Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

ON Semiconductor 2N6052

For any questions, you can email us directly: sales@integrated-circuit.com

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

ON Semiconductor[™]

Darlington Complementary Silicon Power Transistors

...designed for general-purpose amplifier and low frequency switching applications.

• High DC Current Gain —

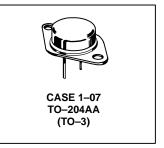
 $h_{FE} = 3500 \text{ (Typ) } @ I_C = 5.0 \text{ Adc}$

• Collector-Emitter Sustaining Voltage — @ 100 mA

 $V_{CEO(sus)} = 80 \text{ Vdc (Min)} - 2N6058$ 100 Vdc (Min) — 2N6052, 2N6059

• Monolithic Construction with Built-In Base-Emitter Shunt Resistors

MAXIMUM RATINGS (1)


Rating	Symbol	2N6058	2N6052 2N6059	Unit
Collector–Emitter Voltage	V _{CEO}	80	100	Vdc
Collector-Base Voltage	V _{CB}	80	100	Vdc
Emitter–Base voltage	V _{EB}	5.0		Vdc
Collector Current — Continuous Peak	I _C	12 20		Adc
Base Current	Ι _Β	0.2		Adc
Total Device Dissipation @T _C = 25°C Derate above 25°C	P _D	150 0.857		Watts W/°C
Derate above 25 C		0.8	557	W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	−65 to +200°C		°C

PNP 2N6052

NPN 2N6058 2N605

*ON Semiconductor Preferred Device

DARLINGTON 12 AMPERE **COMPLEMENTARY SILICON POWER TRANSISTORS** 80-100 VOLTS **150 WATTS**

THERMAL CHARACTERISTICS

Characteristic	Symbol	Rating	Unit
Thermal Resistance, Junction to Case	$R_{ heta JC}$	1.17	°C/W

(1) Indicates JEDEC Registered Data.

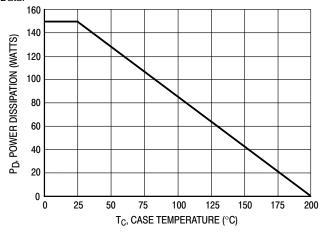
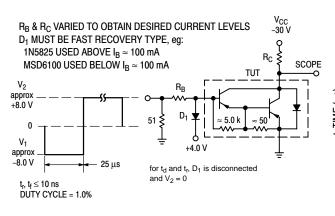


Figure 1. Power Derating

Preferred devices are ON Semiconductor recommended choices for future use and best overall value.


2N6052

*ELECTRICAL CHARACTERISTICS (Tc = 25°C unless otherwise noted

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector–Emitter Sustaining Voltage (2) (I _C = 100 mAdc, I _B = 0)	2N6058 2N6052, 2N6059	V _{CEO(sus)}	80 100	_	Vdc
Collector Cutoff Current $(V_{CE} = 40 \text{ Vdc}, I_B = 0)$ $(V_{CE} = 50 \text{ Vdc}, I_B = 0)$	2N6058 2N6052, 2N6059	I _{CEO}	=	1.0 1.0	mAdc
Collector Cutoff Current $(V_{CE} = Rated \ V_{CEO}, \ V_{BE(off)} = 1.5 \ Vdc)$ $(V_{CE} = Rated \ V_{CEO}, \ V_{BE(off)} = 1.5 \ Vdc, \ T_{C} = 150 ^{\circ}C)$		I _{CEX}	_	0.5 5.0	mAdc
Emitter Cutoff Current $(V_{BE} = 5.0 \text{ Vdc}, I_C = 0)$		I _{EBO}	_	2.0	mAdc
ON CHARACTERISTICS (2)			•		
DC Current Gain ($I_C = 6.0$ Adc, $V_{CE} = 3.0$ Vdc) ($I_C = 12$ Adc, $V_{CE} = 3.0$ Vdc)		h _{FE}	750 100	18,000	_
Collector–Emitter Saturation Voltage ($I_C = 6.0 \text{ Adc}, I_B = 24 \text{ mAdc}$) ($I_C = 12 \text{ Adc}, I_B = 120 \text{ mAdc}$)		V _{CE(sat)}	_	2.0 3.0	Vdc
Base–Emitter Saturation Voltage (I _C = 12 Adc, I _B = 120 mAdc)		V _{BE(sat)}	_	4.0	Vdc
Base–Emitter On Voltage ($I_C = 6.0 \text{ Adc}$, $V_{CE} = 3.0 \text{ Vdc}$)		V _{BE(on)}	_	2.8	Vdc
DYNAMIC CHARACTERISTICS					
$\label{eq:magnitude} \begin{split} & \text{Magnitude of Common Emitter Small-Signal Short Circuit Forward} \\ & \text{Current Transfer Ratio} \\ & \text{(I}_{\text{C}} = 5.0 \text{ Adc, V}_{\text{CE}} = 3.0 \text{ Vdc, f} = 1.0 \text{ MHz)} \end{split}$		h _{fe}	4.0	_	MHz
Output Capacitance $(V_{CB} = 10 \text{ Vdc}, I_E = 0, f = 0.1 \text{ MHz})$	2N6052 2N6058/2N6059	C _{ob}		500 300	pF
Small–Signal Current Gain (I _C = 5.0 Adc, V _{CE} = 3.0 Vdc, f = 1.0 kHz)		h _{fe}	300	_	_

^{*}Indicates JEDEC Registered Data.

⁽²⁾ Pulse test: Pulse Width = 300 μ s, Duty Cycle = 2.0%.

For NPN test circuit reverse diode and voltage polarities.

Figure 2. Switching Times Test Circuit

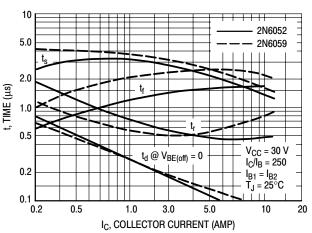


Figure 3. Switching Times

Datasheet of 2N6052 - TRANS PNP DARL 100V 12A TO3

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

2N6052

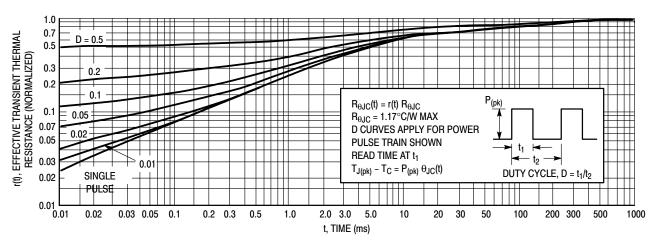


Figure 4. Thermal Response

ACTIVE-REGION SAFE OPERATING AREA

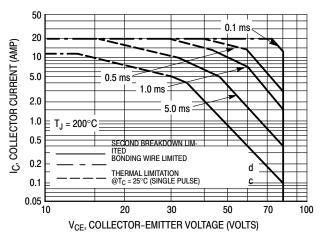


Figure 5. 2N6058

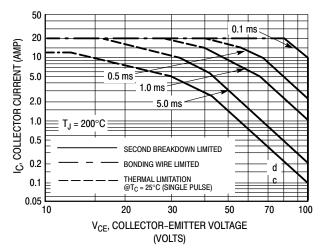


Figure 6. 2N6052, 2N6059

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_C - V_{CE}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figures 5, 6, and 7 is based on $T_{J(pk)} = 200^{\circ}C$; T_C is variable depending on conditions. Second breakdown

pulse limits are valid for duty cycles to 10% provided $T_{J(pk)} \leq 200\,^{\circ}\text{C}$; $T_{J(pk)}$ may be calculated from the data in Figure 4. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

Datasheet of 2N6052 - TRANS PNP DARL 100V 12A TO3

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

2N6052

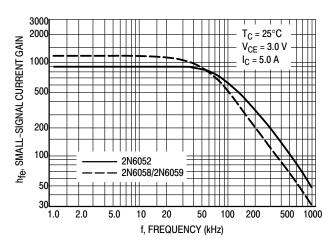


Figure 7. Small-Signal Current Gain

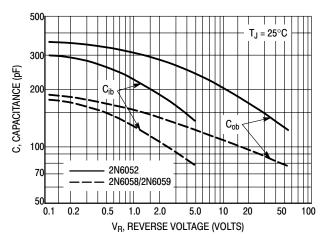


Figure 8. Capacitance

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

2N6052

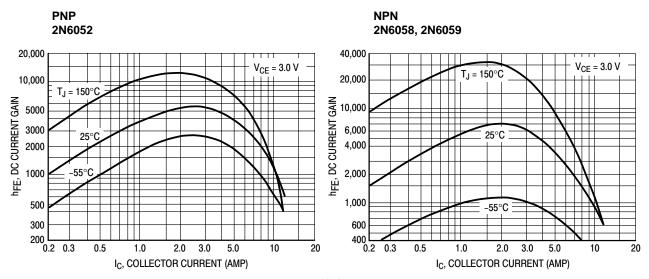


Figure 9. DC Current Gain



Figure 10. Collector Saturation Region

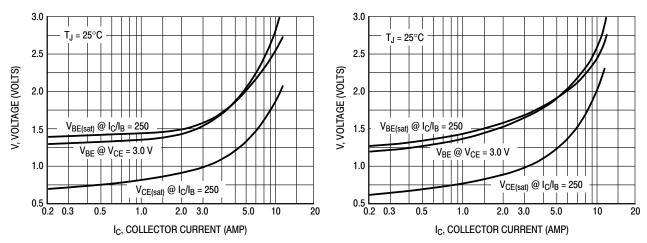
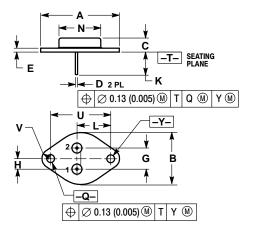


Figure 11. "On" Voltages


Datasheet of 2N6052 - TRANS PNP DARL 100V 12A TO3

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

2N6052

PACKAGE DIMENSIONS

CASE 1-07 TO-204AA (TO-3) **ISSUE Z**

NOTES:

- OTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. ALL RULES AND NOTES ASSOCIATED WITH REFERENCED TO-204AA OUTLINE SHALL APPLY.

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	1.550 REF		39.37 REF		
В		1.050		26.67	
С	0.250	0.335	6.35	8.51	
D	0.038	0.043	0.97	1.09	
Е	0.055	0.070	1.40	1.77	
G	0.430 BSC		10.92 BSC		
Н	0.215 BSC		5.46 BSC		
K	0.440	0.480	11.18	12.19	
L	0.665	BSC	16.89 BSC		
N		0.830		21.08	
Q	0.151	0.165	3.84	4.19	
U	1.187 BSC		30.15 BSC		
٧	0.131	0.188	3.33	4.77	

STYLE 1: PIN 1. BASE 2. EMITTER CASE: COLLECTOR

Distributor of ON Semiconductor: Excellent Integrated System LimitedDatasheet of 2N6052 - TRANS PNP DARL 100V 12A TO3

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

2N6052

Notes

Datasheet of 2N6052 - TRANS PNP DARL 100V 12A TO3

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

2N6052

are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes ON Semiconductor and without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support

German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET)

Email: ONlit-german@hibbertco.com

French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)

Email: ONlit-french@hibbertco.com

English Phone: (+1) 303-308-7142 (Mon-Fri 12:00pm to 5:00pm GMT)

Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781

*Available from Germany, France, Italy, UK, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST)

Email: ONlit-spanish@hibbertco.com

Toll-Free from Mexico: Dial 01-800-288-2872 for Access -

then Dial 866-297-9322

ASIA/PACIFIC: LDC for ON Semiconductor - Asia Support

Phone: 1–303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)
Toll Free from Hong Kong & Singapore:

001-800-4422-3781 Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center

4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031

Phone: 81-3-5740-2700

Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative