

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

[Texas Instruments](#)
[OPA4354AQPWRQ1](#)

For any questions, you can email us directly:

sales@integrated-circuit.com

Product
Folder

Sample &
Buy

Technical
Documents

Tools &
Software

Support &
Community

OPA354A-Q1, OPA2354A-Q1, OPA4354-Q1

SBOS492E – JUNE 2009 – REVISED AUGUST 2016

OPAx354-Q1 250-MHz, Rail-to-Rail I/O, CMOS Operational Amplifiers

1 Features

- Qualified for Automotive Applications
- AEC-Q100 Qualified With the Following Results:
 - Device Temperature Grade: -40°C to $+125^{\circ}\text{C}$
 - Ambient Operating Temperature Range
 - Device HBM ESD Classification Level 2
 - Device CDM ESD Classification Level:
 - C6 for OPA354A-Q1 and OPA2354A-Q1
 - C3 for OPA4354-Q1
- Unity-Gain Bandwidth: 250 MHz
- Wide Bandwidth: 100-MHz GBW Product
- High Slew Rate: 150 $\text{V}/\mu\text{s}$
- Low Noise: 6.5 $\text{nV}/\sqrt{\text{Hz}}$
- Rail-to-Rail I/O
- High Output Current: >100 mA
- Excellent Video Performance
 - Differential Gain Error: 0.02%
 - Differential Phase Error: 0.09°
 - 0.1-dB Gain Flatness: 40 MHz
- Low Input Bias Current: 3 pA
- Quiescent Current: 4.9 mA
- Thermal Shutdown
- Supply Range: 2.5 V to 5.5 V

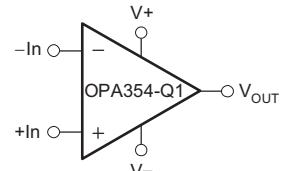
2 Applications

- Navigation and Radio System
- Blind-Spot Detection
- Short-to-Mid Range Radar
- Video Processing
- Ultrasound
- Optical Networking, Tunable Lasers
- Photodiode Transimpedance Amplifiers
- Active Filters
- High-Speed Integrators
- Analog-to-Digital Converter (ADC) Input Buffers
- Digital-to-Analog Converter (DAC) Output Amplifiers
- Barcode Scanners
- Communications

3 Description

The design of the OPAx354-Q1 family of high-speed, voltage-feedback CMOS operational amplifiers is for video and other applications requiring wide bandwidth. These devices are unity-gain stable and can drive large output currents. Differential gain is 0.02% and differential phase is 0.09°. Quiescent current is only 4.9 mA per channel.

The OPAx354-Q1 family of operational amplifiers (op-amps) are optimized for operation on single or dual supplies as low as 2.5 V (± 1.25 V) and up to 5.5 V (± 2.75 V). Common-mode input range extends beyond the supplies. The output swing is within 100 mV of the rails, supporting wide dynamic range.


The single-supply version (OPA354A-Q1) is available in the tiny SOT23-5 (DBV) package. The dual-supply version (OPA2354A-Q1) is available in the miniature VSSOP-8 (DGK) package and features completely independent circuitry for lowest crosstalk and freedom from interaction. The quad-supply version (OPA4354-Q1) is available in the SOP-14 (PW) package. The device specifications are for operation over the automotive temperature range of -40°C to 125°C .

Device Information⁽¹⁾

PART NUMBER	PACKAGE (PIN)	BODY SIZE (NOM)
OPA354A-Q1	SOT-23 (5)	2.90 mm x 1.60 mm
OPA2354A-Q1	VSSOP (8)	3.00 mm x 3.00 mm
OPA4354-Q1	TSSOP (14)	5.00 mm x 4.40 mm

(1) For all available packages, see the orderable addendum at the end of the datasheet.

Simplified Schematic

An **IMPORTANT NOTICE** at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. **PRODUCTION DATA**.

OPA354A-Q1, OPA2354A-Q1, OPA4354-Q1

SBOS492E – JUNE 2009 – REVISED AUGUST 2016

www.ti.com

Table of Contents

1	Features	1	8	Application and Implementation	18
2	Applications	1	8.1	Application Information	18
3	Description	1	8.2	Typical Applications	18
4	Revision History	2	9	Power Supply Recommendations	22
5	Pin Configuration and Functions	3	9.1	Power Dissipation	23
6	Specifications	4	10	Layout	23
6.1	Absolute Maximum Ratings	4	10.1	Layout Guidelines	23
6.2	ESD Ratings	4	10.2	Layout Example	24
6.3	Recommended Operating Conditions	4	11	Device and Documentation Support	25
6.4	Thermal Information	4	11.1	Documentation Support	25
6.5	Electrical Characteristics	5	11.2	Related Links	25
6.6	Typical Characteristics	6	11.3	Receiving Notification of Documentation Updates	25
7	Detailed Description	12	11.4	Community Resources	25
7.1	Overview	12	11.5	Trademarks	25
7.2	Functional Block Diagram	12	11.6	Electrostatic Discharge Caution	26
7.3	Feature Description	12	11.7	Glossary	26
7.4	Device Functional Modes	17	12	Mechanical, Packaging, and Orderable Information	26

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

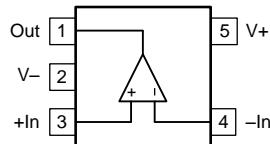
Changes from Revision D (July 2016) to Revision E

	Page
• Changed the gain-bandwidth product typical value from 10 MHz back to 100 MHz in the <i>Electrical Characteristics</i> table ..	5

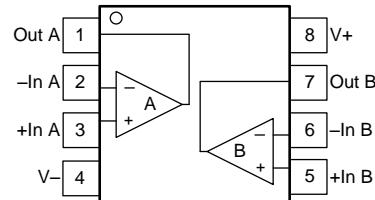
Changes from Revision C (June 2016) to Revision D

	Page
• Changed the gain-bandwidth product typical value from 100 MHz to 10 MHz in the <i>Electrical Characteristics</i> table ..	5
• Added the <i>Receiving Notification of Documentation Updates</i> and <i>Community Resources</i> sections ..	25

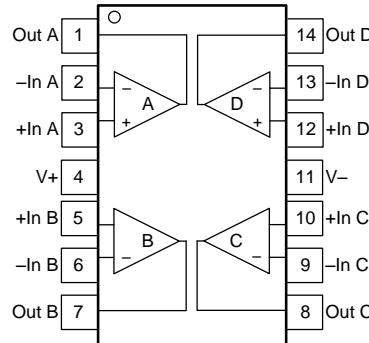
Changes from Revision B (December 2014) to Revision C


	Page
• Added 3 additional applications to the <i>Applications</i> section ..	1
• Updated <i>ESD Ratings</i> table to show CDM value for OPA354A-Q1 and OPA2354A-Q1 ..	4

Changes from Revision A (August 2009) to Revision B


	Page
• Added <i>Handling Rating</i> table, <i>Feature Description</i> section, <i>Device Functional Modes</i> , <i>Application and Implementation</i> section, <i>Power Supply Recommendations</i> section, <i>Layout</i> section, <i>Device and Documentation Support</i> section, and <i>Mechanical, Packaging, and Orderable Information</i> section ..	1
• Added the OPA4354-Q1 device to the data sheet ..	1

5 Pin Configuration and Functions


DBV Package
5-Pin SOT-23
OPA354A-Q1 Top View

DGK Package
8-Pin VSSOP
OPA2354A-Q1 Top View

PW Package
14-Pin TSSOP
OPA4354-Q1 Top View

Pin Functions

NAME	PIN			I/O	DESCRIPTION
	OPA354A-Q1 SOT-23	OPA2354A-Q1 VSSOP	OPA4354-Q1 TSSOP		
+In	3	—	—	I	Noninverting input
-In	4	—	—	I	Inverting input
+In A	—	3	3	I	Noninverting input, Channel A
-In A	—	2	2	I	Inverting input, Channel A
+In B	—	5	5	I	Noninverting input, Channel B
-In B	—	6	6	I	Inverting input, Channel B
+In C	—	—	10	I	Noninverting input, Channel C
-In C	—	—	9	I	Inverting input, Channel C
+In D	—	—	12	I	Noninverting input, Channel D
-In D	—	—	13	I	Inverting input, Channel D
Out	1	—	—	O	Output
Out A	—	1	1	O	Output, Channel A
Out B	—	7	7	O	Output, Channel B
Out C	—	—	8	O	Output, Channel C
Out D	—	—	14	O	Output, Channel D
V+	5	8	4	—	Positive (highest) supply
V-	2	4	11	—	Negative (lowest) supply

OPA354A-Q1, OPA2354A-Q1, OPA4354-Q1

SBOS492E – JUNE 2009 – REVISED AUGUST 2016

www.ti.com

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

	MIN	MAX	UNIT
Supply voltage, V+ to V-, V _S		7.5	V
Signal input terminals voltage ⁽²⁾ , V _{IN}	(V-) – 0.5	(V+) + 0.5	V
Output short-circuit duration ⁽³⁾	Continuous		
Operating temperature, T _A	-55	150	°C
Junction temperature, T _J		150	°C
Storage temperature, T _{stg}	-65	150	°C

- Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions*. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.5 V beyond the supply rails should be current limited to 10 mA or less.
- Short circuit to ground, one amplifier per package

6.2 ESD Ratings

	VALUE	UNIT	
OPA354A-Q1 in 5-Pin SOT-23 package and OPA2354A-Q1 in 8-Pin VSSOP package			
V _(ESD) Electrostatic discharge	Human body model (HBM), per AEC Q100-002 ⁽¹⁾	±2000	V
	Charged device model (CDM), per AEC Q100-011	±1000	
OPA4354-Q1 in 14-Pin TSSOP package			
V _(ESD) Electrostatic discharge	Human body model (HBM), per AEC Q100-002 ⁽¹⁾	±2000	V
	Charged device model (CDM), per AEC Q100-011	±250	

(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

	MIN	MAX	UNIT
V _S Supply voltage, V– to V+	2.5	5.5	V
T _A Operating free-air temperature	-40	125	°C

6.4 Thermal Information

THERMAL METRIC ⁽¹⁾	OPA354A-Q1	OPA2354A-Q1	OPA4354-Q1	UNIT
	DBV (SOT-23)	DGK (VSSOP)	PW (TSSOP)	
	5 PINS	8 PINS	14 PINS	
R _{θJA} Junction-to-ambient thermal resistance	216.3	175.9	92.6	°C/W
R _{θJC(top)} Junction-to-case (top) thermal resistance	84.3	67.8	27.5	°C/W
R _{θJB} Junction-to-board thermal resistance	43.1	97.1	33.6	°C/W
Ψ _{JT} Junction-to-top characterization parameter	3.8	9.3	1.9	°C/W
Ψ _{JB} Junction-to-board characterization parameter	42.3	95.5	33.1	°C/W
R _{θJC(bot)} Junction-to-case (bottom) thermal resistance	N/A	N/A	N/A	°C/W

(1) For more information about traditional and new thermal metrics, see the [Semiconductor and IC Package Thermal Metrics](#) application report.

6.5 Electrical Characteristics

V_S = 2.5 V to 5.5 V, R_F (feedback resistor) = 0 Ω , R_L (load resistor) = 1 k Ω connected to V_S / 2 (unless otherwise noted)

PARAMETER		TEST CONDITIONS	$T_A^{(1)}$	MIN	TYP	MAX	UNIT	
V_{OS}	Input offset voltage	V_S = 5 V, V_{CM} = (V_-) + 0.8 V	25°C		± 2	± 8	mV	
			Full range			± 10		
$\Delta V_{OS} / \Delta T$	Offset voltage drift over temperature		Full range		± 4		$\mu V/^\circ C$	
PSRR	Offset voltage drift vs power supply	V_S = 2.7 V to 5.5 V, V_{CM} = V_S / 2 – 0.15 V	25°C		± 200	± 800	$\mu V/V$	
			Full range			± 900		
I_B	Input bias current		25°C		3	± 50	pA	
I_{OS}	Input offset current		25°C		± 1	± 50	pA	
V_n	Input voltage noise density	$f = 1$ MHz	25°C		6.5		nV/\sqrt{Hz}	
I_n	Input current noise density	$f = 1$ MHz	25°C		50		fA/\sqrt{Hz}	
V_{CM}	Input common-mode voltage range		25°C	$(V_-) - 0.1$		$(V_+) + 0.1$	V	
CMRR	Input common-mode rejection ratio	V_S = 5.5 V, -0.1 V < V_{CM} < 3.5 V	25°C	66	80		dB	
			Full range	64				
		V_S = 5.5 V, -0.1 V < V_{CM} < 5.6 V	25°C	56	68			
			Full range	55				
Z_{ID}	Differential input impedance		25°C		$10^{13} \parallel 2$		$\Omega \parallel pF$	
Z_{ICM}	Common-mode input impedance		25°C		$10^{13} \parallel 2$		$\Omega \parallel pF$	
A_{OL}	Open-loop gain	V_S = 5 V, 0.3 V < V_O < 4.7 V	25°C	94	110		dB	
		V_S = 5 V, 0.4 V < V_O < 4.6 V	Full range	90				
f_{-3dB}	Small-signal bandwidth	$G = 1$, V_O = 100 mVp-p, R_F = 25 Ω	25°C		250		MHz	
		$G = 2$, V_O = 100 mVp-p			90			
GBW	Gain-bandwidth product	$G = 10$	25°C		100		MHz	
$f_{0.1dB}$	Bandwidth for 0.1-dB gain flatness	$G = 2$, V_O = 100 mVp-p	25°C		40		MHz	
SR	Slew rate	V_S = 5 V, $G = 1$, 4-V step	25°C		150		$V/\mu s$	
		V_S = 5 V, $G = 1$, 2-V step			130			
		V_S = 3 V, $G = 1$, 2-V step			110			
t_{rf}	Rise-and-fall time	$G = 1$, V_O = 200 mVp-p, 10% to 90%	25°C		2		ns	
		$G = 1$, V_O = 2 Vp-p, 10% to 90%			11			
t_{settle}	Settling time	0.1%	25°C		30		ns	
		0.01%			60			
Overload recovery time		$V_{IN} \times \text{Gain} = V_S$	25°C		5		ns	
Second-order harmonic distortion		$G = 1$, $f = 1$ MHz, V_O = 2 Vp-p, R_L = 200 Ω , V_{CM} = 1.5 V	25°C		-75		dBc	
Third-order harmonic distortion		$G = 1$, $f = 1$ MHz, V_O = 2 Vp-p, R_L = 200 Ω , V_{CM} = 1.5 V	25°C		-83		dBc	
Differential gain error		NTSC, R_L = 150 Ω	25°C		0.02%			
Differential phase error		NTSC, R_L = 150 Ω	25°C		0.09		°	

(1) Full range T_A = $-40^\circ C$ to $125^\circ C$

OPA354A-Q1, OPA2354A-Q1, OPA4354-Q1

SBOS492E – JUNE 2009 – REVISED AUGUST 2016

www.ti.com

Electrical Characteristics (continued)

V_S = 2.5 V to 5.5 V, R_F (feedback resistor) = 0 Ω , R_L (load resistor) = 1 k Ω connected to V_S / 2 (unless otherwise noted)

PARAMETER	TEST CONDITIONS	$T_A^{(1)}$	MIN	TYP	MAX	UNIT
Channel-to-channel crosstalk (OPA2354A-Q1) (OPA4354-Q1)	$f = 5$ MHz	25°C		-100		dB
Voltage output swing from rail	$V_S = 5$ V, $R_L = 1$ k Ω , $A_{OL} > 94$ dB	25°C		0.1	0.3	V
	$V_S = 5$ V, $R_L = 1$ k Ω , $A_{OL} > 90$ dB	Full range		0.4		
I_O Output current ⁽²⁾⁽³⁾	$V_S = 5$ V		100			mA
	$V_S = 3$ V			50		
Closed-loop output impedance	$f < 100$ kHz			0.05		Ω
R_O Open-loop output resistance				35		Ω
I_Q Quiescent current (per amplifier)	$V_S = 5$ V, $I_O = 0$, enabled	25°C		4.9	6	mA
		Full range			7.5	
Thermal shutdown junction temperature	Shutdown			160		°C
	Reset from shutdown			140		

(2) See typical characteristic graph *Output Voltage Swing vs Output Current* (Figure 20).

(3) Not production tested

6.6 Typical Characteristics

$T_A = 25^\circ\text{C}$, $V_S = 5$ V, $R_F = 0$ Ω , $R_L = 1$ k Ω connected to V_S / 2 (unless otherwise noted)

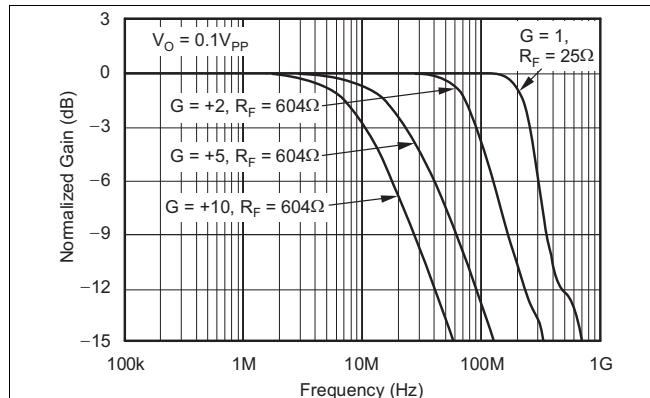


Figure 1. Noninverting Small-Signal Frequency Response

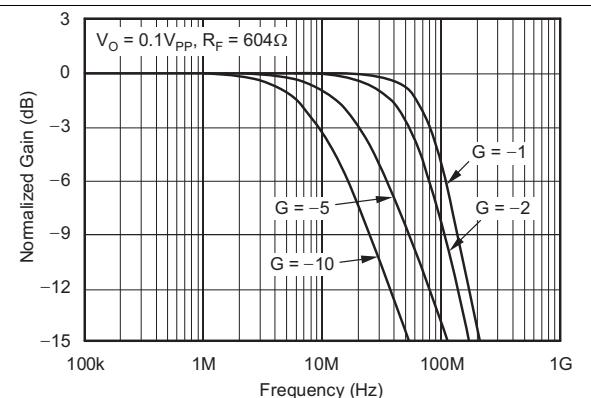


Figure 2. Inverting Small-Signal Frequency Response

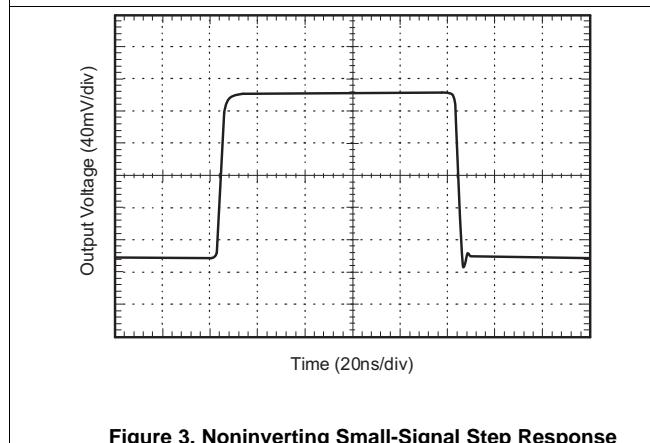


Figure 3. Noninverting Small-Signal Step Response

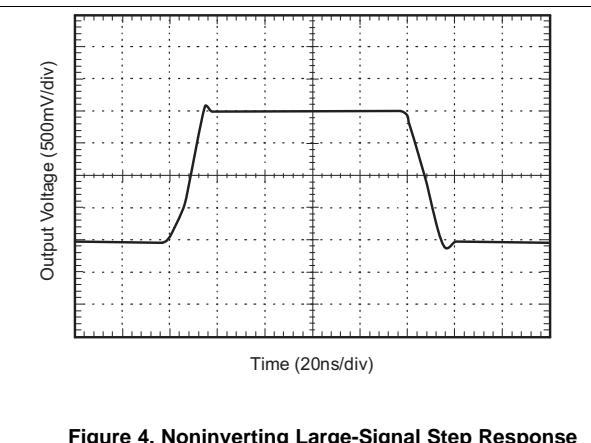


Figure 4. Noninverting Large-Signal Step Response

Typical Characteristics (continued)

$T_A = 25^\circ\text{C}$, $V_S = 5\text{ V}$, $R_F = 0\ \Omega$, $R_L = 1\text{ k}\Omega$ connected to $V_S / 2$ (unless otherwise noted)

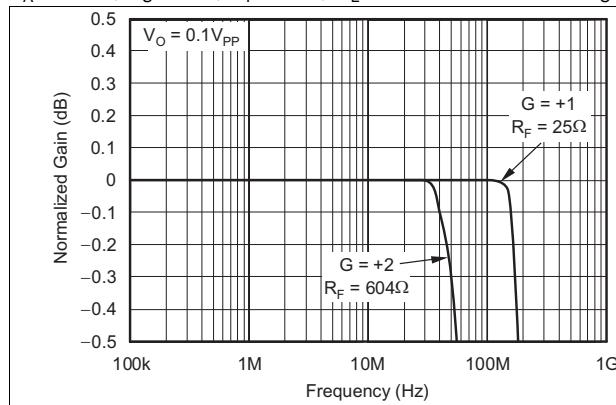


Figure 5. 0.1-dB Gain Flatness

Figure 6. Harmonic Distortion vs Output Voltage

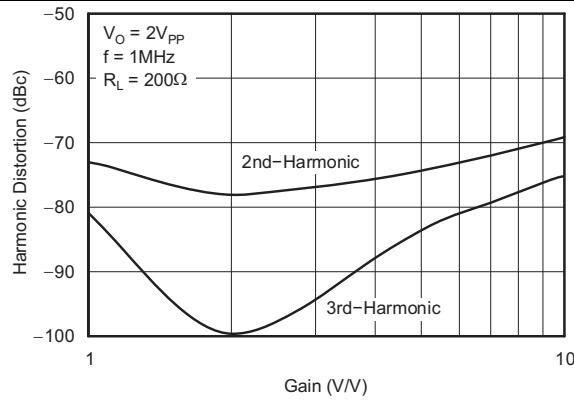


Figure 7. Harmonic Distortion vs Noninverting Gain

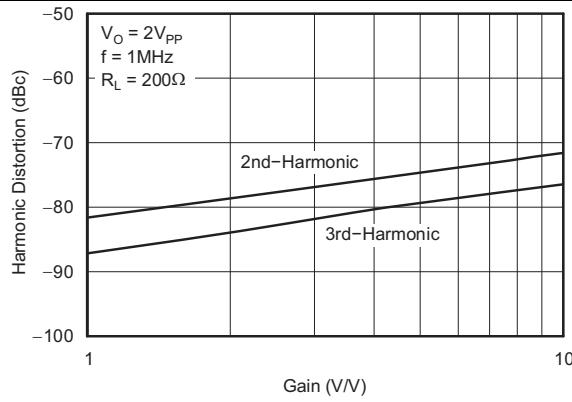


Figure 8. Harmonic Distortion vs Inverting Gain

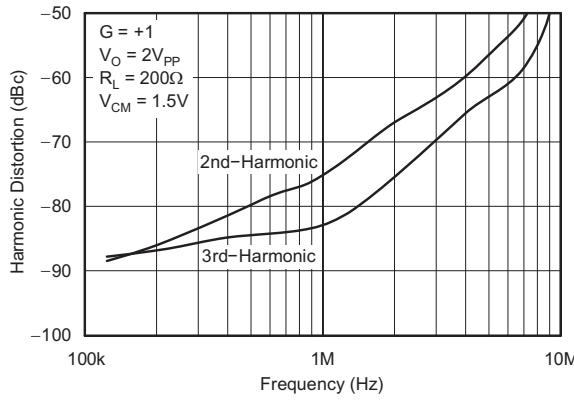


Figure 9. Harmonic Distortion vs Frequency

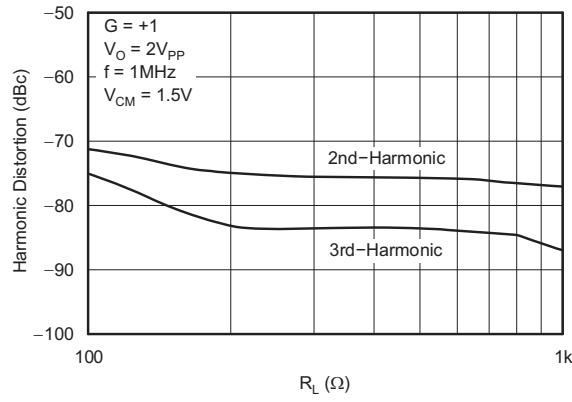
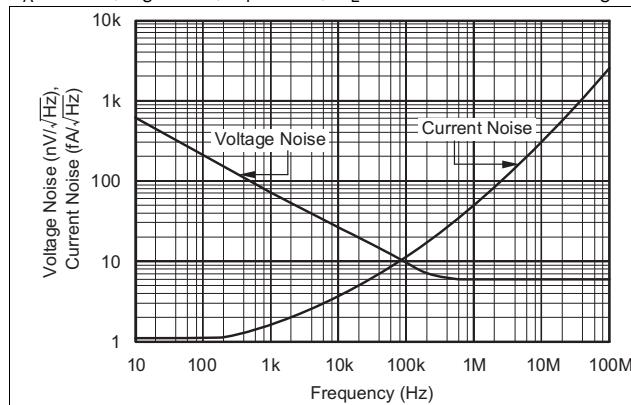
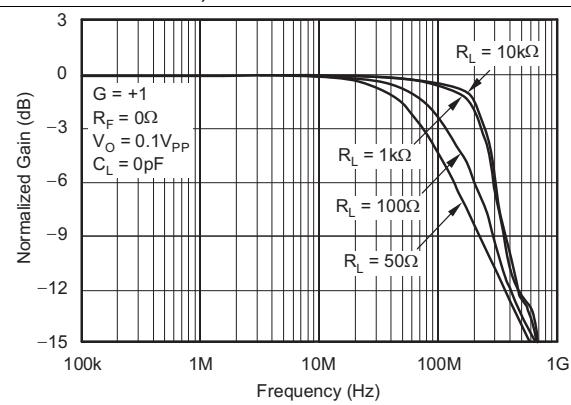


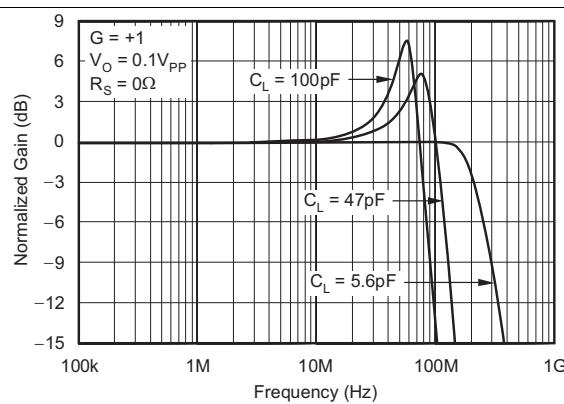
Figure 10. Harmonic Distortion vs Load Resistance

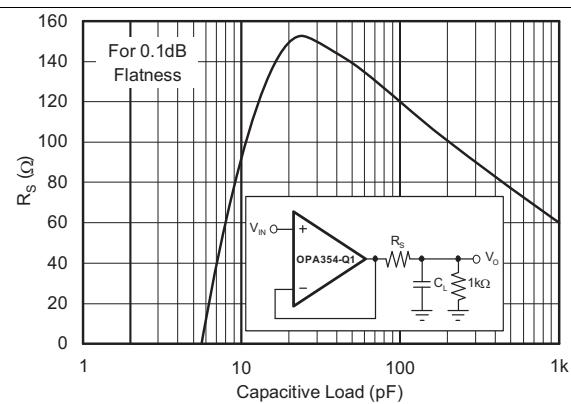

OPA354A-Q1, OPA2354A-Q1, OPA4354-Q1

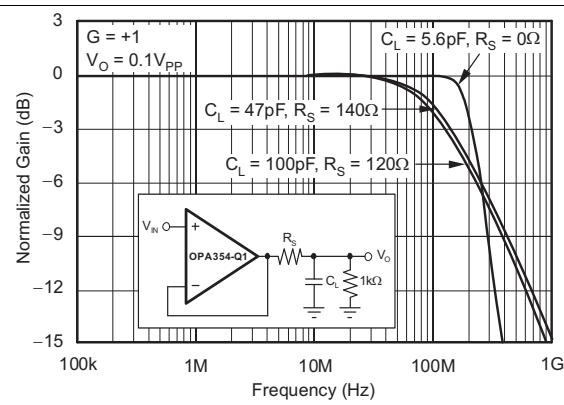
SBOS492E – JUNE 2009 – REVISED AUGUST 2016


www.ti.com

Typical Characteristics (continued)


$T_A = 25^\circ\text{C}$, $V_S = 5\text{ V}$, $R_F = 0\ \Omega$, $R_L = 1\text{ k}\Omega$ connected to $V_S / 2$ (unless otherwise noted)


Figure 11. Input Voltage and Current Noise Spectral Density vs Frequency


Figure 12. Frequency Response for Various R_L

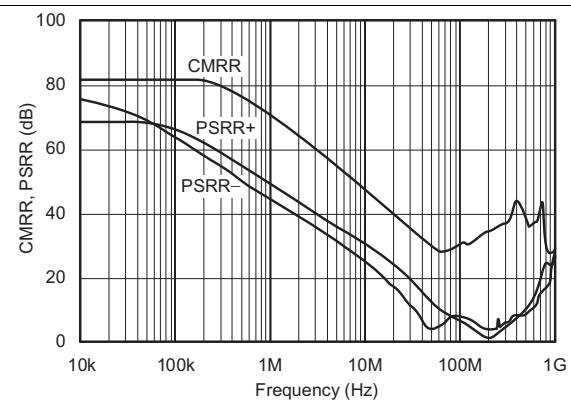

Figure 13. Frequency Response for Various C_L

Figure 14. Recommended R_S vs Capacitive Load

Figure 15. Frequency Response vs Capacitive Load

Figure 16. Common-Mode Rejection Ratio and Power-Supply Rejection Ratio vs Frequency

Typical Characteristics (continued)

$T_A = 25^\circ\text{C}$, $V_S = 5\text{ V}$, $R_F = 0\text{ }\Omega$, $R_L = 1\text{ k}\Omega$ connected to $V_S / 2$ (unless otherwise noted)

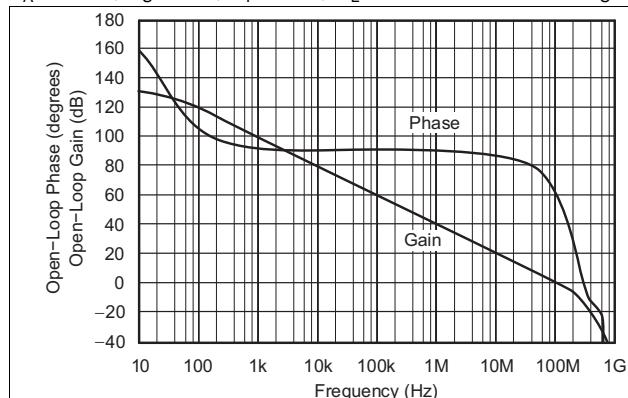


Figure 17. Open-Loop Gain and Phase

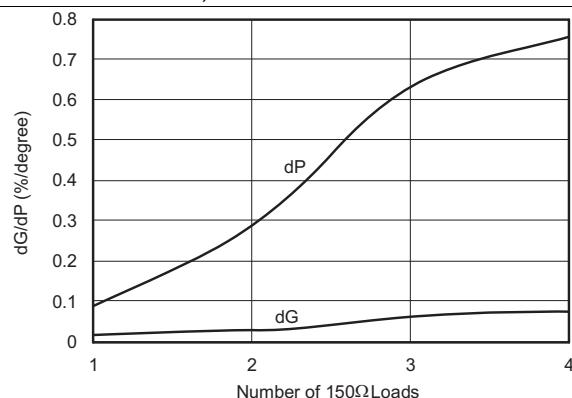


Figure 18. Composite Video Differential Gain and Phase

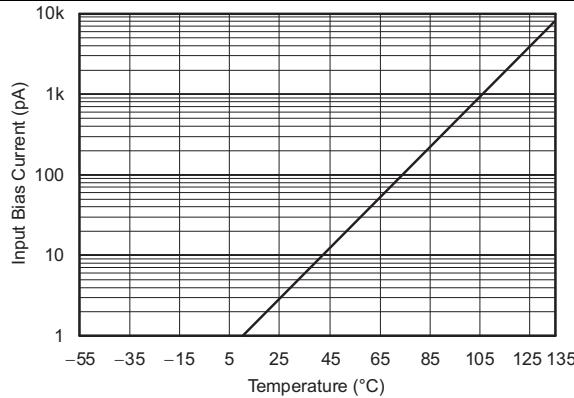


Figure 19. Input Bias Current vs Temperature

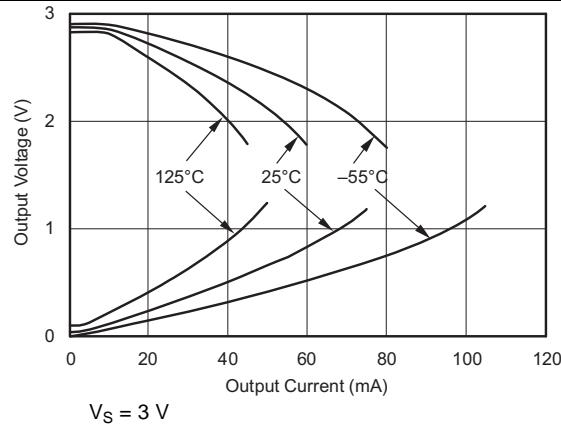


Figure 20. Output Voltage Swing vs Output Current

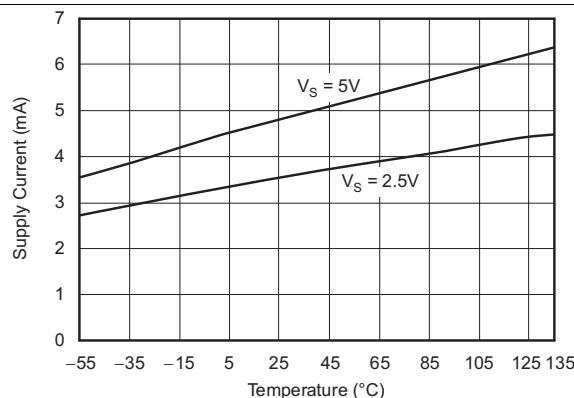


Figure 21. Supply Current vs Temperature

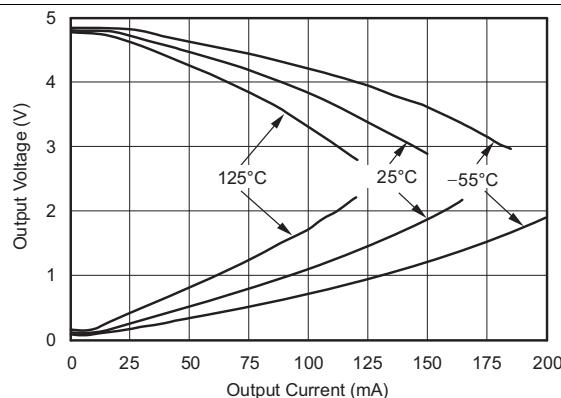
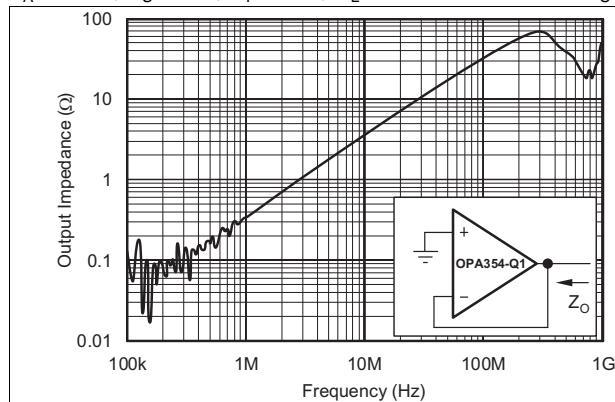
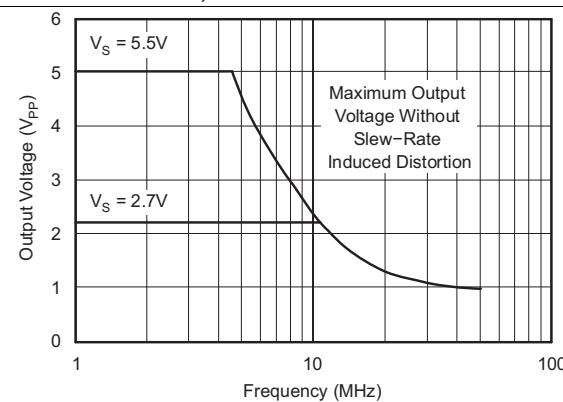


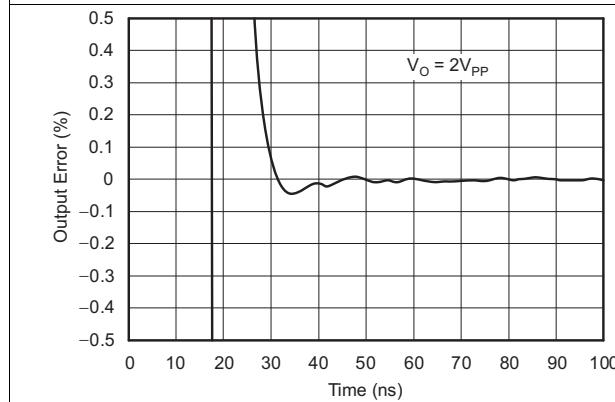
Figure 22. Output Voltage Swing vs Output Current for $V_S = 5\text{ V}$

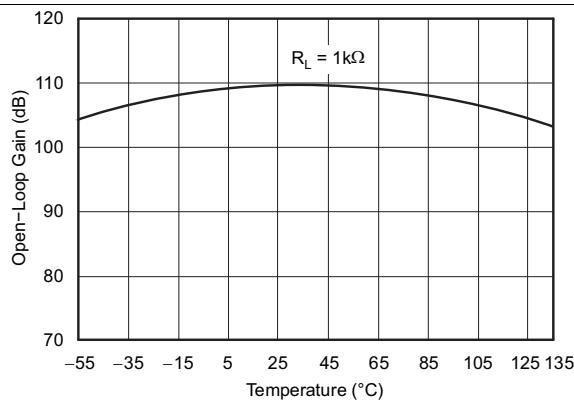

OPA354A-Q1, OPA2354A-Q1, OPA4354-Q1

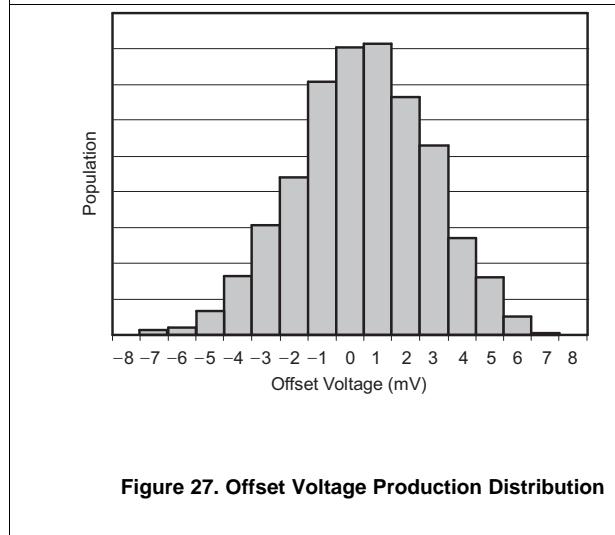
SBOS492E – JUNE 2009 – REVISED AUGUST 2016


www.ti.com

Typical Characteristics (continued)


$T_A = 25^\circ\text{C}$, $V_S = 5\text{ V}$, $R_F = 0\text{ }\Omega$, $R_L = 1\text{ k}\Omega$ connected to $V_S / 2$ (unless otherwise noted)


Figure 23. Closed-Loop Output Impedance vs Frequency


Figure 24. Maximum Output Voltage vs Frequency

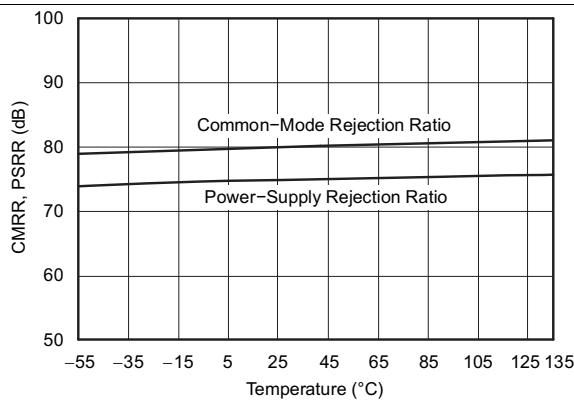

Figure 25. Output Settling Time to 0.1%

Figure 26. Open-Loop Gain vs Temperature

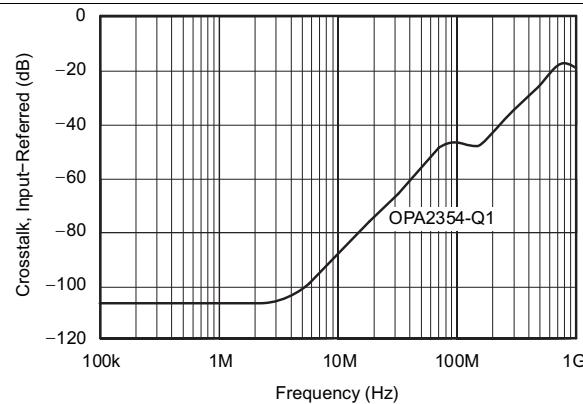

Figure 27. Offset Voltage Production Distribution

Figure 28. Common-Mode Rejection Ratio and Power-Supply Rejection Ratio vs Temperature

Typical Characteristics (continued)

$T_A = 25^\circ\text{C}$, $V_S = 5 \text{ V}$, $R_F = 0 \Omega$, $R_L = 1 \text{ k}\Omega$ connected to $V_S / 2$ (unless otherwise noted)

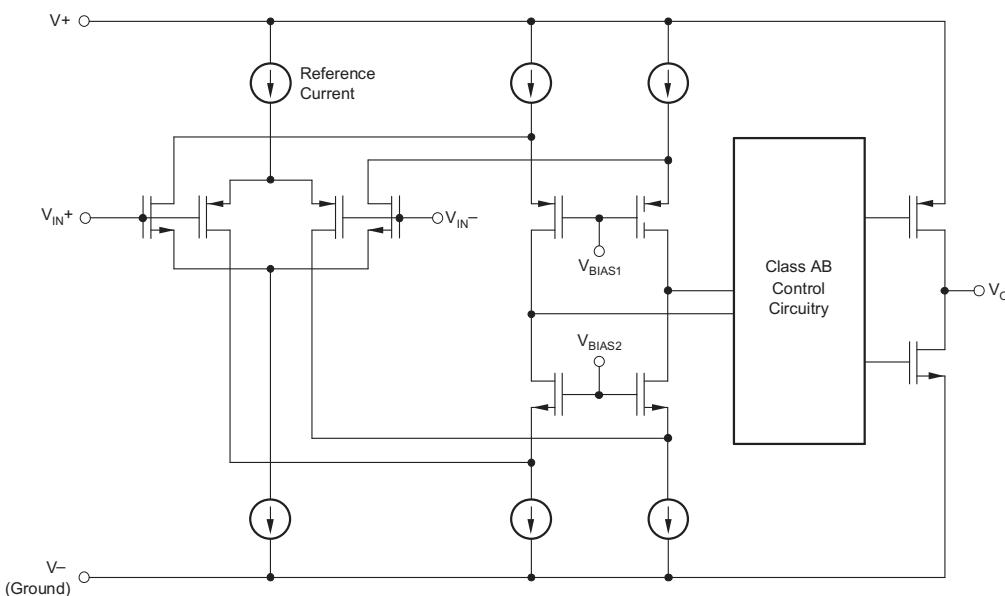
Figure 29. Channel-to-Channel Crosstalk OPAx354-Q1

OPA354A-Q1, OPA2354A-Q1, OPA4354-Q1

SBOS492E – JUNE 2009 – REVISED AUGUST 2016

www.ti.com

7 Detailed Description


7.1 Overview

The OPAX354-Q1 operational amplifiers are high-speed, 150-V/μs, amplifiers making them excellent choices for transimpedance applications. The devices are unity-gain stable and can operate on a single-supply voltage (2.5 V to 5.5 V), or a split-supply voltage (± 1.25 V to ± 2.75 V), making them highly versatile and easy to use. The OPAX354-Q1 amplifiers are specified from 2.5 V to 5.5 V and over the automotive temperature range of -40°C to 125°C .

Table 1. OPAX354-Q1 Related Products

FEATURES	PRODUCT
Shutdown Version of OPA354 Family	OPAx357
200-MHz GBW, Rail-to-Rail Output, CMOS, Shutdown	OPAx355
200-MHz GBW, Rail-to-Rail Output, CMOS	OPAx356
38-MHz GBW, Rail-to-Rail Input/Output, CMOS	OPAx350/3
75-MHz BW, G = 2, Rail-to-Rail Output	OPAx631
150-MHz BW, G = 2, Rail-to-Rail Output	OPAx634
100-MHz BW, Differential Input/Output, 3.3-V Supply	THS412x

7.2 Functional Block Diagram

Copyright © 2016, Texas Instruments Incorporated

7.3 Feature Description

7.3.1 Operating Voltage

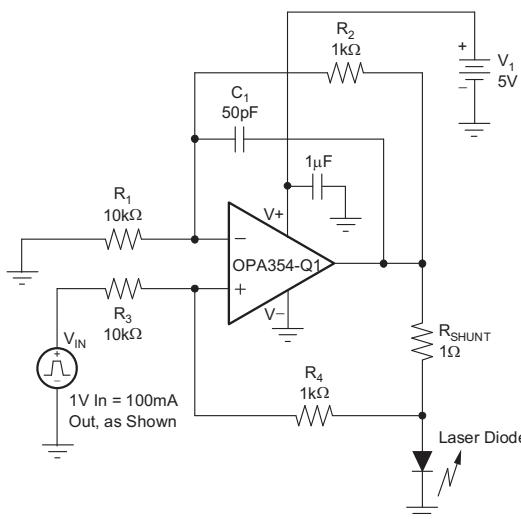
The specifications of the OPAX354-Q1 family of devices apply over a power-supply range of 2.5 V to 5.5 V (± 1.25 V to ± 2.75 V). Supply voltages higher than 7.5 V (absolute maximum) can permanently damage the amplifier.

The *Typical Characteristics* section of this data sheet show the parameters that vary over supply voltage or temperature.

Feature Description (continued)

7.3.2 Rail-to-Rail Input

The specified input common-mode voltage range of the OPAX354-Q1 family of devices extends 100 mV beyond the supply rails. A complementary input stage—an N-channel input differential pair in parallel with a P-channel differential pair—achieves this extension. The N-channel pair is active for input voltages close to the positive rail, typically (V_+) – 1.2 V to 100 mV above the positive supply, while the P-channel pair is on for inputs from 100 mV below the negative supply to approximately (V_+) – 1.2 V. A small transition region exists, typically (V_+) – 1.5 V to (V_+) – 0.9 V, in which both pairs are on. This 600-mV transition region can vary ± 500 mV with process variation. Thus, the transition region (both input stages on) can range from (V_+) – 2 V to (V_+) – 1.5 V on the low end, up to (V_+) – 0.9 V to (V_+) – 0.4 V on the high end.


A double-folded cascode adds the signal from the two input pairs and presents a differential signal to the class AB output stage.

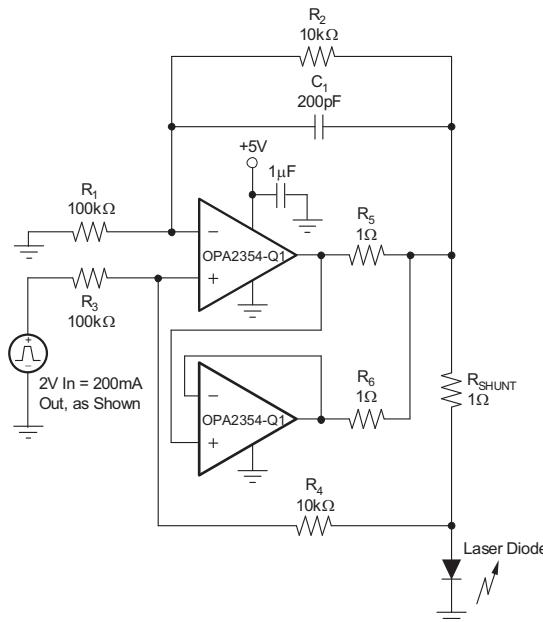
7.3.3 Rail-to-Rail Output

The device uses a class-AB output stage with common-source transistors to achieve rail-to-rail output. For high-impedance loads ($> 200 \Omega$), the output voltage swing is typically 100 mV from the supply rails. With 10Ω loads, one can achieve a useful output swing while maintaining high open-loop gain. See [Figure 20, Output Voltage Swing vs Output Current](#).

7.3.4 Output Drive

The OPAX354-Q1 output stage can supply a continuous output current of ± 100 mA and still provide approximately 2.7-V output swing on a 5-V supply, as shown in [Figure 30](#).

Figure 30. Laser Diode Driver


For maximum reliability, TI does not recommend running a continuous dc current in excess of ± 100 mA. See [Figure 20, Output Voltage Swing vs Output Current](#). A solution for supplying continuous output currents greater than ± 100 mA is operating OPAX354-Q1 family of devices in parallel, as shown in [Figure 31](#).

OPA354A-Q1, OPA2354A-Q1, OPA4354-Q1

SBOS492E – JUNE 2009 – REVISED AUGUST 2016

www.ti.com

Feature Description (continued)

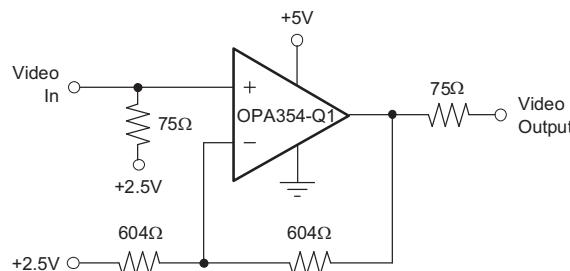


Figure 31. Parallel Operation

The OPAX354-Q1 family of devices provides peak currents up to 200 mA, which corresponds to the typical short-circuit current. Therefore, an on-chip thermal shutdown circuit protects the OPAX354-Q1 family of devices from dangerously high junction temperatures. At 160°C, the protection circuit shuts down the amplifier. Normal operation resumes when the junction temperature cools below 140°C.

7.3.5 Video

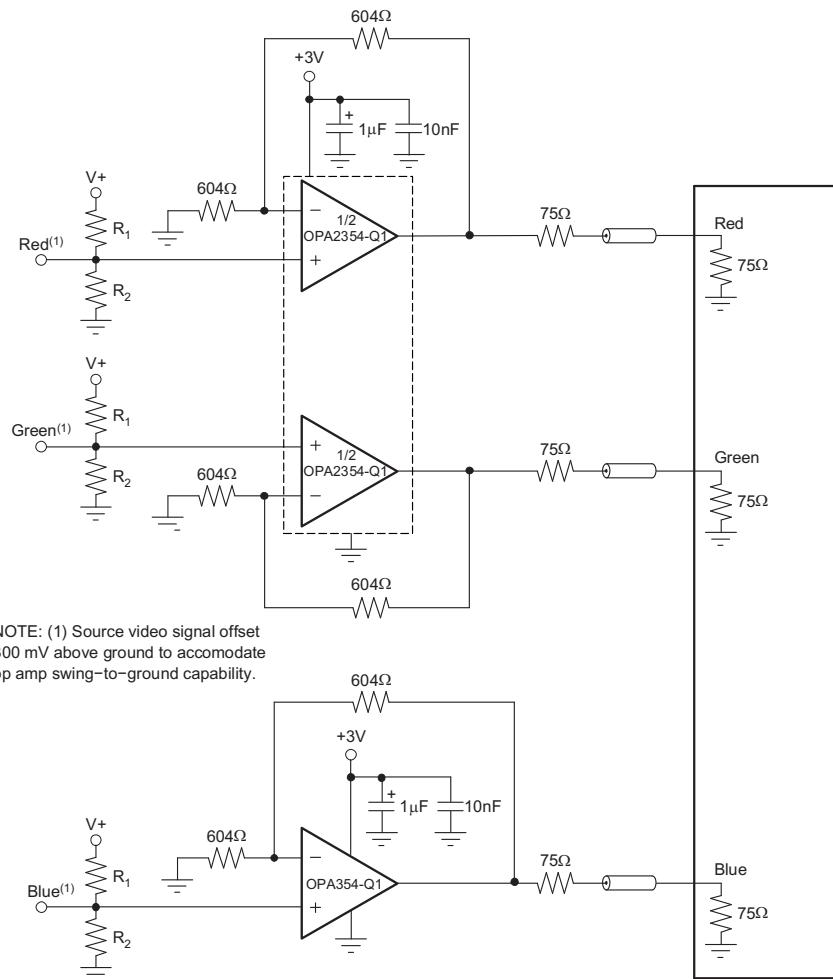

The OPAX354-Q1 output stage is capable of driving standard back-terminated 75-Ω video cables (see Figure 32). A back-terminated transmission line does not exhibit a capacitive load to its driver. A properly back-terminated 75-Ω cable does not appear as capacitance; it presents only a 150-Ω resistive load to the OPAX354-Q1 output.

Figure 32. Single-Supply Video Line Driver

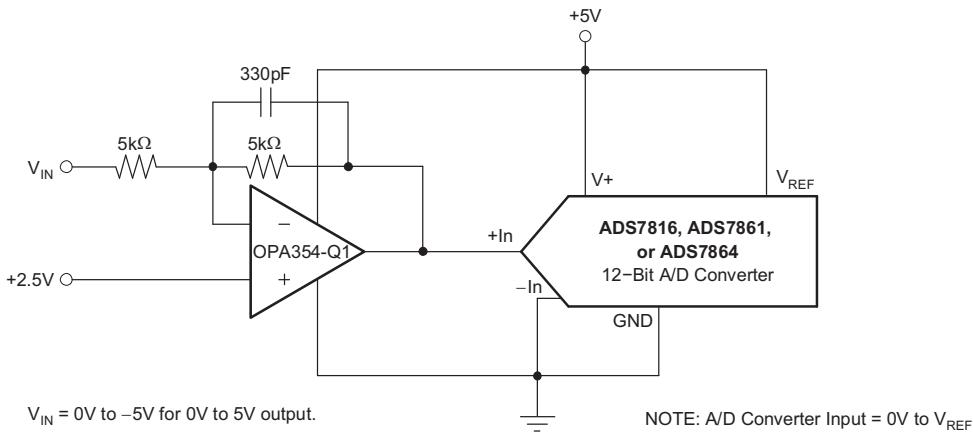
A use of the OPAX354-Q1 family of devices is as an amplifier for RGB graphic signals, which have a voltage of zero at the video black level, by offsetting and ac-coupling the signal (see Figure 33).

Feature Description (continued)

Figure 33. RGB Cable Driver

7.3.6 Driving Analog-to-Digital Converters

The OPAX354-Q1 family of op-amps offers a 60-ns settling time to 0.01%, making the devices a good choice for driving high- and medium-speed sampling ADCs and reference circuits. The OPAX354-Q1 family of devices provides an effective means of buffering the input capacitance and resulting charge injection of the ADC while providing signal gain. The OPAX354-Q1 family of devices is ideal for applications requiring high DC accuracy.

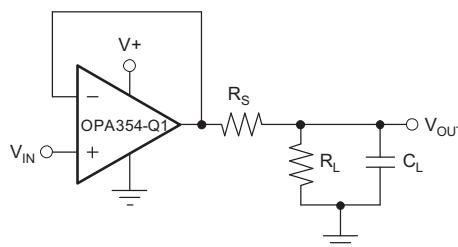

Figure 34 shows the OPAX354-Q1 family of devices driving an ADC. With the OPAX354-Q1 family of devices in an inverting configuration, use of a capacitor across the feedback resistor can filter high-frequency noise in the signal.

OPA354A-Q1, OPA2354A-Q1, OPA4354-Q1

SBOS492E – JUNE 2009 – REVISED AUGUST 2016

www.ti.com

Feature Description (continued)

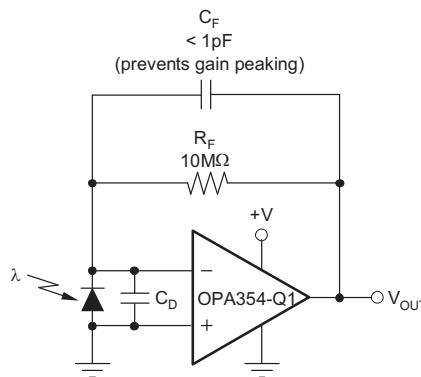

Figure 34. OPA354A-Q1 Inverting Configuration Driving the ADS7816

7.3.7 Capacitive Load and Stability

The OPAX354-Q1 family op-amps can drive a wide range of capacitive loads. However, all op-amps under certain conditions can become unstable. Op-amp configuration, gain, and load value are just a few of the factors to consider when determining stability. An op-amp in unity-gain configuration is most susceptible to the effects of capacitive loading. The capacitive load reacts with the output resistance of the op-amp, along with any additional load resistance, to create a pole in the small-signal response that degrades the phase margin. For details see [Figure 15, Frequency Response vs Capacitive Load](#).

The OPAX354-Q1 topology enhances the ability of the device to drive capacitive loads. In unity gain, these op-amps perform well with large capacitive loads. For details see [Figure 14, Recommended \$R_S\$ vs Capacitive Load](#), and [Figure 15, Frequency Response vs Capacitive Load](#).

One method of improving capacitive load drive in the unity-gain configuration is to insert a 10-Ω to 20-Ω resistor in series with the output, as shown in [Figure 35](#). This configuration significantly reduces ringing with large capacitive loads—see [Figure 15, Frequency Response vs Capacitive Load](#). However, if a resistive load is in parallel with the capacitive load, R_S creates a voltage divider. This configuration introduces a DC error at the output and slightly reduces output swing. This error may be insignificant. For instance, with $R_L = 10\text{ k}\Omega$ and $R_S = 20\text{ }\Omega$, the error at the output is only about a 0.2%.


Figure 35. Series Resistor in Unity-Gain Configuration Improves Capacitive Load Drive

7.3.8 Wideband Transimpedance Amplifier

Wide bandwidth, low-input bias current, and low input voltage and current noise make the OPAX354-Q1 family of devices an ideal wideband photodiode transimpedance amplifier for low-voltage single-supply applications. Low-voltage noise is important because photodiode capacitance causes the effective noise gain of the circuit to increase at high frequency.

Feature Description (continued)

The key elements to a transimpedance design, as shown in [Figure 36](#), are the expected diode capacitance (including the parasitic input common-mode and differential-mode input capacitance (2 + 2) pF for the OPAX354-Q1), the desired transimpedance gain (R_F), and the gain-bandwidth product (GBW) for the OPAX354-Q1 family of devices (100 MHz). With these three variables set, the feedback capacitor value (C_F) can be set to control the frequency response.

Figure 36. Transimpedance Amplifier

To achieve a maximally flat second-order Butterworth frequency response, set the feedback pole as shown in [Equation 1](#).

$$\frac{1}{2\pi R_F C_F} = \sqrt{\frac{GBP}{4\pi R_F C_D}} \quad (1)$$

Typical surface-mount resistors have a parasitic capacitance of approximately 0.2 pF that required deduction from the calculated feedback capacitance value.

Use [Equation 2](#) to calculate the bandwidth.

$$f_{-3dB} = \sqrt{\frac{GBP}{2\pi R_F C_D}} \text{ Hz} \quad (2)$$

For even higher transimpedance bandwidth, use the high-speed CMOS OPA355-Q1 (200-MHz GBW) or the OPA655-Q1 (400-MHz GBW).

7.4 Device Functional Modes

The OPAX354-Q1 family of devices is powered on when the supply is connected. The devices can be operated as single supply operational amplifiers or dual supply amplifiers depending on the application. The devices can also be used with asymmetrical supplies as long as the differential voltage (V_- to V_+) is at least 1.8 V and no greater than 5.5 V (example: V_- set to -3.5 V and V_+ set to 1.5 V).

OPA354A-Q1, OPA2354A-Q1, OPA4354-Q1

SBOS492E – JUNE 2009 – REVISED AUGUST 2016

www.ti.com

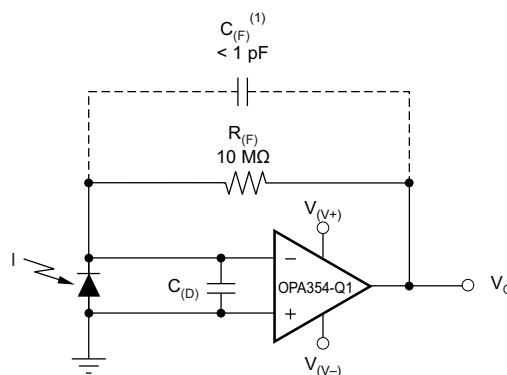
8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The OPAX354-Q1 family of devices is a CMOS, rail-to-rail I/O, high-speed, voltage-feedback operational amplifier designed for video, high-speed, and other applications. The OPAX354-Q1 family of devices is available as a single, dual, or quad op-amp.


The amplifier features a 100-MHz gain bandwidth, and 150 V/μs slew rate, but it is unity-gain stable and can be operated as a 1-V/V voltage follower.

8.2 Typical Applications

8.2.1 Transimpedance Amplifier

Wide gain bandwidth, low input bias current, low input voltage, and current noise make the OPAX354-Q1 family of devices an ideal wideband photodiode transimpedance amplifier. Low-voltage noise is important because photodiode capacitance causes the effective noise gain of the circuit to increase at high frequency.

The key elements to a transimpedance design, as shown in Figure 37, are the expected diode capacitance ($C_{(D)}$), which should include the parasitic input common-mode and differential-mode input capacitance (4 pF + 5 pF); the desired transimpedance gain ($R_{(FB)}$); and the gain-bandwidth (GBW) for the OPAX354-Q1 family of devices (20 MHz). With these three variables set, the feedback capacitor value ($C_{(FB)}$) can be set to control the frequency response. $C_{(FB)}$ includes the stray capacitance of $R_{(FB)}$, which is 0.2 pF for a typical surface-mount resistor.

(1) $C_{(FB)}$ is optional to prevent gain peaking. $C_{(FB)}$ includes the stray capacitance of $R_{(FB)}$.

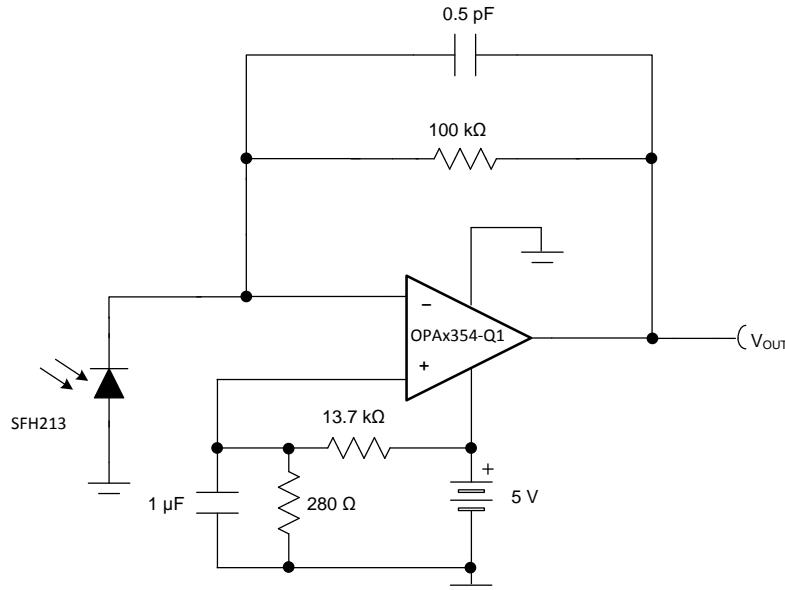
Figure 37. Dual-Supply Transimpedance Amplifier

8.2.1.1 Design Requirements

PARAMETER	VALUE
Supply voltage $V_{(V+)}$	2.5 V
Supply voltage $V_{(V-)}$	-2.5 V

8.2.1.2 Detailed Design Procedure

To achieve a maximally-flat, second-order Butterworth frequency response, the feedback pole should be set to:


$$\frac{1}{2 \times \pi \times R_{(FB)} \times C_{(FB)}} = \sqrt{\frac{GBW}{4 \times \pi \times R_{(FB)} \times C_{(D)}}} \quad (3)$$

Use [Equation 4](#) to calculate the bandwidth.

$$f_{(-3 \text{ dB})} = \sqrt{\frac{GBW}{2 \times \pi \times R_{(FB)} \times C_{(D)}}} \quad (4)$$

For other transimpedance bandwidths, consider the high-speed CMOS [OPA380](#) (90-MHz GBW), [OPA354](#) (100-MHz GBW), [OPA300](#) (180-MHz GBW), [OPA355](#) (200-MHz GBW), or [OPA656](#) and [OPA657](#) (400-MHz GBW).

For single-supply applications, the $+IN_x$ input can be biased with a positive DC voltage to allow the output to reach true zero when the photodiode is not exposed to any light, and respond without the added delay that results from coming out of the negative rail; this configuration is shown in [Figure 38](#). This bias voltage also appears across the photodiode, providing a reverse bias for faster operation.

Figure 38. Single-Supply Transimpedance Amplifier

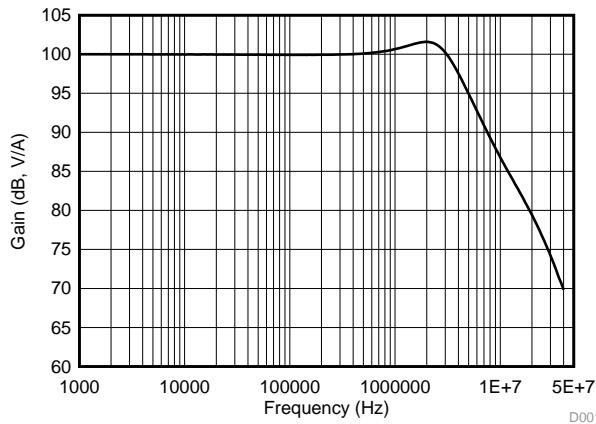
For additional information, refer to the application bulletin from TI, [Compensate Transimpedance Amplifiers Intuitively](#).

8.2.1.2.1 Optimizing The Transimpedance Circuit

To achieve the best performance, components should be selected according to the following guidelines:

1. For lowest noise, select $R_{(FB)}$ to create the total required gain. Using a lower value for $R_{(FB)}$ and adding gain after the transimpedance amplifier generally produces poorer noise performance. The noise produced by $R_{(FB)}$ increases with the square-root of $R_{(FB)}$, whereas the signal increases linearly. Therefore, signal-to-noise ratio improves when all the required gain is placed in the transimpedance stage.
2. Minimize photodiode capacitance and stray capacitance at the summing junction (inverting input). This capacitance causes the voltage noise of the op amp to be amplified (increasing amplification at high frequency). Using a low-noise voltage source to reverse-bias a photodiode can significantly reduce the capacitance. Smaller photodiodes have lower capacitance. Use optics to concentrate light on a small photodiode.
3. Noise increases with increased bandwidth. Limit the circuit bandwidth to only that required. Use a capacitor across the $R_{(FB)}$ to limit bandwidth, even if not required for stability.

OPA354A-Q1, OPA2354A-Q1, OPA4354-Q1

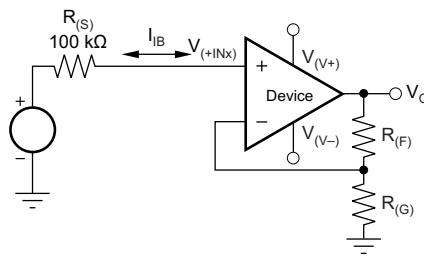

SBOS492E – JUNE 2009 – REVISED AUGUST 2016

www.ti.com

4. Circuit board leakage can degrade the performance of an otherwise well-designed amplifier. Clean the circuit board carefully. A circuit board guard trace that encircles the summing junction and is driven at the same voltage can help control leakage.

For additional information, refer to the following application bulletins from TI: [Noise Analysis of FET Transimpedance Amplifiers](#), and [Noise Analysis for High-Speed Op Amps](#).

8.2.1.3 Application Curve



–3 dB bandwidth is 4.56 MHz

Figure 39. AC Transfer Function

8.2.2 High-Impedance Sensor Interface

Many sensors have high source impedances that may range up to $10 \text{ M}\Omega$, or even higher. The output signal of sensors often must be amplified or otherwise conditioned by means of an amplifier. The input bias current of this amplifier can load the sensor output and cause a voltage drop across the source resistance, as shown in [Figure 40](#), where ($V_{(+INx)} = V_S - I_{(BIAS)} \times R_{(S)}$). The last term, $I_{(BIAS)} \times R_{(S)}$, shows the voltage drop across $R_{(S)}$. To prevent errors introduced to the system as a result of this voltage, an op amp with very low input bias current must be used with high impedance sensors. This low current keeps the error contribution by $I_{(BIAS)} \times R_{(S)}$ less than the input voltage noise of the amplifier, so that it does not become the dominant noise factor. The OPAx354-Q1 family of devices series of op amps feature very low input bias current (typically 200 fA), and are therefore ideal choices for such applications.

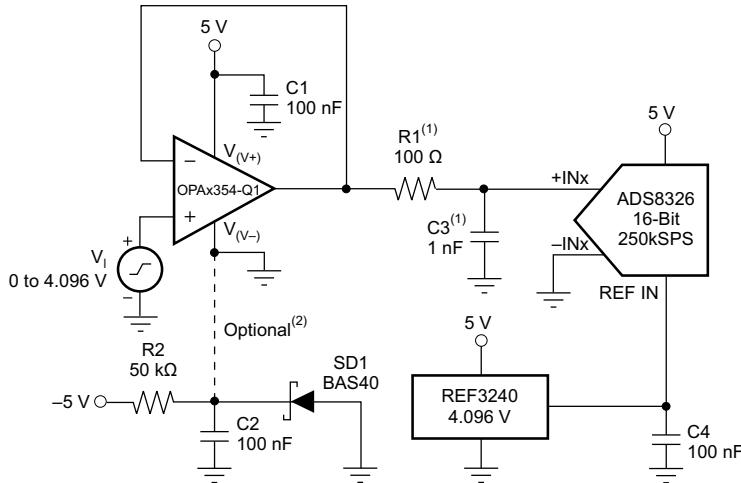


Figure 40. Noise as a Result of $I_{(BIAS)}$

8.2.3 Driving ADCs

The OPAX354-Q1 op amps are well-suited for driving sampling analog-to-digital converters (ADCs) with sampling speeds up to 1 MSPS. The zero-crossover distortion input stage topology allows the OPAX354-Q1 family of devices to drive ADCs without degradation of differential linearity and THD.

The OPAX354-Q1 family of devices can be used to buffer the ADC switched input capacitance and resulting charge injection while providing signal gain. Figure 41 shows the OPAX354-Q1 family of devices configured to drive the [ADS8326](#).

(1) Suggested value; may require adjustment based on specific application.

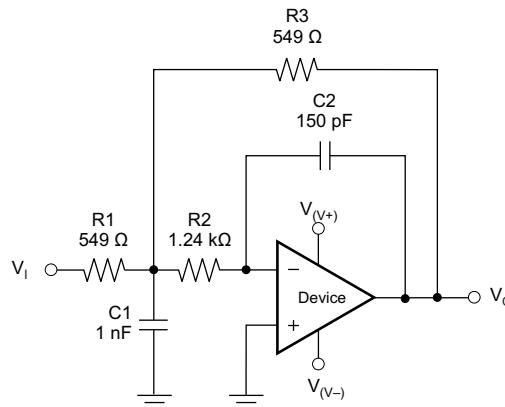
(2) Single-supply applications lose a small number of ADC codes near ground as a result of op amp output swing limitation. If a negative power supply is available, this simple circuit creates a -0.3-V supply to allow output swing to true ground potential.

Figure 41. Driving the ADS8326

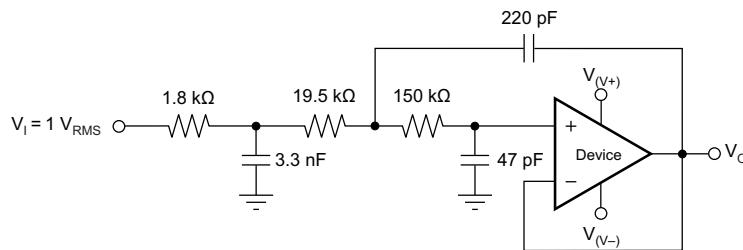
8.2.4 Active Filter

The OPAX354-Q1 family of devices is well-suited for active filter applications that require a wide bandwidth, fast slew rate, low-noise, single-supply operational amplifier. Figure 42 shows a 500 kHz, second-order, low-pass filter using the multiple-feedback (MFB) topology. The components have been selected to provide a maximally-flat Butterworth response. Beyond the cutoff frequency, roll-off is -40 dB/dec. The Butterworth response is ideal for applications requiring predictable gain characteristics, such as the anti-aliasing filter used in front of an ADC.

One point to observe when considering the MFB filter is that the output is inverted, relative to the input. If this inversion is not required, or not desired, a noninverting output can be achieved through one of the following options:


1. Adding an inverting amplifier
2. Adding an additional second-order MFB stage
3. Using a noninverting filter topology, such as the Sallen-Key (see Figure 43).

MFB and Sallen-Key, low-pass and high-pass filter synthesis is quickly accomplished using TI's [FilterPro™](#) program. This software is available as a free download at www.ti.com.


OPA354A-Q1, OPA2354A-Q1, OPA4354-Q1

SBOS492E – JUNE 2009 – REVISED AUGUST 2016

www.ti.com

Figure 42. Second-Order Butterworth 500-kHz Low-Pass Filter

Figure 43. OPAx354-Q1 Configured as a Three-Pole, 20-kHz, Sallen-Key Filter

9 Power Supply Recommendations

The OPAx354-Q1 family of devices is specified for operation from 2.5 to 5.5 V (± 1.25 to ± 2.75 V); many specifications apply from -40°C to 125°C . Parameters that can exhibit significant variance with regard to operating voltage or temperature are shown in the *Typical Characteristics* section.

CAUTION

Supply voltages larger than 7.5 V can permanently damage the device (see the *Absolute Maximum Ratings* table).

Place 0.1- μF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or highimpedance power supplies. For more detailed information on bypass capacitor placement, refer to the *Layout Guidelines* section.

9.1 Power Dissipation

Power dissipation depends on power-supply voltage, signal and load conditions. With dc signals, power dissipation is equal to the product of output current times the voltage across the conducting output transistor, $V_S - V_O$. Minimize power dissipation by using the lowest possible power-supply voltage necessary to assure the required output voltage swing.

For resistive loads, the maximum power dissipation occurs at a dc output voltage of one-half the power-supply voltage. Dissipation with ac signals is lower. Application bulletin AB-039, *Power Amplifier Stress and Power Handling Limitations* explains how to calculate or measure power dissipation with unusual signals and loads, and can be found at www.ti.com.

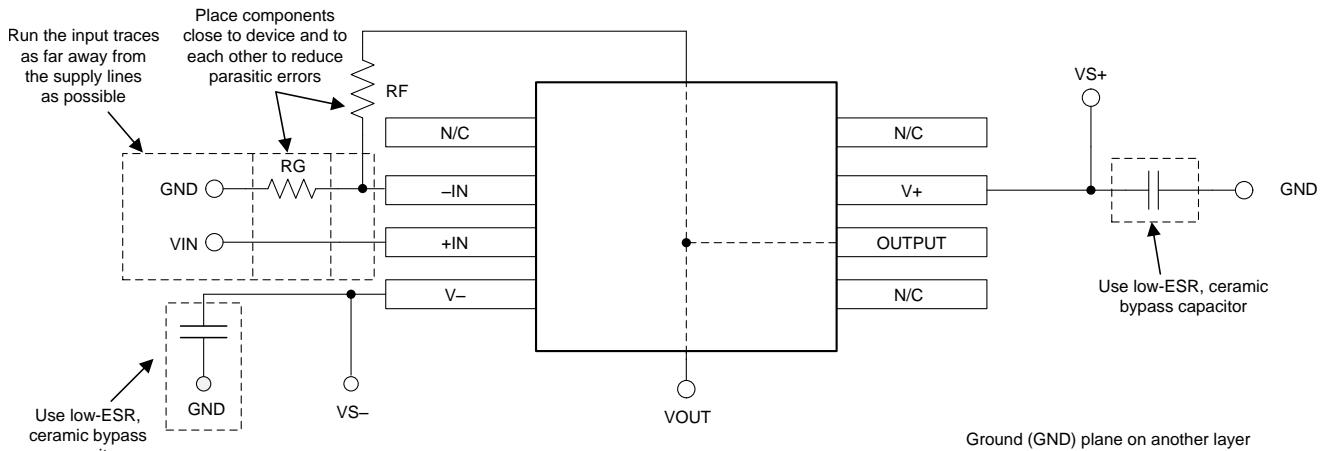
Any tendency to activate the thermal protection circuit indicates excessive power dissipation or an inadequate heatsink. For reliable operation, limit junction temperature to 150°C, maximum. To estimate the margin of safety in a complete design, increase the ambient temperature to trigger the thermal protection at 160°C. The thermal protection should trigger more than 35°C above the maximum expected ambient condition of the application.

10 Layout

10.1 Layout Guidelines

Use good high-frequency printed circuit board (PCB) layout techniques for the OPAX354-Q1 family of devices. Generous use of ground planes, short and direct signal traces, and a suitable bypass capacitor located at the V+ pin assure clean stable operation. Large areas of copper also provides a means of dissipating heat that is generated in normal operation. Sockets are not recommended for use with any high-speed amplifier. A 10-nF ceramic bypass capacitor is the minimum recommended value; adding a 1- μ F or larger tantalum capacitor in parallel can be beneficial when driving a low-resistance load. Providing adequate bypass capacitance is essential to achieving very low harmonic and intermodulation distortion.

For best operational performance of the device, use good PCB layout practices, including:


- Noise can propagate into analog circuitry through the power pins of the circuit as a whole and the operational amplifier. Bypass capacitors are used to reduce the coupled noise by providing low-impedance power sources local to the analog circuitry.
 - Connect low-ESR, 0.1- μ F ceramic bypass capacitors between each supply pin and ground, placed as close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single-supply applications.
- Separate grounding for analog and digital portions of the circuitry is one of the simplest and most effective methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes. A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically separate digital and analog grounds, paying attention to the flow of the ground current. For more detailed information, refer to *Circuit Board Layout Techniques*.
- To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If these traces cannot be kept separate, crossing the sensitive trace perpendicularly is much better than crossing in parallel with the noisy trace.
- Place the external components as close to the device as possible. Keeping RF and RG close to the inverting input minimizes parasitic capacitance, as shown in *Figure 44*.
- Keep the length of input traces as short as possible. Always remember that the input traces are the most sensitive part of the circuit.
- Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce leakage currents from nearby traces that are at different potentials.

OPA354A-Q1, OPA2354A-Q1, OPA4354-Q1

SBOS492E – JUNE 2009 – REVISED AUGUST 2016

www.ti.com

10.2 Layout Example

Figure 44. Operational Amplifier Board Layout for Noninverting Configuration

11 Device and Documentation Support

11.1 Documentation Support

11.1.1 Related Documentation

For related documentation see the following:

- [ADS8326 16-Bit, High-Speed, 2.7V to 5.5V microPower Sampling Analog-to-Digital Converter](#) (SBAS343)
- [Circuit Board Layout Techniques](#) (SLOA089)
- [Compensate Transimpedance Amplifiers Intuitively](#) (SBOA055)
- [FilterPro™ User's Guide](#) (SBFA001)
- [Noise Analysis of FET Transimpedance Amplifiers](#) (SBFA001)
- [Noise Analysis for High-Speed Op Amps](#) (SBOA066)
- [OPA380 and OPA2380 Precision, High-Speed Transimpedance Amplifier](#) (SBOS291)
- [OPA354, OPA2354, and OPA4354 250MHz, Rail-to-Rail I/O, CMOS Operational Amplifiers](#) (SBOS233)
- [OPA355, OPA2355, and OPA3355 200MHz, CMOS Operational Amplifier With Shutdown](#) (SBOS195)
- [OPA656 Wideband, Unity-Gain Stable, FET-Input Operational Amplifier](#) (SBOS196)
- [Power Amplifier Stress and Power Handling Limitations](#) (SBOA022)

11.2 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 2. Related Links

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
OPA354A-Q1	Click here				
OPA2354A-Q1	Click here				
OPA4354-Q1	Click here				

11.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

11.4 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's [Terms of Use](#).

TI E2E™ Online Community **TI's Engineer-to-Engineer (E2E) Community.** Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support **TI's Design Support** Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.5 Trademarks

E2E is a trademark of Texas Instruments.

FilterPro is a trademark of Texas Instruments Incorporated.

All other trademarks are the property of their respective owners.

OPA354A-Q1, OPA2354A-Q1, OPA4354-Q1

SBOS492E – JUNE 2009 – REVISED AUGUST 2016

www.ti.com**11.6 Electrostatic Discharge Caution**

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.7 Glossary**SLYZ022 — TI Glossary.**

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
OPA2354AQDGKRQ1	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU CU NIPDAUAG	Level-2-260C-1 YEAR	-40 to 125	OSLQ	Samples
OPA354AQDBVRQ1	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	OSFQ	Samples
OPA4354AQPWRQ1	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 125	4354Q1	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBsolete: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check <http://www.ti.com/productcontent> for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

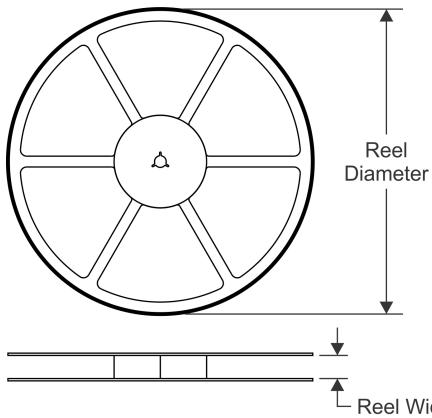
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

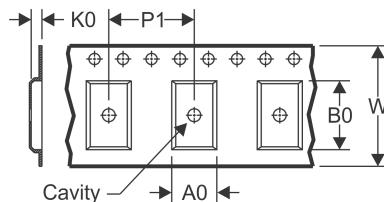
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF OPA4354-Q1 :

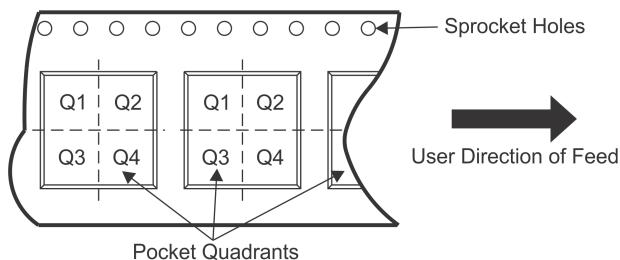

- Catalog: [OPA4354](#)

NOTE: Qualified Version Definitions:


- Catalog - TI's standard catalog product

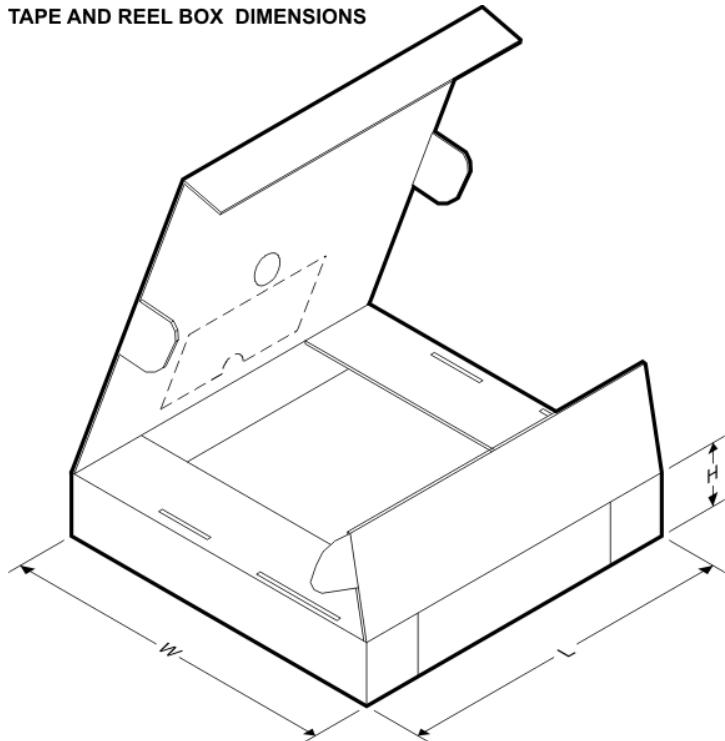
TAPE AND REEL INFORMATION

REEL DIMENSIONS



TAPE DIMENSIONS

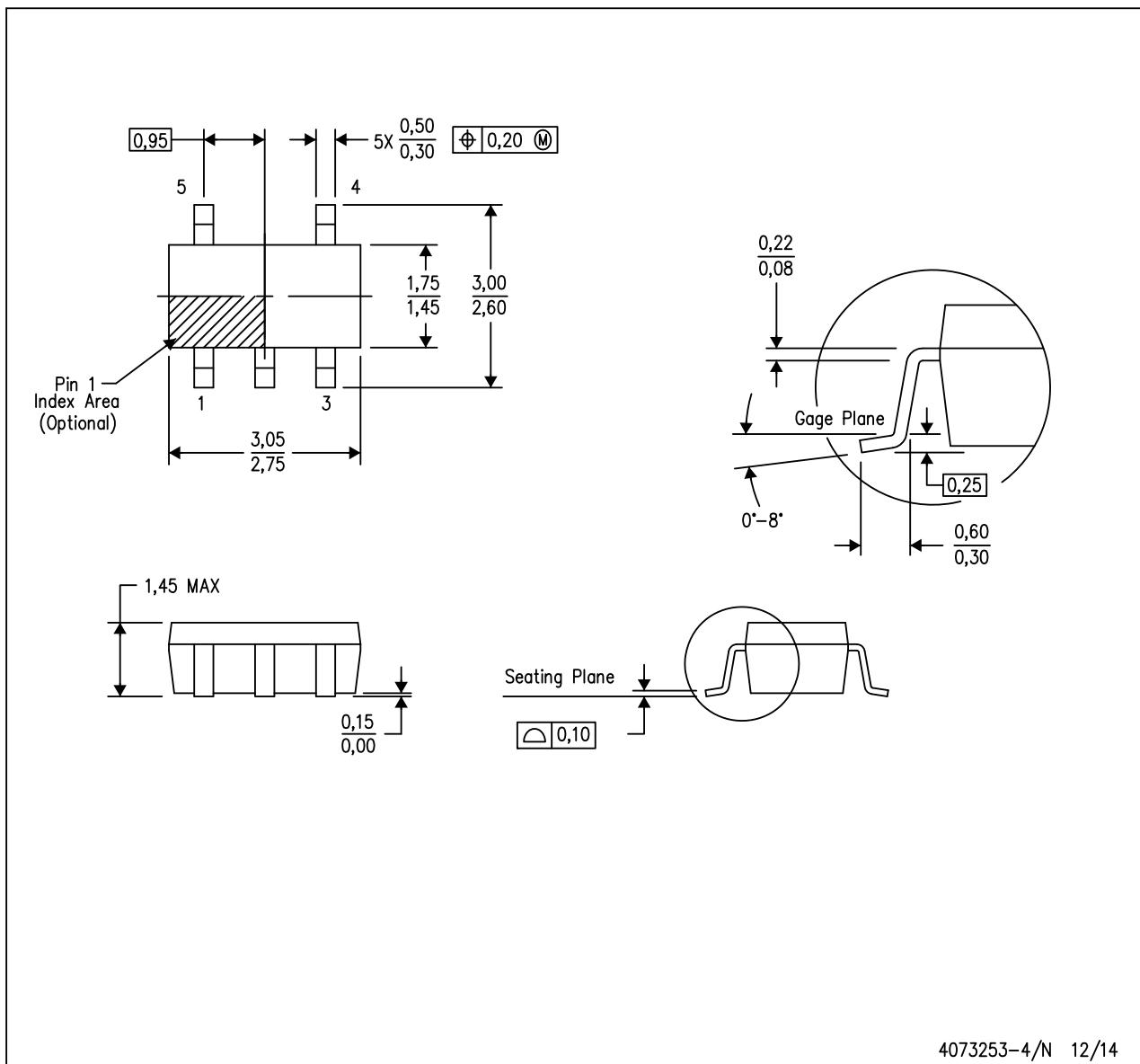
A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
OPA2354AQDGKRQ1	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
OPA354AQDBVRQ1	SOT-23	DBV	5	3000	179.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
OPA4354AQPWRQ1	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

TAPE AND REEL BOX DIMENSIONS


*All dimensions are nominal

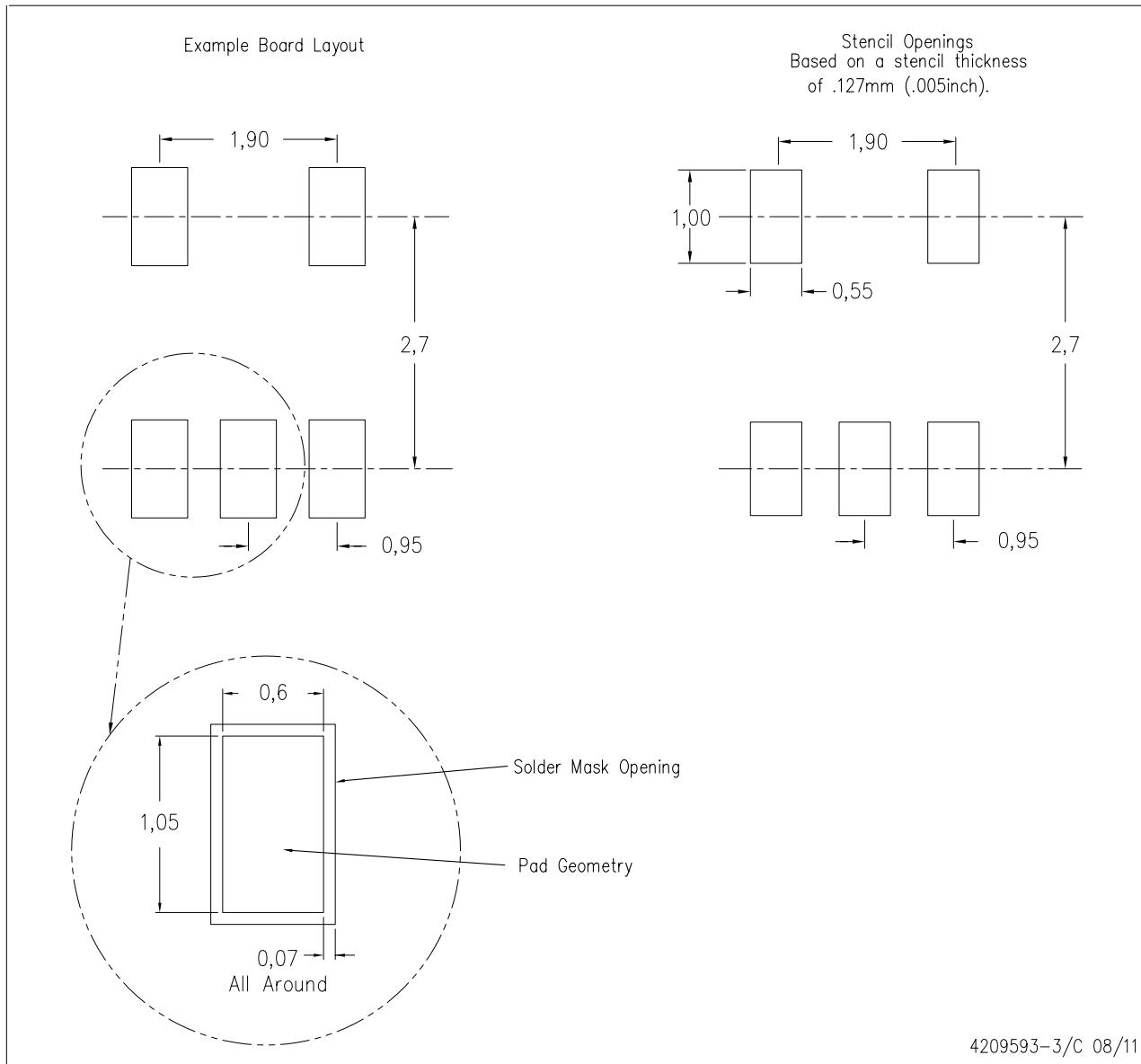
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
OPA2354AQDGKRQ1	VSSOP	DGK	8	2500	367.0	367.0	35.0
OPA354AQDBVRQ1	SOT-23	DBV	5	3000	195.0	200.0	45.0
OPA4354AQPWRQ1	TSSOP	PW	14	2000	367.0	367.0	35.0

MECHANICAL DATA

DBV (R-PDSO-G5)

PLASTIC SMALL-OUTLINE PACKAGE

4073253-4/N 12/14

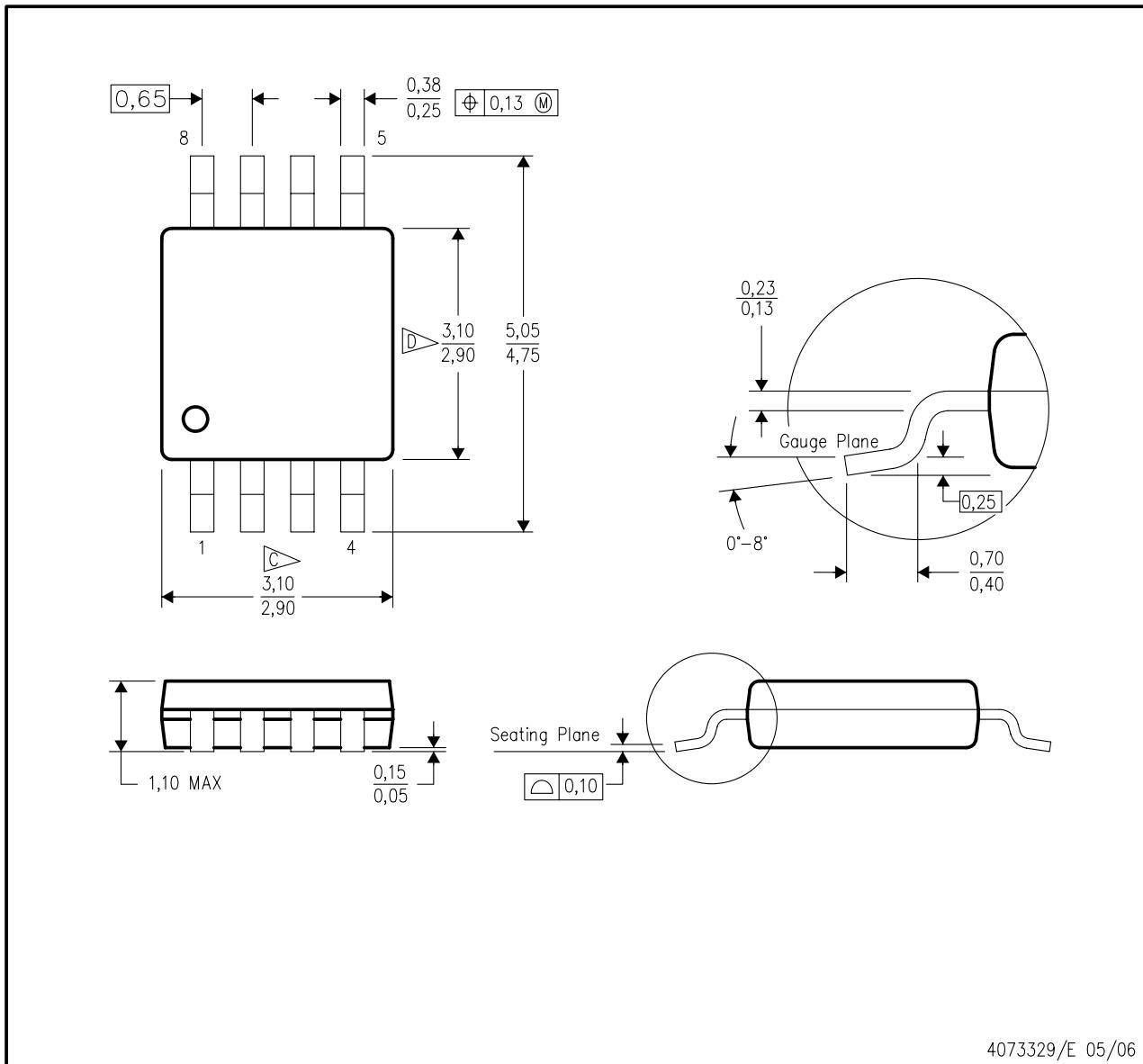

NOTES:

- All linear dimensions are in millimeters.
- This drawing is subject to change without notice.
- Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- Falls within JEDEC MO-178 Variation AA.

LAND PATTERN DATA

DBV (R-PDSO-G5)

PLASTIC SMALL OUTLINE


NOTES:

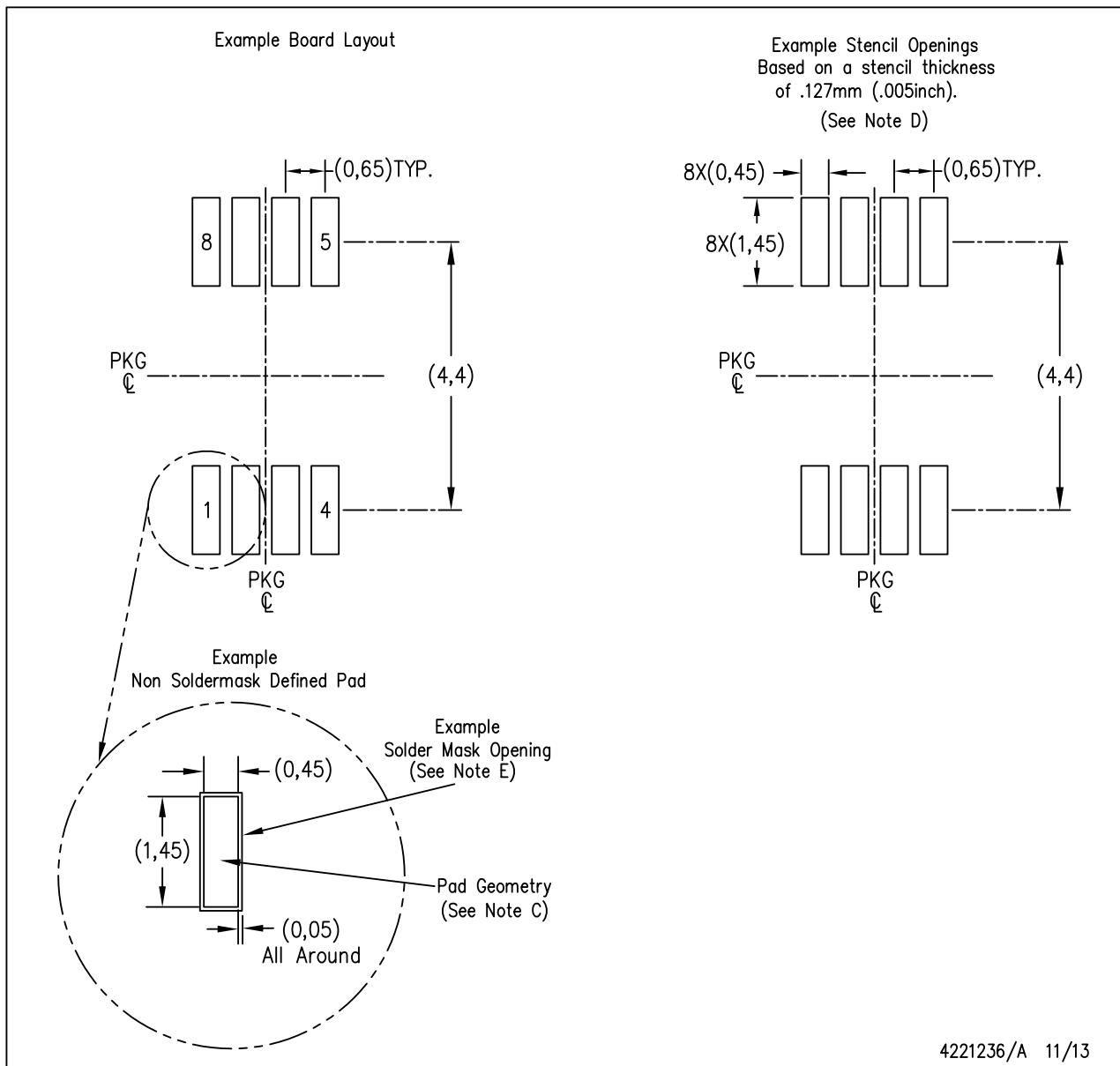
- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

MECHANICAL DATA

DGK (S-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

4073329/E 05/06

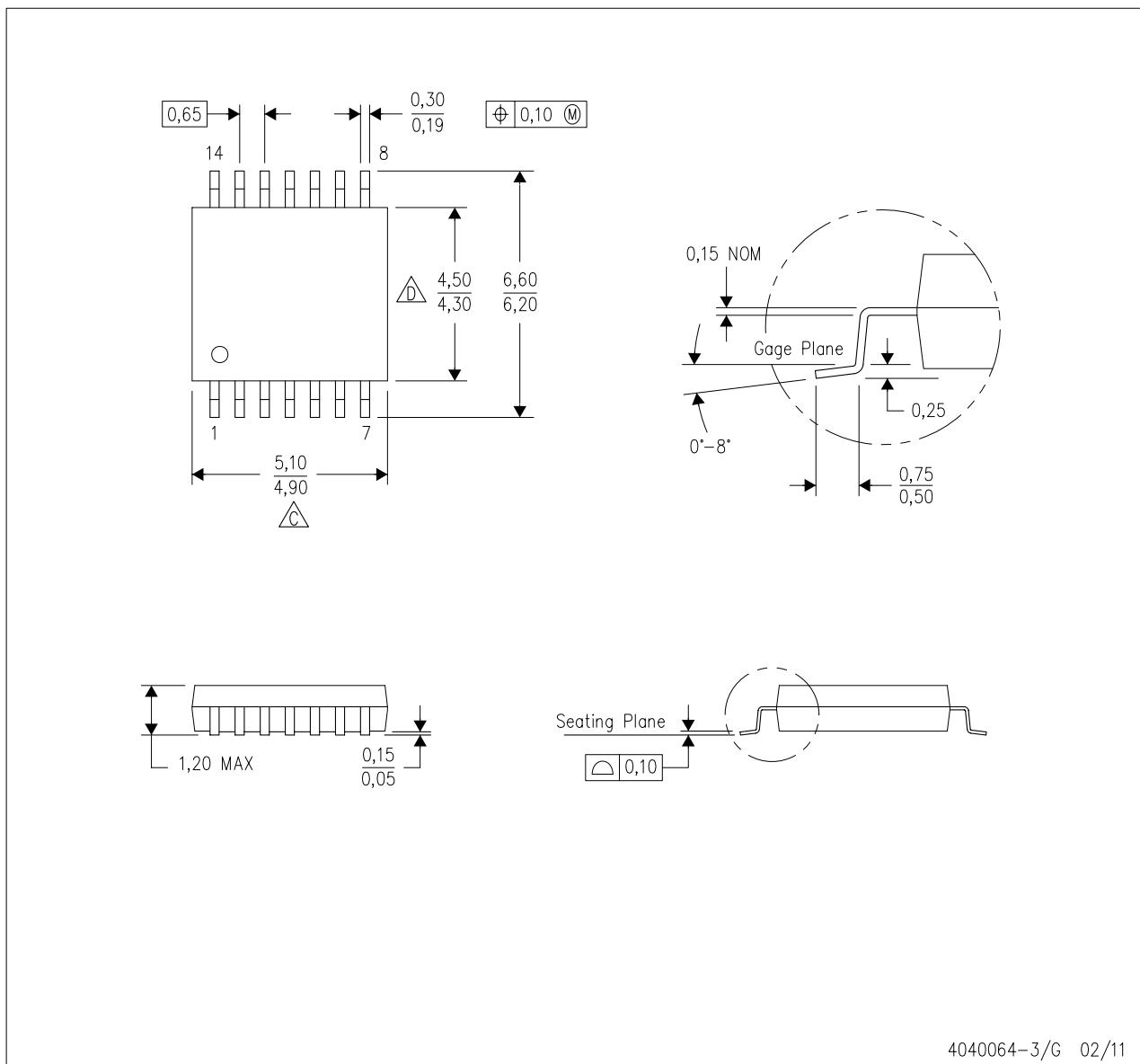

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C** Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.
- D** Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
- E. Falls within JEDEC MO-187 variation AA, except interlead flash.

LAND PATTERN DATA

DGK (S-PDSO-G8)

PLASTIC SMALL OUTLINE PACKAGE


NOTES:

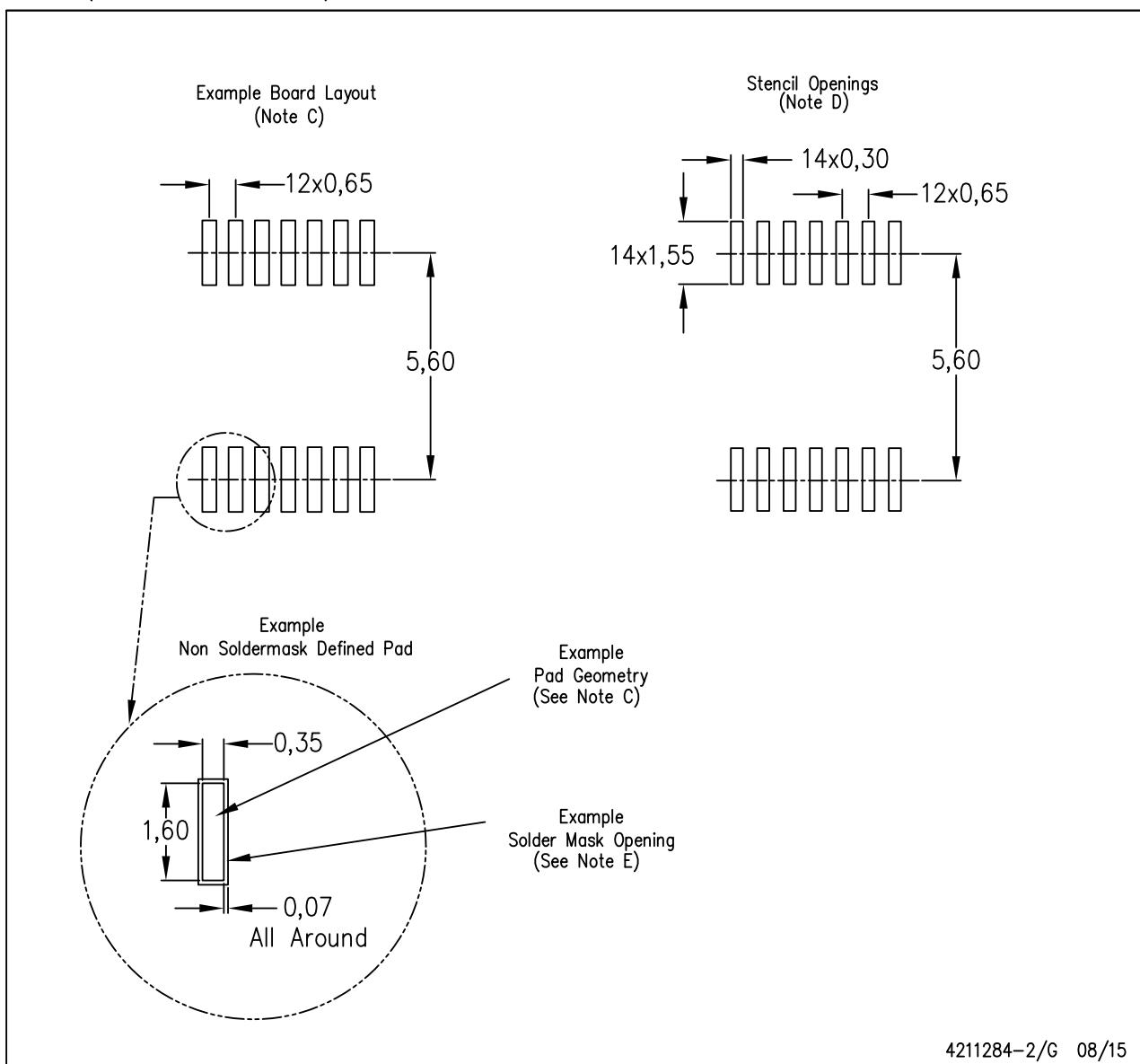
- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

MECHANICAL DATA

PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE

4040064-3/G 02/11


NOTES:

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
- B. This drawing is subject to change without notice.
- C. Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- D. Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

LAND PATTERN DATA

PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE

4211284-2/G 08/15

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have **not** been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

Audio	www.ti.com/audio
Amplifiers	amplifier.ti.com
Data Converters	dataconverter.ti.com
DLP® Products	www.dlp.com
DSP	dsp.ti.com
Clocks and Timers	www.ti.com/clocks
Interface	interface.ti.com
Logic	logic.ti.com
Power Mgmt	power.ti.com
Microcontrollers	microcontroller.ti.com
RFID	www.ti-rfid.com
OMAP Applications Processors	www.ti.com/omap
Wireless Connectivity	www.ti.com/wirelessconnectivity

Applications

Automotive and Transportation	www.ti.com/automotive
Communications and Telecom	www.ti.com/communications
Computers and Peripherals	www.ti.com/computers
Consumer Electronics	www.ti.com/consumer-apps
Energy and Lighting	www.ti.com/energy
Industrial	www.ti.com/industrial
Medical	www.ti.com/medical
Security	www.ti.com/security
Space, Avionics and Defense	www.ti.com/space-avionics-defense
Video and Imaging	www.ti.com/video

TI E2E Community

e2e.ti.com