

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

[Texas Instruments](#)

[LM8262MM/NOPB](#)

For any questions, you can email us directly:

sales@integrated-circuit.com

LM8262 Dual RRIO, High Output Current and Unlimited Cap Load Op Amp in VSSOP

1 Features

($V_S = 5V$, $T_A = 25^\circ C$, Typical Values Unless Specified).

- GBWP 21MHz
- Wide Supply Voltage Range 2.5 V to 22 V
- Slew Rate 12V/ μ s
- Supply Current/channel 1.15 mA
- Cap Load Limit Unlimited
- Output Short Circuit Current +53mA/-75 mA
- $\pm 5\%$ Settling Time 400ns (500 pF, 100 mV_{PP} step)
- Input Common Mode Voltage 0.3 V Beyond Rails
- Input Voltage Noise 15nV/ $\sqrt{\text{Hz}}$
- Input Current Noise 1pA/ $\sqrt{\text{Hz}}$
- THD+N < 0.05%

2 Applications

- TFT-LCD Flat Panel V_{COM} driver
- A/D Converter Buffer
- High Side/low Side Sensing
- Headphone Amplifier

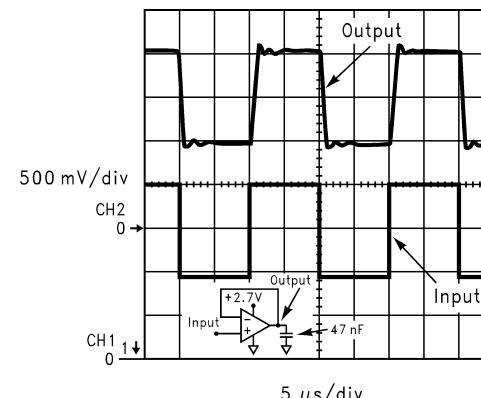
3 Description

The LM8262 is a Rail-to-Rail input and output Op Amp which can operate with a wide supply voltage range. This device has high output current drive, greater than Rail-to-Rail input common mode voltage range, unlimited capacitive load drive capability, and provides tested and ensured high speed and slew rate. It is specifically designed to handle the requirements of flat panel TFT panel V_{COM} driver applications as well as being suitable for other low power and medium speed applications which require ease of use and enhanced performance over existing devices.

Greater than Rail-to-Rail input common mode voltage range with 50 dB of Common Mode Rejection allows high side and low side sensing for many applications without concern for exceeding the range and with no compromise in accuracy. In addition, most device parameters are insensitive to power supply variations. This design enhancement is yet another step in simplifying its usage. The output stage has low distortion (0.05% THD+N) and can supply a respectable amount of current (15 mA) with minimal headroom from either rail (300 mV).

The LM8262 is offered in the space saving VSSOP package.

Device Information⁽¹⁾


PART NUMBER	PACKAGE	BODY SIZE (NOM)
LM8262	VSSOP (8)	3.00 mm x 3.00 mm

(1) For all available packages, see the orderable addendum at the end of the datasheet.

Gain/Phase vs. Frequency

Output Response with Heavy Capacitive Load

An **IMPORTANT NOTICE** at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. **PRODUCTION DATA**.

LM8262

SNOS975G –MAY 2001–REVISED AUGUST 2015

www.ti.com

Table of Contents

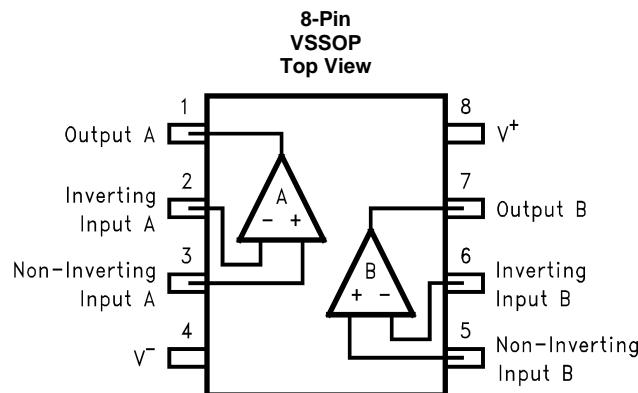
1 Features	1	6.5 2.7V Electrical Characteristics	5
2 Applications	1	6.6 5V Electrical Characteristics	6
3 Description	1	6.7 +/-11V Electrical Characteristics	7
4 Revision History	2	6.8 Typical Performance Characteristics	9
5 Pin Configuration and Functions	3	7 Device and Documentation Support	12
6 Specifications	4	7.1 Community Resources	12
6.1 Absolute Maximum Ratings	4	7.2 Trademarks	12
6.2 ESD Ratings	4	7.3 Electrostatic Discharge Caution	12
6.3 Recommended Operating Conditions	4	7.4 Glossary	12
6.4 Thermal Information	4	8 Mechanical, Packaging, and Orderable Information	12

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision F (August 2014) to Revision G

	Page
• Changed pin 5 From: -IN B To: +IN B Non-Inverting Input B in the <i>Pin Functions</i> table	3
• Changed pin 6 From: +IN B To: -IN B Inverting Input B in the <i>Pin Functions</i> table	3
• Moved "Storage temperature range" to the <i>Absolute Maximum Ratings</i> ⁽¹⁾⁽²⁾	4
• Changed <i>Handling Ratings</i> To: <i>ESD Ratings</i>	4


Changes from Revision E (April 2013) to Revision F

	Page
• Changed data sheet structure and organization. Added, updated, or renamed the following sections: Device and Documentation Support; Mechanical, Packaging, and Ordering Information	1
• Changed from "Junction Temperature Range" to "Operating Temperature Range"	4
• Deleted $T_J = 25^\circ\text{C}$,	5
• Deleted $T_J = 25^\circ\text{C}$,	6
• Deleted $T_J = 25^\circ\text{C}$	7

Changes from Revision D (April 2013) to Revision E

	Page
• Changed layout of National Data Sheet to TI format	10

5 Pin Configuration and Functions

Pin Functions

PIN		I/O	DESCRIPTION
NUMBER	NAME		
1	OUT A	O	Output A
2	-IN A	I	Inverting Input A
3	+IN A	I	Non-Inverting Input A
4	V-	I	Negative Supply
5	+IN B	I	Non-Inverting Input B
6	-IN B	I	Inverting Input B
7	OUT B	O	Output B
8	V+	I	Positive Supply

LM8262

SNOS975G –MAY 2001–REVISED AUGUST 2015

www.ti.com

6 Specifications

6.1 Absolute Maximum Ratings ⁽¹⁾⁽²⁾

over operating free-air temperature range (unless otherwise noted) ⁽³⁾

		MIN	MAX	UNIT
V _{IN} Differential			+/-10	V
Output Short Circuit Duration			See ^{(4) (5)}	
Supply Voltage (V ⁺ - V ⁻)			24	V
Voltage at Input/Output pins			V ⁺ +0.8, V ⁻ -0.8	V
Junction Temperature ⁽⁶⁾			+150	°C
Storage temperature range, T _{stg}		-65	+150	°C
Soldering Information:	Infrared or Convection (20 sec.)		235	°C
	Wave Soldering (10 sec.)		260	°C

- (1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Rating indicate conditions for which the device is intended to be functional, but specific performance is not ensured. For ensured specifications and the test conditions, see the Electrical Characteristics.
- (2) If Military/Aerospace specified devices are required, please contact the TI Sales Office/ Distributors for availability and specifications.
- (3) Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions*. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (4) Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C.
- (5) Output short circuit duration is infinite for V_S ≤ 6V at room temperature and below. For V_S > 6V, allowable short circuit duration is 1.5ms.
- (6) The maximum power dissipation is a function of T_J(max), R_{θJA}, and T_A. The maximum allowable power dissipation at any ambient temperature is P_D = (T_J(max) - T_A)/R_{θJA}. All numbers apply for packages soldered directly onto a PC board.

6.2 ESD Ratings

		VALUE	UNIT
V _(ESD)	Electrostatic discharge ⁽¹⁾	Human Body Model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽²⁾	±2000
		Machine Model (MM) ⁽³⁾	

- (1) Human Body Model, 1.5 kΩ in series with 100 pF. Machine Model, 0 Ω in series with 200 pF.
- (2) JEDEC document JEP155 states that 2000-V HBM allows safe manufacturing with a standard ESD control process.
- (3) JEDEC document JEP157 states that 200-V MM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
Supply Voltage (V ⁺ - V ⁻)		2.5	22	V
Operating Temperature Range ⁽¹⁾		-40	+85	°C

- (1) The maximum power dissipation is a function of T_J(max), R_{θJA}, and T_A. The maximum allowable power dissipation at any ambient temperature is P_D = (T_J(max) - T_A)/R_{θJA}. All numbers apply for packages soldered directly onto a PC board.

6.4 Thermal Information

THERMAL METRIC ⁽¹⁾	DGK	UNIT
	8 PINS	
R _{θJA} Junction-to-ambient thermal resistance ⁽²⁾	235	°C/W

- (1) For more information about traditional and new thermal metrics, see the *IC Package Thermal Metrics* application report, [SPRA953](#).
- (2) The maximum power dissipation is a function of T_J(max), R_{θJA}, and T_A. The maximum allowable power dissipation at any ambient temperature is P_D = (T_J(max) - T_A)/R_{θJA}. All numbers apply for packages soldered directly onto a PC board.

6.5 2.7V Electrical Characteristics

Unless otherwise specified, all limits ensured for $V^+ = 2.7V$, $V^- = 0V$, $V_{CM} = 0.5V$, $V_O = V^+/2$, and $R_L > 1M\Omega$ to V^- . **Boldface** limits apply at the temperature extremes.

PARAMETER		TEST CONDITIONS	MIN ⁽¹⁾	TYP ⁽²⁾	MAX ⁽¹⁾	UNIT
V_{OS}	Input Offset Voltage	$V_{CM} = 0.5V$ & $V_{CM} = 2.2V$	–	+/-0.7	+/-5 +/-7	mV
$TC\ V_{OS}$	Input Offset Average Drift	$V_{CM} = 0.5V$ & $V_{CM} = 2.2V$ ⁽³⁾	–	+/-2	–	$\mu V/C$
I_B	Input Bias Current	$V_{CM} = 0.5V$ ⁽⁴⁾	–	-1.20	-2.00 -2.70	μA
		$V_{CM} = 2.2V$ ⁽⁴⁾	–	+0.49	+1.00 +1.60	
I_{OS}	Input Offset Current	$V_{CM} = 0.5V$ & $V_{CM} = 2.2V$	–	20	250 400	nA
CMRR	Common Mode Rejection Ratio	V_{CM} stepped from 0V to 1.0V	76 60	100	–	dB
		V_{CM} stepped from 1.7V to 2.7V	–	100	–	
		V_{CM} stepped from 0V to 2.7V	58 50	70	–	
+PSRR	Positive Power Supply Rejection Ratio	$V^+ = 2.7V$ to 5V	78 74	104	–	dB
CMVR	Input Common-Mode Voltage Range	CMRR > 50dB	–	-0.3	-0.1 0.0	V
			2.8 2.7	3.0	–	V
A_{VOL}	Large Signal Voltage Gain	$V_O = 0.5$ to 2.2V, $R_L = 10k$ to V^-	70 67	78	–	dB
		$V_O = 0.5$ to 2.2V, $R_L = 2k$ to V^-	67 63	73	–	dB
V_O	Output Swing High	$R_L = 10k$ to V^-	2.49 2.46	2.59	–	V
		$R_L = 2k$ to V^-	2.45 2.41	2.53	–	
	Output Swing Low	$R_L = 10k$ to V^-	–	90	100 120	mV
I_{SC}	Output Short Circuit Current	Sourcing to V^- $V_{ID} = 200mV$ ⁽⁵⁾⁽⁶⁾	30 20	48	–	mA
		Sinking to V^+ $V_{ID} = -200mV$ ⁽⁵⁾⁽⁶⁾	50 30	65	–	
I_S	Supply Current (both amps)	No load, $V_{CM} = 0.5V$	–	2.0	2.5 3.0	mA
SR	Slew Rate ⁽⁷⁾	$A_V = +1, V_I = 2V_{PP}$	–	9	–	V/ μ s
f_u	Unity Gain-Frequency	$V_I = 10mV$, $R_L = 2k\Omega$ to $V^+/2$	–	10	–	MHz
GBWP	Gain Bandwidth Product	$f = 50KHz$	15.5 14	21	–	MHz
Φ_m	Phase Margin	$V_I = 10mV$	–	50	–	Deg
e_n	Input-Referred Voltage Noise	$f = 2KHz$, $R_S = 50\Omega$	–	15	–	nV/ \sqrt{Hz}
i_n	Input-Referred Current Noise	$f = 2KHz$	–	1	–	pA/ \sqrt{Hz}
f_{max}	Full Power Bandwidth	$Z_L = (20pF \parallel 10k\Omega)$ to $V^+/2$	–	1	–	MHz

- (1) All limits are ensured by testing or statistical analysis.
- (2) Typical Values represent the most likely parametric norm.
- (3) Offset voltage average drift determined by dividing the change in V_{OS} at temperature extremes into the total temperature change.
- (4) Positive current corresponds to current flowing into the device.
- (5) Short circuit test is a momentary test.
- (6) Output short circuit duration is infinite for $V_S \leq 6V$ at room temperature and below. For $V_S > 6V$, allowable short circuit duration is 1.5ms.
- (7) Slew rate is the slower of the rising and falling slew rates. Connected as a Voltage Follower.

LM8262

SNOS975G –MAY 2001–REVISED AUGUST 2015

www.ti.com

6.6 5V Electrical Characteristics

Unless otherwise specified, all limits ensured for $V^+ = 5V$, $V^- = 0V$, $V_{CM} = 1V$, $V_O = V^+/2$, and $R_L > 1M\Omega$ to V^- . **Boldface** limits apply at the temperature extremes.

PARAMETER		TEST CONDITIONS	MIN ⁽¹⁾	TYP ⁽²⁾	MAX ⁽¹⁾	UNIT
V_{OS}	Input Offset Voltage	$V_{CM} = 1V$ & $V_{CM} = 4.5V$	–	+/-0.7	+/-5 +/- 7	mV
$TC\ V_{OS}$	Input Offset Average Drift	$V_{CM} = 1V$ & $V_{CM} = 4.5V$ ⁽³⁾	–	+/-2	–	$\mu V/^\circ C$
I_B	Input Bias Current	$V_{CM} = 1V$ ⁽⁴⁾	–	-1.18	-2.00 -2.70	μA
		$V_{CM} = 4.5V$ ⁽⁴⁾	–	+0.49	+1.00 +1.60	
I_{OS}	Input Offset Current	$V_{CM} = 1V$ & $V_{CM} = 4.5V$	–	20	250 400	nA
CMRR	Common Mode Rejection Ratio	V_{CM} stepped from 0V to 3.3V	84 72	110	–	dB
		V_{CM} stepped from 4V to 5V	–	100	–	
		V_{CM} stepped from 0V to 5V	64 61	80	–	
+PSRR	Positive Power Supply Rejection Ratio	$V^+ = 2.7V$ to 5V, $V_{CM} = 0.5V$	78 74	104	–	dB
CMVR	Input Common-Mode Voltage Range	CMRR > 50dB	–	-0.3	-0.1 0.0	V
			5.1 5.0	5.3	–	V
A_{VOL}	Large Signal Voltage Gain	$V_O = 0.5$ to 4.5V, $R_L = 10k$ to V^-	74 70	84	–	dB
		$V_O = 0.5$ to 4.5V, $R_L = 2k$ to V^-	70 66	80	–	
V_O	Output Swing High	$R_L = 10k$ to V^-	4.75 4.72	4.87	–	V
		$R_L = 2k$ to V^-	4.70 4.66	4.81	–	
	Output Swing Low	$R_L = 10k$ to V^-	–	86	125 135	mV
I_{SC}	Output Short Circuit Current	Sourcing to V^- $V_{ID} = 200mV$ ⁽⁵⁾⁽⁶⁾	35 20	53	–	mA
		Sinking to V^+ $V_{ID} = -200mV$ ⁽⁵⁾⁽⁶⁾	60 50	75	–	
I_S	Supply Current (both amps)	No load, $V_{CM} = 1V$	–	2.3	2.8 3.5	mA
SR	Slew Rate ⁽⁷⁾	$A_V = +1$, $V_I = 5V_{PP}$	10 7	12	–	V/μs
f_u	Unity Gain Frequency	$V_I = 10mV$, $R_L = 2k\Omega$ to $V^+/2$	–	10.5	–	MHz
GBWP	Gain-Bandwidth Product	$f = 50KHz$	16 15	21	–	MHz
Φ_{IM}	Phase Margin	$V_I = 10mV$	–	53	–	Deg
e_n	Input-Referred Voltage Noise	$f = 2KHz$, $R_S = 50\Omega$	–	15	–	nV/ \sqrt{Hz}
i_n	Input-Referred Current Noise	$f = 2KHz$	–	1	–	pA/ \sqrt{Hz}

(1) All limits are ensured by testing or statistical analysis.

(2) Typical Values represent the most likely parametric norm.

(3) Offset voltage average drift determined by dividing the change in V_{OS} at temperature extremes into the total temperature change.

(4) Positive current corresponds to current flowing into the device.

(5) Short circuit test is a momentary test.

(6) Output short circuit duration is infinite for $V_S \leq 6V$ at room temperature and below. For $V_S > 6V$, allowable short circuit duration is 1.5ms.

(7) Slew rate is the slower of the rising and falling slew rates. Connected as a Voltage Follower.

5V Electrical Characteristics (continued)

Unless otherwise specified, all limits ensured for $V^+ = 5V$, $V^- = 0V$, $V_{CM} = 1V$, $V_O = V^+/2$, and $R_L > 1M\Omega$ to V^- . **Boldface** limits apply at the temperature extremes.

PARAMETER	TEST CONDITIONS	MIN ⁽¹⁾	TYP ⁽²⁾	MAX ⁽¹⁾	UNIT
f_{max}	Full Power Bandwidth	$Z_L = (20pF \parallel 10k\Omega)$ to $V^+/2$	–	900	–
t_S	Settling Time (+/-5%)	$100mV_{PP}$ Step, 500pF load	–	400	ns
THD+N	Total Harmonic Distortion + Noise	$R_L = 1k\Omega$ to $V^+/2$ $f = 10KHz$ to $A_{VY} = +2$, $4V_{PP}$ swing	–	0.05%	–

6.7 +/-11V Electrical Characteristics

Unless otherwise specified, all limits ensured for $V^+ = 11V$, $V^- = -11V$, $V_{CM} = 0V$, $V_O = 0V$, and $R_L > 1M\Omega$ to 0V. **Boldface** limits apply at the temperature extremes.

PARAMETER	TEST CONDITIONS	MIN ⁽¹⁾	TYP ⁽²⁾	MAX ⁽¹⁾	UNIT	
V_{OS}	$V_{CM} = -10.5V$ & $V_{CM} = 10.5V$	–	+/-0.7	+/-7 +/-9	mV	
$TC\ V_{OS}$	$V_{CM} = -10.5V$ & $V_{CM} = 10.5V$ ⁽³⁾	–	+/-2	–	$\mu V/^\circ C$	
I_B	$V_{CM} = -10.5V$ ⁽⁴⁾	–	-1.05	-2.00 -2.80	μA	
	$V_{CM} = 10.5V$ ⁽⁴⁾	–	+0.49	+1.00 +1.50		
I_{OS}	$V_{CM} = -10.5V$ & $V_{CM} = 10.5V$	–	30	275 550	nA	
CMRR	V_{CM} stepped from -11V to 9V	84 80	100	–	dB	
	V_{CM} stepped from 10V to 11V	–	100	–		
	V_{CM} stepped from -11V to 11V	74 72	88	–		
+PSRR	$V^+ = 9V$ to 11V	70 66	100	–	dB	
-PSRR	$V^- = -9V$ to -11V	70 66	100	–	dB	
CMVR	Input Common-Mode Voltage Range	CMRR > 50dB	–	-11.3	-11.1 -11.0	V
			11.1 11.0	11.3	–	V
A_{VOL}	Large Signal Voltage Gain	$V_O = 0V$ to +/-9V, $R_L = 10k\Omega$	78 74	85	dB	
		$V_O = 0V$ to +/-9V, $R_L = 2k\Omega$	72 66	79		
V_O	Output Swing High	$R_L = 10k\Omega$	10.65 10.61	10.77	V	
		$R_L = 2k\Omega$	10.6 10.55	10.69		
	Output Swing Low	$R_L = 10k\Omega$	–	-10.98	-10.75 -10.65	V
		$R_L = 2k\Omega$	–	-10.91	-10.65 -10.6	

(1) All limits are ensured by testing or statistical analysis.

(2) Typical Values represent the most likely parametric norm.

(3) Offset voltage average drift determined by dividing the change in V_{OS} at temperature extremes into the total temperature change.

(4) Positive current corresponds to current flowing into the device.

LM8262

SNOS975G –MAY 2001–REVISED AUGUST 2015

www.ti.com

+/-11V Electrical Characteristics (continued)

Unless otherwise specified, all limits ensured for $V^+ = 11V$, $V^- = -11V$, $V_{CM} = 0V$, $V_O = 0V$, and $R_L > 1M\Omega$ to 0V. **Boldface** limits apply at the temperature extremes.

PARAMETER	TEST CONDITIONS	MIN ⁽¹⁾	TYP ⁽²⁾	MAX ⁽¹⁾	UNIT
I_{SC} Output Short Circuit Current	Sourcing to ground $V_{ID} = 200mV$ ⁽⁵⁾⁽⁶⁾	40 25	60	–	mA
	Sinking to ground $V_{ID} = 200mV$ ⁽⁵⁾⁽⁶⁾	65 55	100	–	
I_S Supply Current	No load, $V_{CM} = 0V$	–	2.5	4 5	mA
SR ⁽⁷⁾ Slew Rate	$A_V = +1$, $V_I = 16V_{PP}$	10 8	15	–	V/ μ s
f_U Unity Gain Frequency	$V_I = 10mV$, $R_L = 2k\Omega$	–	13	–	MHz
GBWP Gain-Bandwidth Product	$f = 50KHz$	18 16	24	–	MHz
Φ_m Phase Margin	$V_I = 10mV$	–	58	–	Deg
e_n Input-Referred Voltage Noise	$f = 2KHz$, $R_S = 50\Omega$	–	15	–	nV/ \sqrt{Hz}
i_n Input-Referred Current Noise	$f = 2KHz$	–	1	–	pA/ \sqrt{Hz}
t_S Settling Time (+/-1%, $A_V = +1$)	Positive Step, $5V_{PP}$	–	320	–	ns
	Negative Step, $5V_{PP}$	–	600	–	
THD+N Total Harmonic Distortion +Noise	$R_L = 1k\Omega$, $f = 10KHz$, $A_V = +2$, $15V_{PP}$ swing	–	0.01%	–	
CT_{REJ} Cross-Talk Rejection	$f = 5MHz$, Driver $R_L = 10k\Omega$	–	68	–	dB

(5) Short circuit test is a momentary test.

(6) Output short circuit duration is infinite for $V_S \leq 6V$ at room temperature and below. For $V_S > 6V$, allowable short circuit duration is 1.5ms.

(7) Slew rate is the slower of the rising and falling slew rates. Connected as a Voltage Follower.

6.8 Typical Performance Characteristics

$T_A = 25^\circ\text{C}$, Unless Otherwise Noted

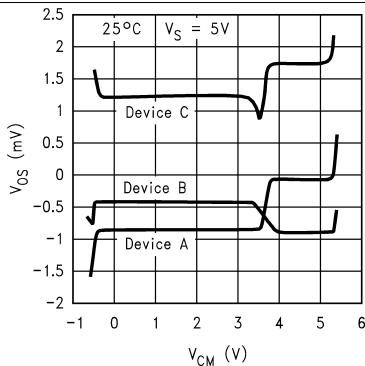


Figure 1. V_{OS} vs. V_{CM} for 3 Representative Units

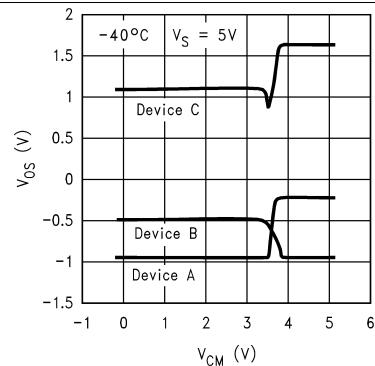


Figure 2. V_{OS} vs. V_{CM} for 3 Representative Units

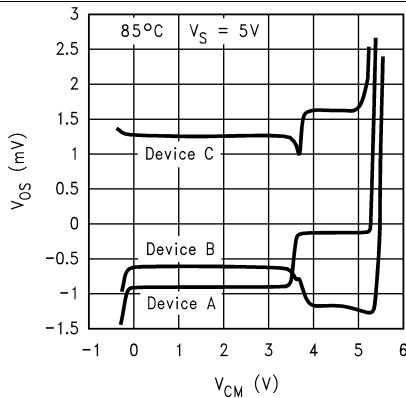


Figure 3. V_{OS} vs. V_{CM} for 3 Representative Units

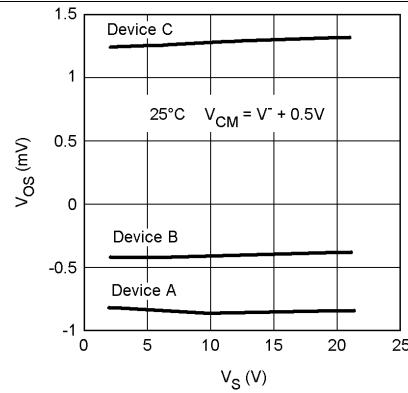


Figure 4. V_{OS} vs. V_S for 3 Representative Units

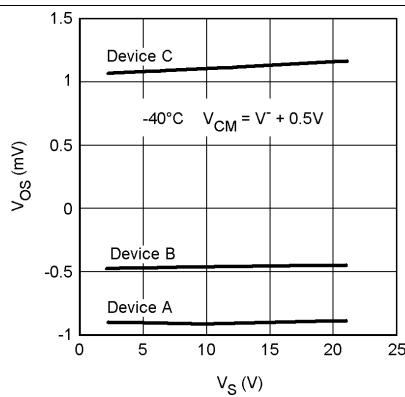


Figure 5. V_{OS} vs. V_S for 3 Representative Units

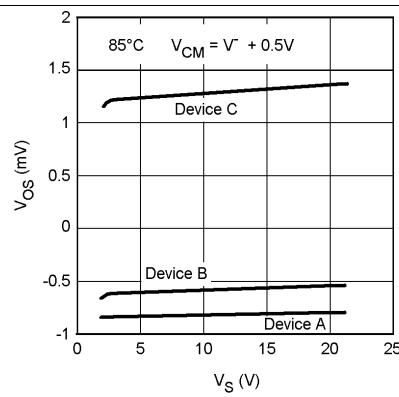
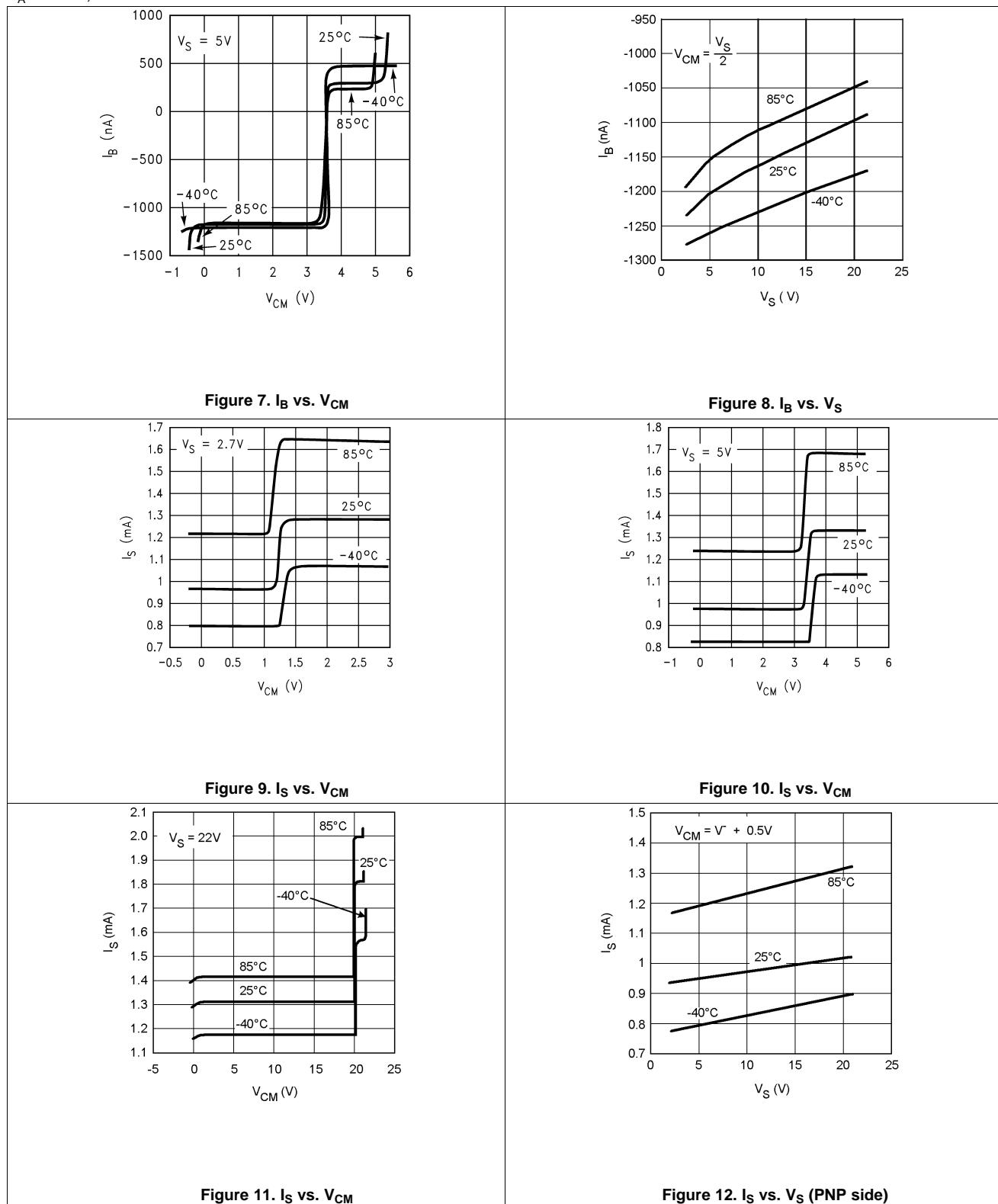


Figure 6. V_{OS} vs. V_S for 3 Representative Units


LM8262

SNOS975G –MAY 2001–REVISED AUGUST 2015

www.ti.com

Typical Performance Characteristics (continued)

$T_A = 25^\circ\text{C}$, Unless Otherwise Noted

Typical Performance Characteristics (continued)

$T_A = 25^\circ\text{C}$, Unless Otherwise Noted



Figure 13. I_S vs. V_S (NPN side)

Figure 14. Gain/Phase vs. Frequency

Figure 15. Unity Gain Frequency vs. V_S

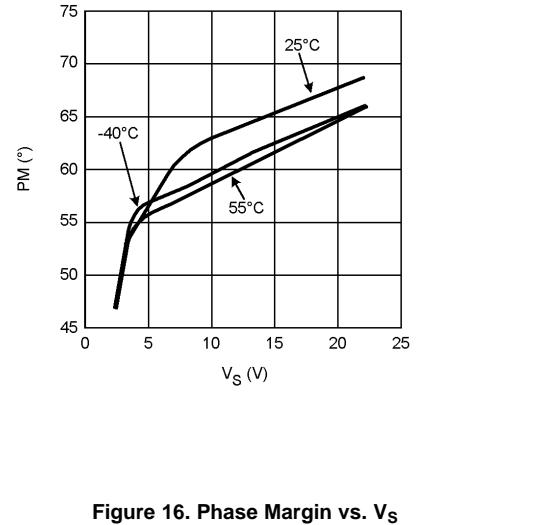


Figure 16. Phase Margin vs. V_S

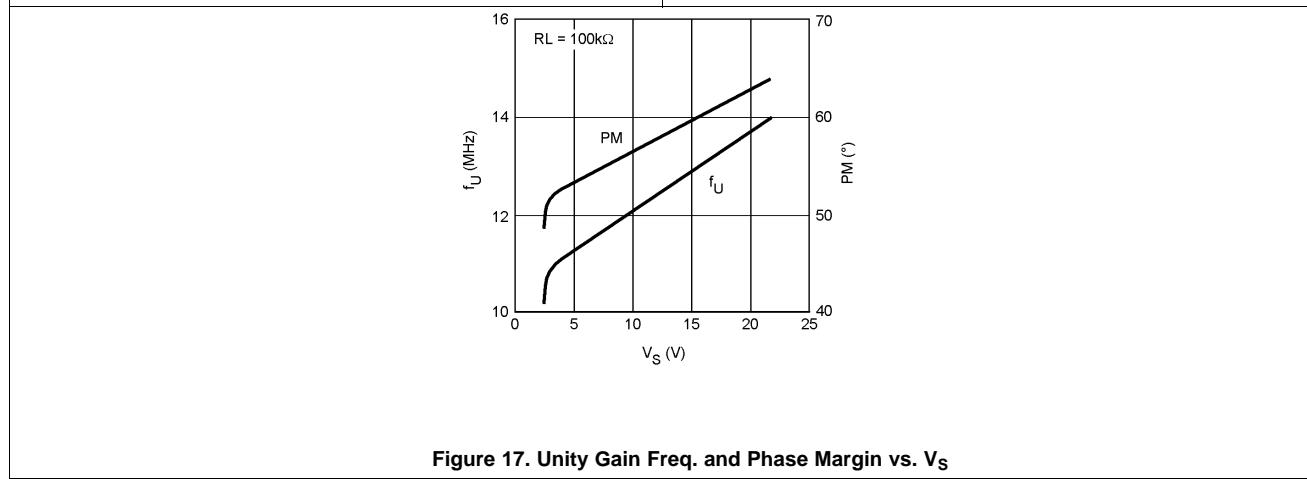


Figure 17. Unity Gain Freq. and Phase Margin vs. V_S

LM8262

SNOS975G – MAY 2001 – REVISED AUGUST 2015

www.ti.com

7 Device and Documentation Support

7.1 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's [Terms of Use](#).

TI E2E™ Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

7.2 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

7.3 Electrostatic Discharge Caution

 These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

7.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

8 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
LM8262MM	NRND	VSSOP	DGK	8	1000	TBD	Call TI	Call TI	-40 to 85	A46	
LM8262MM/NOPB	ACTIVE	VSSOP	DGK	8	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 85	A46	Samples
LM8262MMX/NOPB	ACTIVE	VSSOP	DGK	8	3500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 85	A46	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBsolete: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check <http://www.ti.com/productcontent> for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

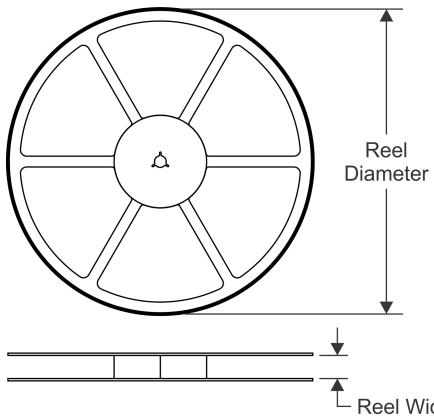
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

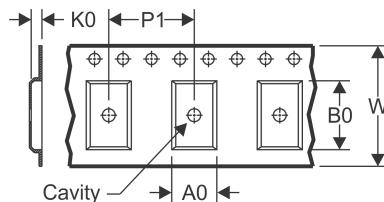
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "—" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

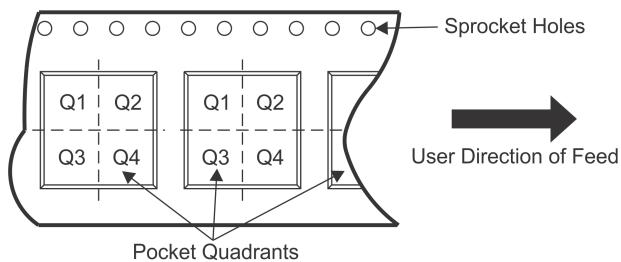

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

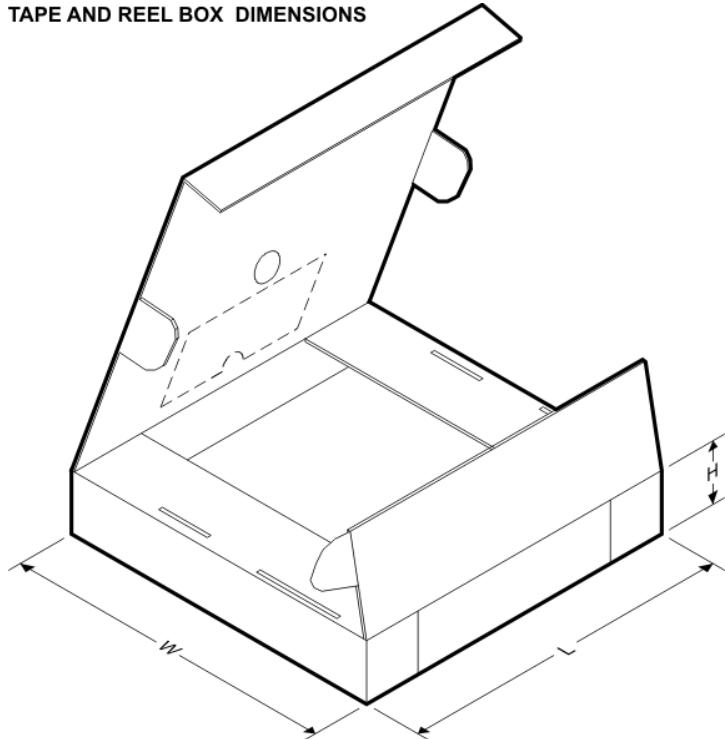
TAPE AND REEL INFORMATION

REEL DIMENSIONS



TAPE DIMENSIONS

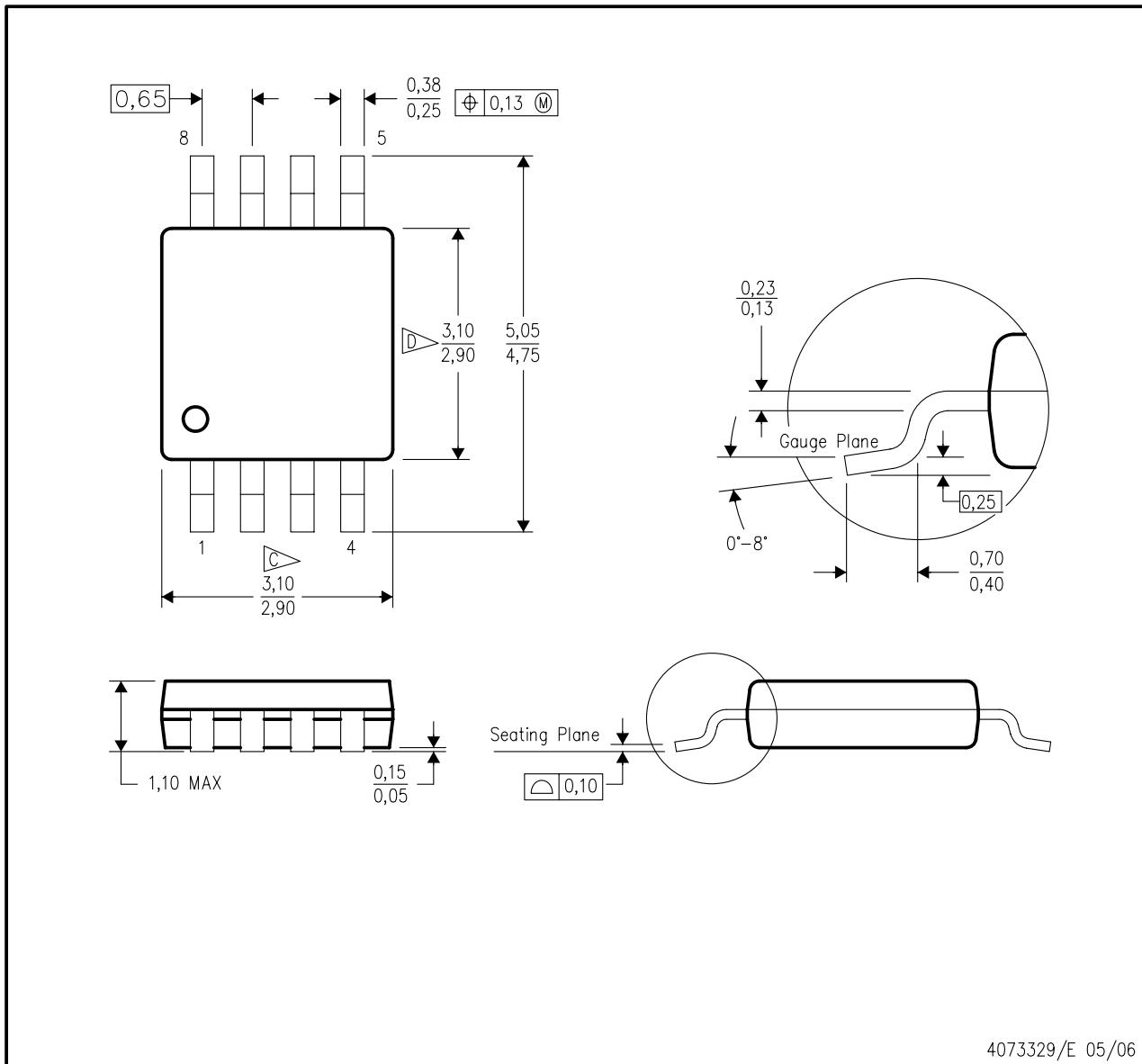
A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM8262MM	VSSOP	DGK	8	1000	178.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM8262MM/NOPB	VSSOP	DGK	8	1000	178.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM8262MMX/NOPB	VSSOP	DGK	8	3500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1

TAPE AND REEL BOX DIMENSIONS


*All dimensions are nominal

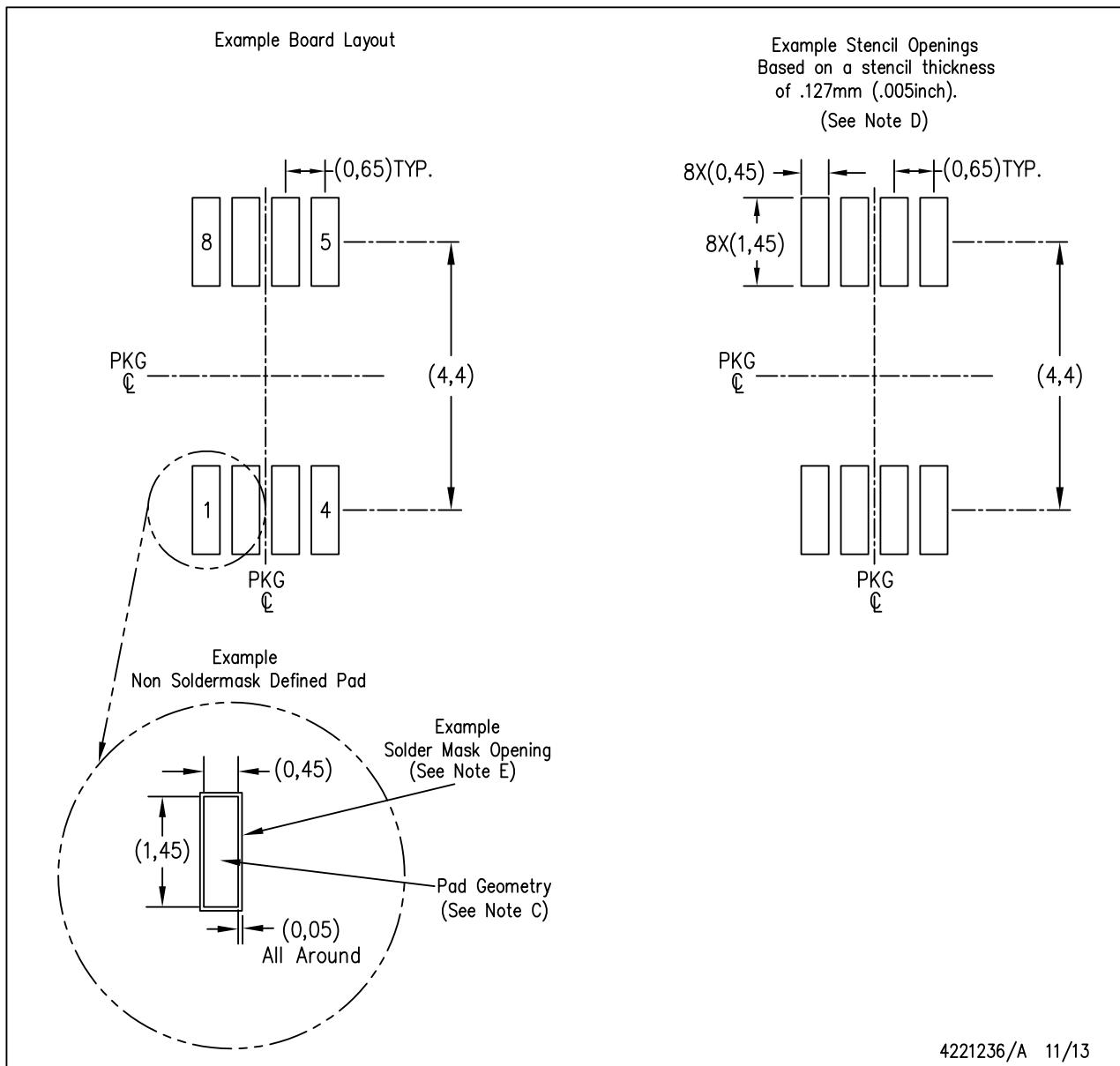
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM8262MM	VSSOP	DGK	8	1000	210.0	185.0	35.0
LM8262MM/NOPB	VSSOP	DGK	8	1000	210.0	185.0	35.0
LM8262MMX/NOPB	VSSOP	DGK	8	3500	367.0	367.0	35.0

MECHANICAL DATA

DGK (S-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

4073329/E 05/06


NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C** Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.
- D** Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
- E. Falls within JEDEC MO-187 variation AA, except interlead flash.

LAND PATTERN DATA

DGK (S-PDSO-G8)

PLASTIC SMALL OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have **not** been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

Audio	www.ti.com/audio
Amplifiers	amplifier.ti.com
Data Converters	dataconverter.ti.com
DLP® Products	www.dlp.com
DSP	dsp.ti.com
Clocks and Timers	www.ti.com/clocks
Interface	interface.ti.com
Logic	logic.ti.com
Power Mgmt	power.ti.com
Microcontrollers	microcontroller.ti.com
RFID	www.ti-rfid.com
OMAP Applications Processors	www.ti.com/omap
Wireless Connectivity	www.ti.com/wirelessconnectivity

Applications

Automotive and Transportation	www.ti.com/automotive
Communications and Telecom	www.ti.com/communications
Computers and Peripherals	www.ti.com/computers
Consumer Electronics	www.ti.com/consumer-apps
Energy and Lighting	www.ti.com/energy
Industrial	www.ti.com/industrial
Medical	www.ti.com/medical
Security	www.ti.com/security
Space, Avionics and Defense	www.ti.com/space-avionics-defense
Video and Imaging	www.ti.com/video

TI E2E Community

e2e.ti.com