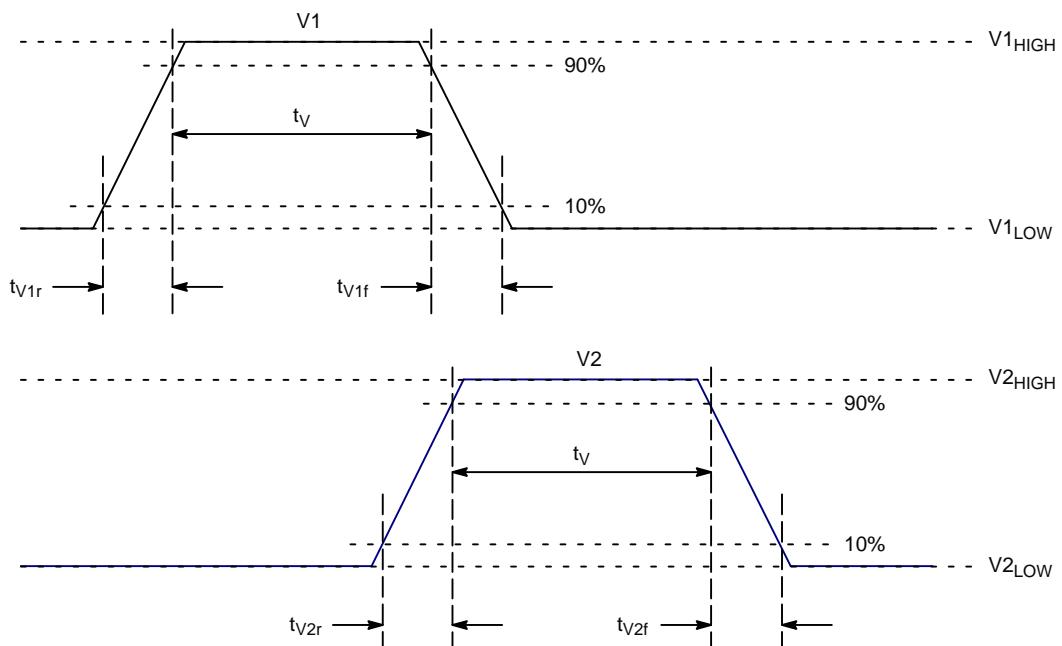

Frame Timing – Dual-Parallel Split

Figure 12. Frame Timing

Frame Timing Detail

Vertical Clocks

Figure 13. Frame Timing Detail

KAF-40000

Line Timing (Each Output)

XG is held low unless the Dual-Parallel Split timing is required. While operating in Dual-Parallel Split mode, full resolution rows are passed from V2 (t_{D1}), through

H1A (t_{D2}), and then passed through XG (t_{D3}) and into H1B. During this time, a second, full resolution, row will load into H1A at the second falling edge of V2 following the characteristic delay t_{HD} .

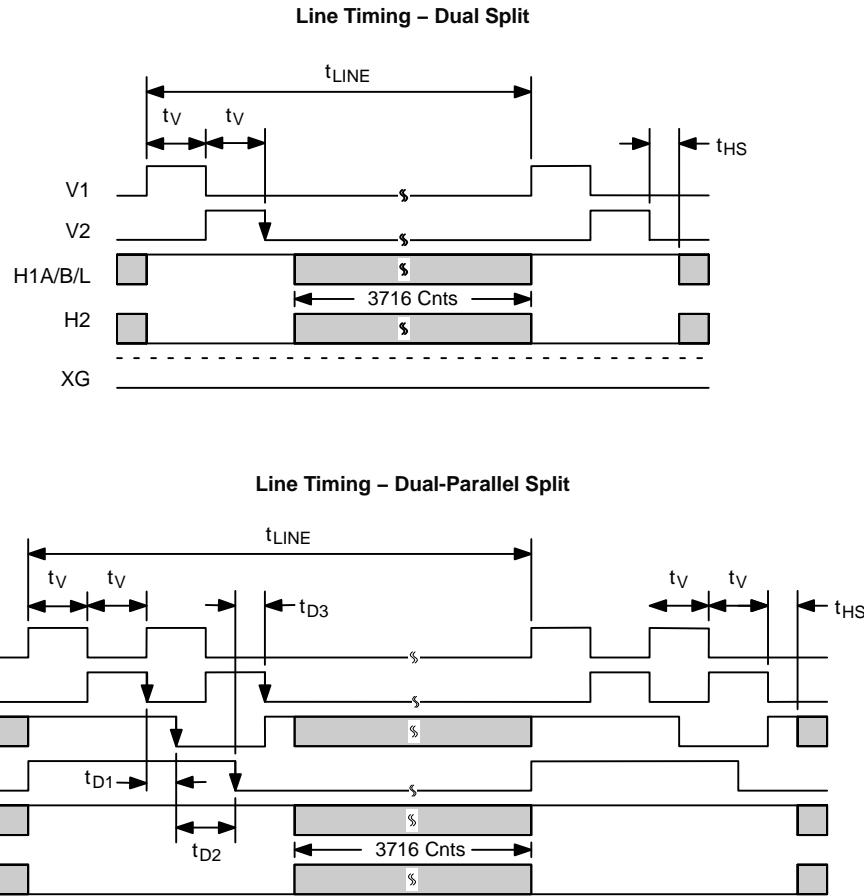


Figure 14. Line Timing

KAF-40000

Pixel Timing

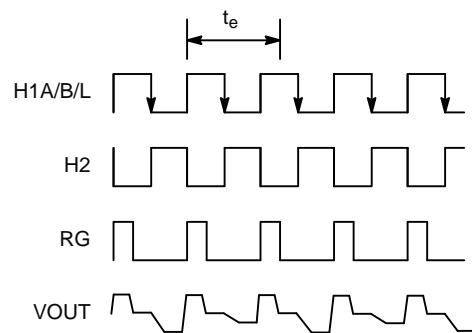


Figure 15. Pixel Timing

Pixel Timing Detail

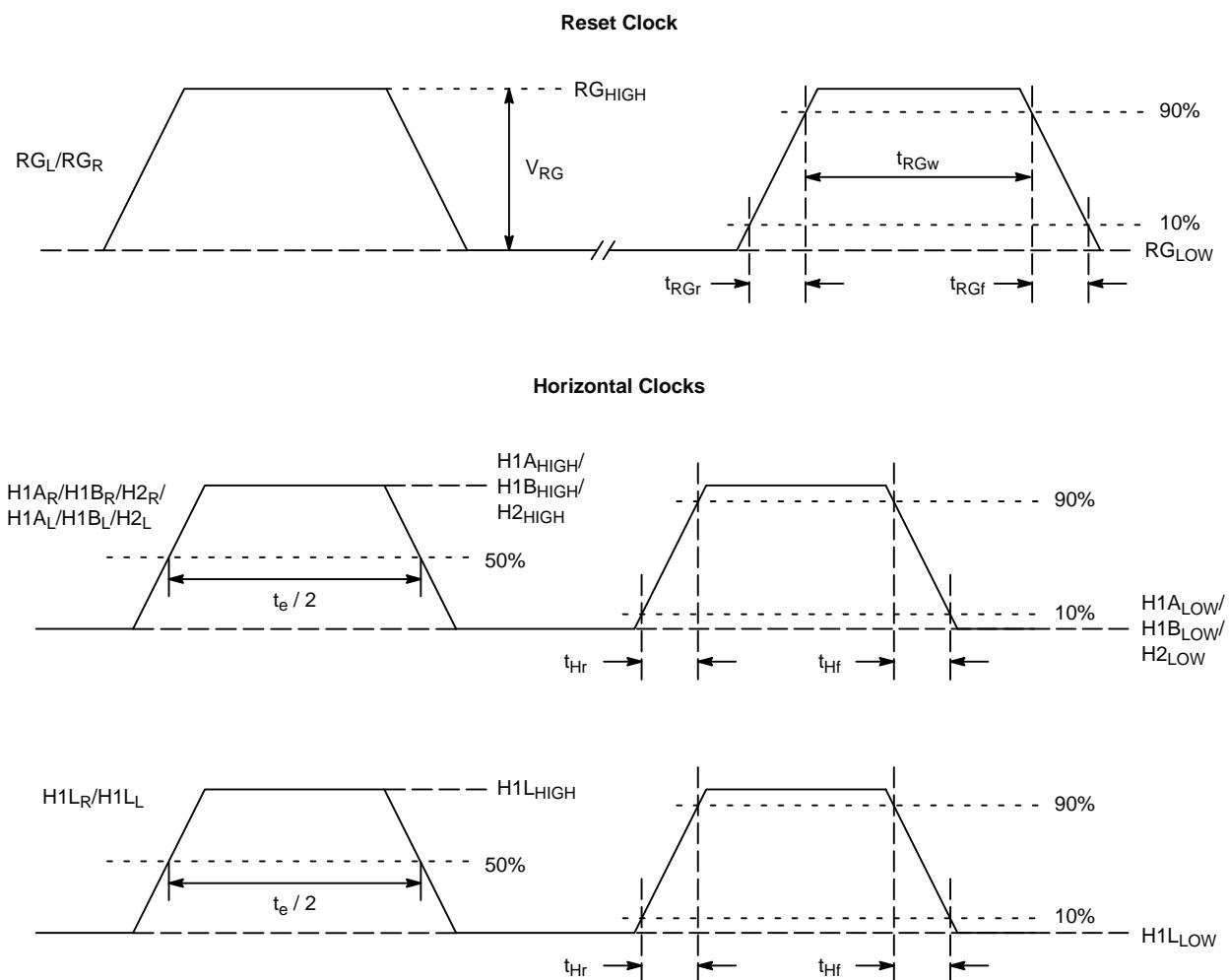


Figure 16. Pixel Timing Detail

KAF-40000

MODE OF OPERATION

Pulse Flush Gate Timing

The PFG clock resets all pixels in the array (except the FDG row). Charge transfer out of the pixel is fully completed only after V2 has been clocked low as shown.

Frame Timing – Pulse Flush Operation

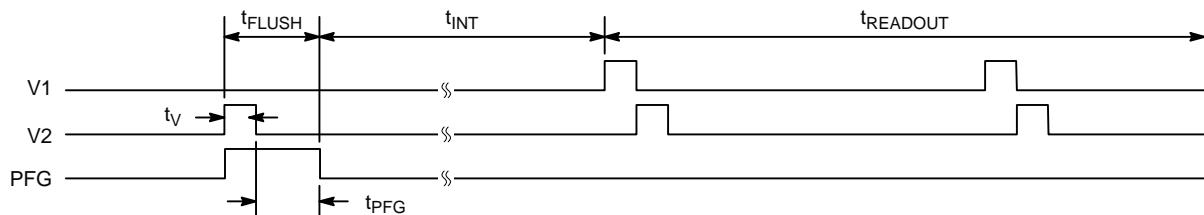


Figure 17. Pulse Flush Gate Timing

Fast Dump Gate (FDG) Timing

The FDG clock only resets pixels that happen to be in the FDG row. Charge transfer out of the pixel is fully completed only after V2 has been clocked low plus the characteristic

time period (t_{FDG}). The position of the FDG row is illustrated in Figures 19–21, including the timing required for a simple 1 line dump operation.

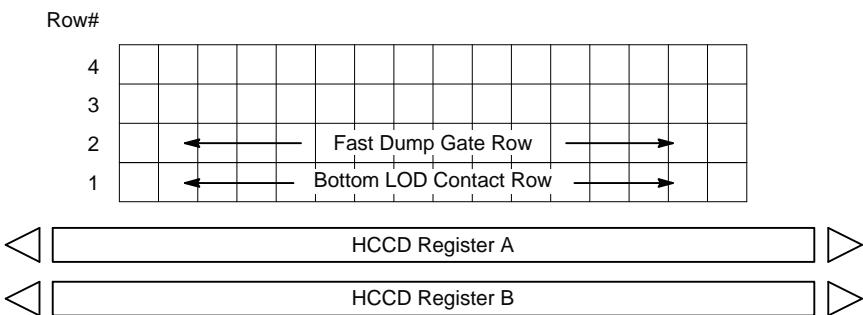


Figure 18. Fast Line Dump Layout

Line Timing – Fast Dump Gate

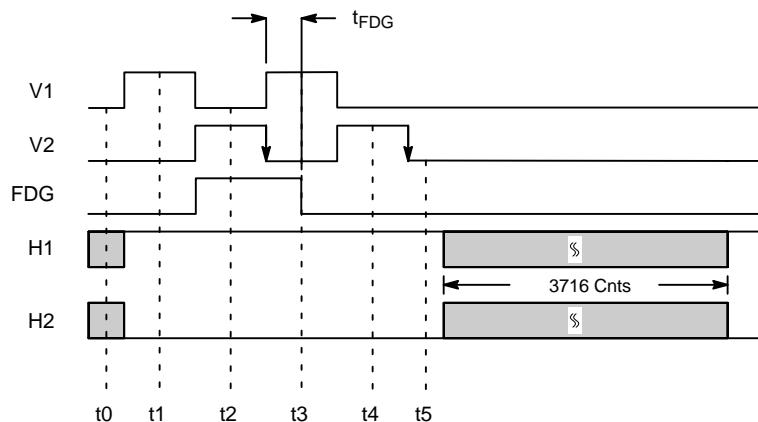


Figure 19. One Line Dump Timing Example

KAF-40000

Line Timing – Fast Dump Gate (3 Line Dump)

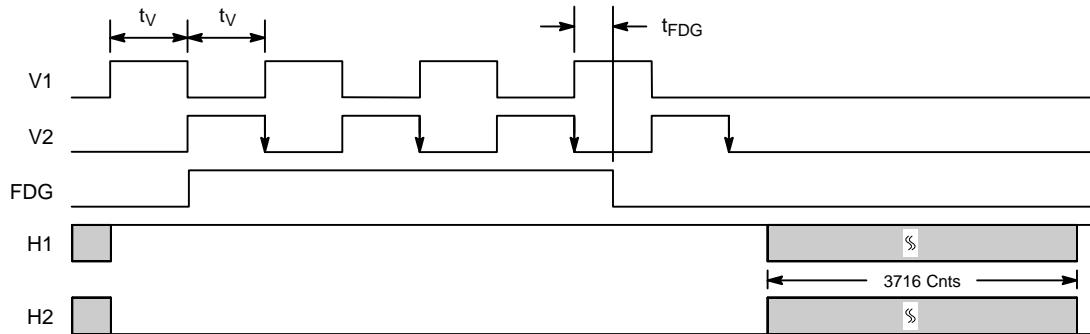


Figure 20. Line Dump Timing Example

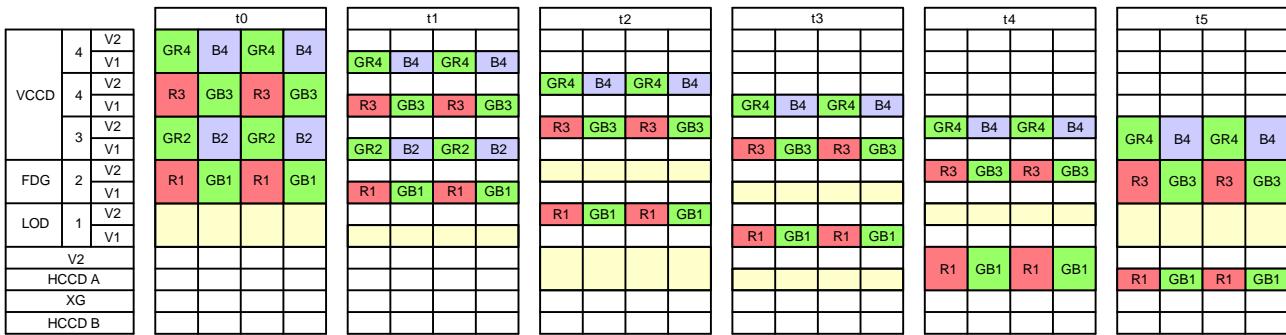


Figure 21. One Line Dump Pixel Illustration Using Color Filter Designation

KAF-40000

STORAGE AND HANDLING

Table 11. STORAGE CONDITIONS

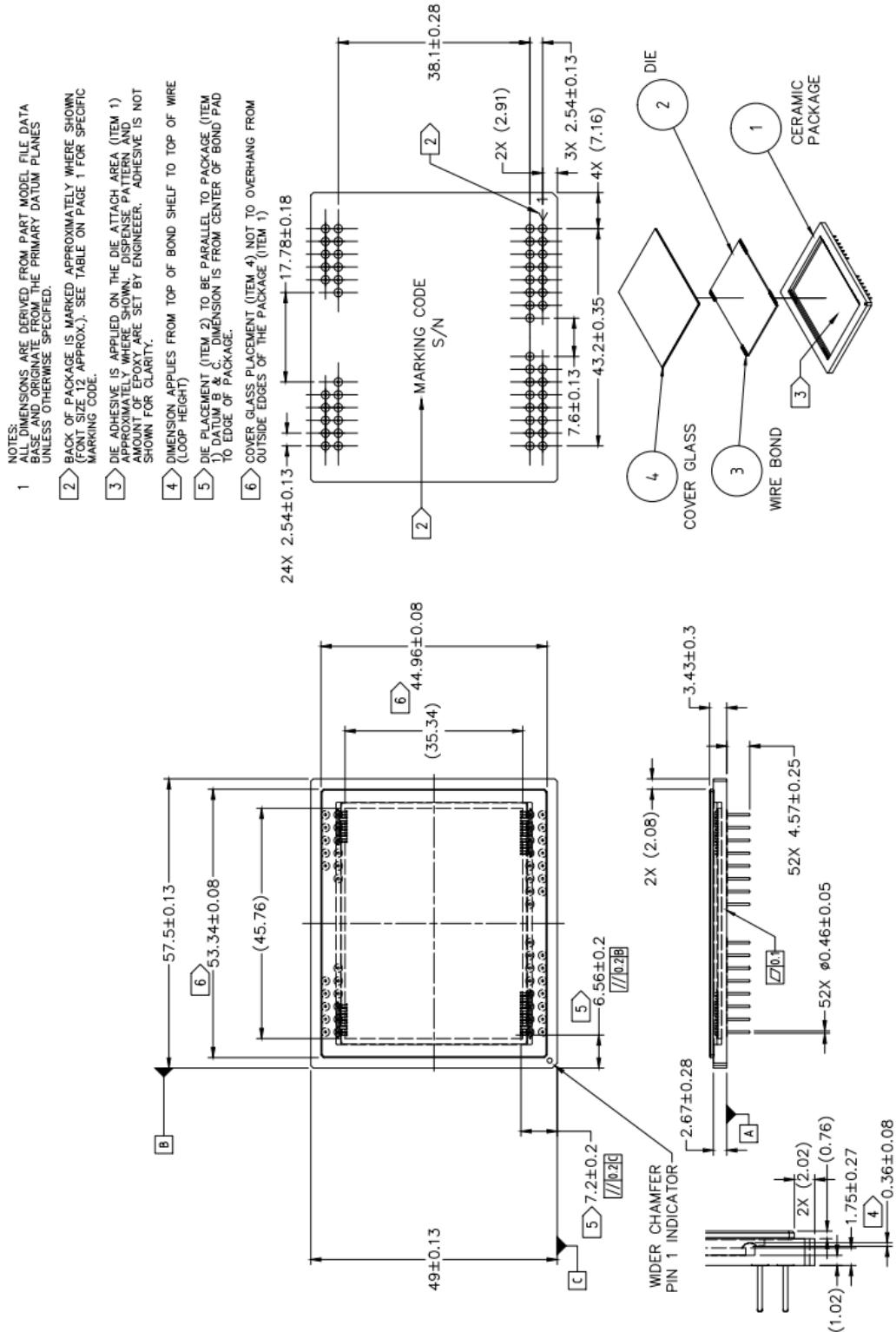
Description	Symbol	Minimum	Maximum	Units
Storage Temperature (Note 1)	T_{ST}	-20	70	°C

1. Long-term storage toward the maximum temperature will accelerate color filter degradation.

For information on ESD and cover glass care and cleanliness, please download the *Image Sensor Handling and Best Practices* Application Note (AN52561/D) from www.onsemi.com.

For information on soldering recommendations, please download the Soldering and Mounting Techniques Reference Manual (SOLDERRM/D) from www.onsemi.com.

For quality and reliability information, please download the *Quality & Reliability Handbook* (HBD851/D) from www.onsemi.com.


For information on device numbering and ordering codes, please download the *Device Nomenclature* technical note (TND310/D) from www.onsemi.com.

For information on Standard terms and Conditions of Sale, please download [Terms and Conditions](#) from www.onsemi.com.

KAF-40000

MECHANICAL DRAWINGS

Completed Assembly

Figure 22. Completed Assembly Drawing

KAF-40000

Alignment Marks

The 98 + 48 mark should be used if alignment to die surface is required.

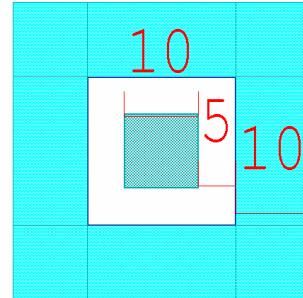
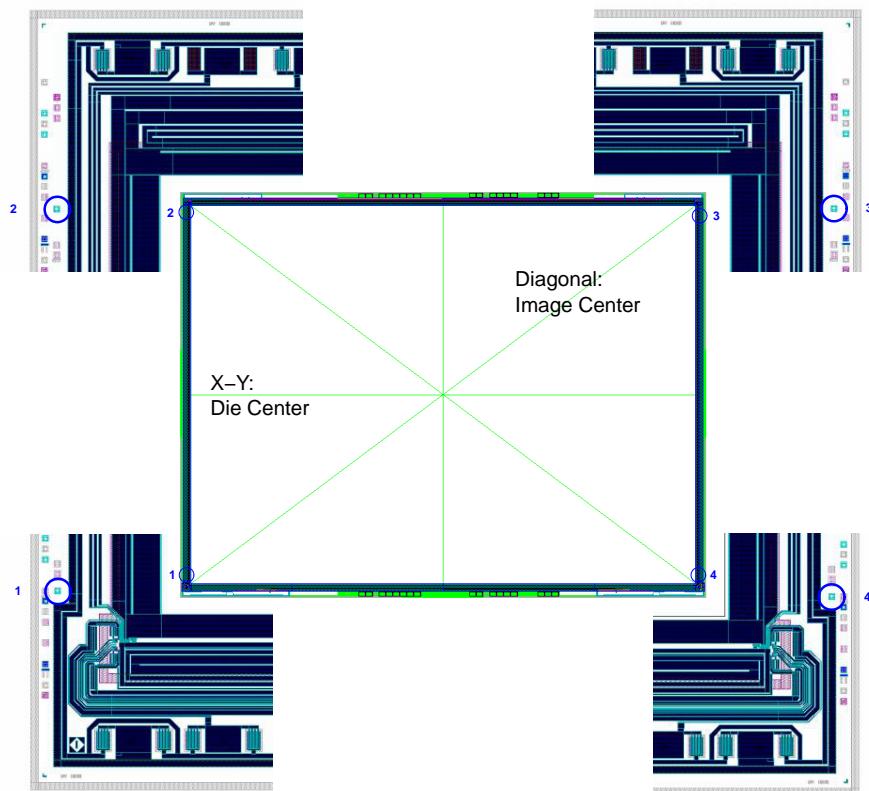



Figure 23. Individual Alignment Mark "98 + 48" (1 of 4)

NOTE: Image center is $-0.55 \mu\text{m}$ (X) and $34.05 \mu\text{m}$ (Y) from Die center.

Figure 24. Location of Recommended Alignment Marks (4 Locations)

KAF-40000

Locations of marked alignment marks are listed in the table below with respect to the die center. Locations are listed in μm from the die center.

Table 12.

Alignment Mark	X Location	Y Location
1	-22700	-16340
2	-22700	16340
3	22700	16340
4	22700	-16340

Locations of marked alignment marks are listed in the table below with respect to the image center. Locations are listed in μm from the image center.

Table 13.

Alignment Mark	X Location	Y Location
1	-22699.45	-16374.05
2	-22699.45	16305.95
3	22700.55	16305.95
4	22700.55	-16374.05

Cover Glass Specification

1. Substrate material Schott D263T eco or equivalent.
2. 10 μm max. scratch/dig specification on the glass. No defect in the glass that exceeds 10 μm in any X-Y dimension.
3. Multilayer anti-reflective coating.

Table 14.

Wavelength	Total Reflectance
420–450	$\leq 2\%$
450–630	$\leq 1\%$
630–680	$\leq 2\%$

ON Semiconductor and the are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free
USA/Canada

Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910

Japan Customer Focus Center

Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: <http://www.onsemi.com/orderlit>

For additional information, please contact your local
Sales Representative