

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

ON Semiconductor MC100EL14DW

For any questions, you can email us directly: <u>sales@integrated-circuit.com</u>

Distributor of ON Semiconductor: Excellent Integrated System Limited Datasheet of MC100EL14DW - IC CLK BUFFER 2:5 1GHZ 20SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

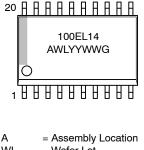
MC100EL14

5 V ECL 1:5 Clock Distribution Chip

Description

The MC100EL14 is a low skew 1:5 clock distribution chip designed explicitly for low skew clock distribution applications. The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a 0.01 μ F capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V_{BB} should be left open.

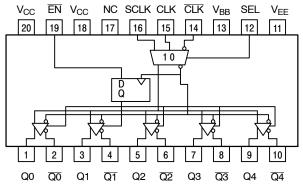
The EL14 features a multiplexed clock input to allow for the distribution of a lower speed scan or test clock along with the high speed system clock. When LOW (or left open and pulled LOW by the input pulldown resistor) the SEL pin will select the differential clock input.


The common enable $(\overline{\text{EN}})$ is synchronous so that the outputs will only be enabled/disabled when they are already in the LOW state. This avoids any chance of generating a runt clock pulse when the device is enabled/disabled as can happen with an asynchronous control. The internal flip flop is clocked on the falling edge of the input clock, therefore all associated specification limits are referenced to the negative edge of the clock input.

Features

- 50 ps Output-to-Output Skew
- Synchronous Enable/Disable
- Multiplexed Clock Input
- The 100 Series Contains Temperature Compensation
- PECL Mode Operating Range: V_{CC} = 4.2 V to 5.7 V with V_{EE} = 0 V
- NECL Mode Operating Range: $V_{CC} = 0 V$ with $V_{EE} = -4.2 V$ to -5.7 V
- Q Output will Default LOW with Inputs Open or at V_{EE}
- Internal Input Pull-down Resistors on All Inputs, Pull-up Resistors on Inverted Inputs
- This Device is Pb-Free, Halogen Free and is RoHS Compliant

MARKING DIAGRAM


WL	= Wafer Lot
YY	= Year
WW	= Work Week
G	= Pb-Free Package

*For additional marking information, refer to Application Note <u>AND8002/D</u>.

ORDERING INFORMATION

Device	Package	Shipping
MC100EL14DWG	SOIC-20 WB (Pb-Free)	38 Units/Tube

* All $V_{CC}\,\text{pins}$ are tied together on the die.

Warning: All V_{CC} and V_{EE} pins must be externally connected to Power Supply to guarantee proper operation.

Figure 1. Logic Diagram and Pinout Assignment

Table 1. PIN DESCRIPTION

PIN	FUNCTION			
CLK, CLK	ECL Diff Clock Inputs			
SCLK	ECL Scan Clock Input			
EN	ECL Sync Enable			
SEL	ECL Clock Select Input			
$Q_{0-4,} \overline{Q_{0-4}}$	ECL Diff Clock Outputs			
V _{BB}	Reference Voltage Output			
V _{CC}	Positive Supply			
V _{EE}	Negative Supply			
NC	No Connect			

Table 2. FUNCTION TABLE

CLK*	SCLK*	SEL*	EN*	Q
L H X X X	X L H X	L H H X	L L L H	L H L L (Note)

1. On next negative transition of CLK or SCLK **Pins will default low when left open.

Characteristics	Value
Internal Input Pulldown Resistor	75 kΩ
Internal Input Pullup Resistor	75 kΩ
ESD Protection Human Body Model Machine Model Charge Device Model	> 2 kV > 200 V > 4 kV
Moisture Sensitivity (Note 2) Pb-Free	Level 3
Flammability Rating Oxyg	en Index: 28 to 34 UL 94 V-0 @ 0.125 in
Transistor Count	303 Devices
Meets or Exceeds JEDEC Spec EIA/JESD78 IC	CLatchup Test

Table 3. ATTRIBUTES

2. For additional Moisture Sensitivity information, refer to Application Note AND8003/D.

Table 4. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	PECL Mode Power Supply	V _{EE} = 0 V		8	V
V _{EE}	NECL Mode Power Supply	$V_{CC} = 0 V$		-8	V
VI	PECL Mode Input Voltage NECL Mode Input Voltage	V _{EE} = 0 V V _{CC} = 0 V	$\begin{array}{l} V_{I} \leq V_{CC} \\ V_{I} \geq V_{EE} \end{array}$	6 -6	V
I _{out}	Output Current	Continuous Surge		50 100	mA
I _{BB}	V _{BB} Sink/Source			±0.5	mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	SOIC-20 WB SOIC-20 WB	90 60	°C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	SOIC-20 WB	30 to 35	°C/W
T _{sol}	Wave Solder (Pb-Free)	< 2 to 3 sec @ 260°C		265	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 5. 100EL SERIES PECL DC CHARACTERISTICS (V_{CC} = 5.0 V; V_{EE} = 0.0 V (Note 1))

			-40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		32	40		32	40		34	42	mA
V _{OH}	Output HIGH Voltage (Note 2)	3915	3995	4120	3975	4045	4120	3975	4050	4120	mV
V _{OL}	Output LOW Voltage (Note 2)	3170	3305	3445	3190	3295	3380	3190	3295	3380	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	3835		4120	3835		4120	3835		4120	mV
VIL	Input LOW Voltage (Single-Ended)	3190		3525	3190		3525	3190		3525	mV
V_{BB}	Output Voltage Reference	3.62		3.74	3.62		3.74	3.62		3.74	V
V _{IHCMR}	Common Mode Range (Differential Configuration) (Note 3) V _{PP} < 500 mV V _{PP} ≥ 500 mV	1.3 1.5		4.6 4.6	1.2 1.4		4.6 4.6	1.2 1.4		4.6 4.6	V
I _{IH}	Input HIGH Current			150			150			150	μA
IIL	Input LOW Current	0.5			0.5			0.5			μA

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +0.8 V / -0.5 V.

2. Outputs are terminated through a 50 Ω resistor to V_{CC} – 2.0 V.

VI_{ICMR} min varies 1:1 with V_{EE}, V_{IICMR} max varies 1:1 with V_{CC}. The V_{IICMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP}(min) and 1 V.

Table 6. 100EL SERIES NECL DC CHARACTERISTICS (V_{CC} = 0.0 V; V_{EE} = -5.0 V (Note 1))

			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		32	40		32	40		34	42	mA
V _{OH}	Output HIGH Voltage (Note 2)	-1085	-1005	-880	-1025	-955	-880	-1025	-955	-880	mV
V _{OL}	Output LOW Voltage (Note 2)	-1830	-1695	-1555	-1810	-1705	-1620	-1810	-1705	-1620	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	-1165		-880	-1165		-880	-1165		-880	mV
V _{IL}	Input LOW Voltage (Single-Ended)	-1810		-1475	-1810		-1475	-1810		-1475	mV
V _{BB}	Output Voltage Reference	-1.38		-1.26	-1.38		-1.26	-1.38		-1.26	V
VIHCMR	Common Mode Range (Differential Configuration) (Note 3) $V_{PP} < 500 \text{ mV}$ $V_{PP} \ge 500 \text{ mV}$	-3.7 -3.5		-0.4 -0.4	-3.8 -3.6		-0.4 -0.4	-3.8 -3.6		-0.4 -0.4	V
I _{IH}	Input HIGH Current			150			150			150	μA
IIL	Input LOW Current	0.5			0.5			0.5			μA

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Input and output parameters vary 1:1 with V_{CC}.V_{EE} can vary +0.8 V / -0.5 V.

2. Outputs are terminated through a 50 Ω resistor to V_{CC} – 2.0 V.

V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP}(min)and 1 V.

			-40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Toggle Frequency (See Figure 2, f _{MAX} /Jitter)		1			1			1		GHz
t _{PLH} t _{PHL}	Prop CLK to Q (Diff) Delay CLK to Q (SE) SCLK to Q	520 470 470		720 770 770	580 530 530	680 680 680	780 830 830	630 580 580		830 880 880	ps
t _{SKEW}	Part-to-Part Skew Within-Device Skew (Note 2)			200 50			200 50			200 50	ps
ţ JITTER	Random Clock Jitter (RMS) @ 1 GHz (See Figure 2, f _{MAX} /Jitter)		1			1			1		ps
t _S	Setup Time EN	0			0	-133		0			ps
t _H	Hold Time EN	250			250	140		250			ps
V _{PP}	Input Swing (Note 3)	150		1000	150		1000	150		1000	mV
t _r t _f	Output Rise/Fall Times Q (20%-80%)	230		500	230		500	230		500	ps

Table 7. AC CHARACTERISTICS ($V_{CC} = 5.0 \text{ V}$; $V_{EE} = 0.0 \text{ V}$ or $V_{CC} = 0.0 \text{ V}$; $V_{EE} = -5.0 \text{ V}$ (Note 1))

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. V_{EE} can vary +0.8 V / -0.5 V. Outputs are terminated through a 50 Ω resistor to V_{CC} – 2.0 V.

2. Skews are specified for identical LOW-to-HIGH or HIGH-to-LOW transitions.

3. V_{PP} (min) is the minimum input swing for which AC parameters guaranteed. The device has a DC gain of \approx 40.

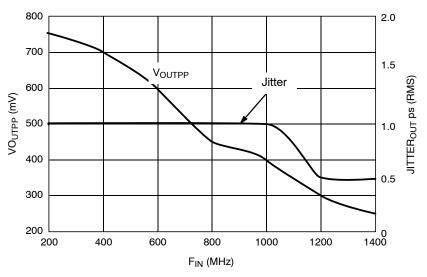
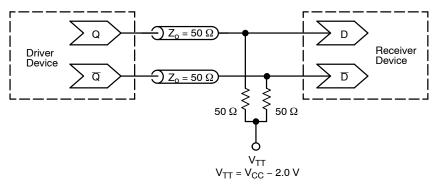
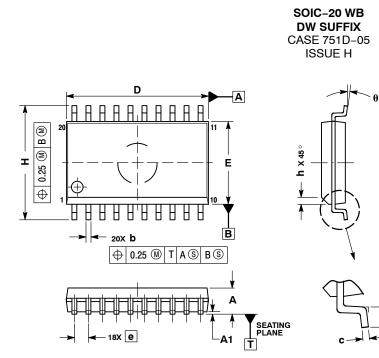


Figure 2. Output Voltage Amplitude / RMS Jitter vs. Input Frequency at Ambient Temperature (Typical)

Distributor of ON Semiconductor: Excellent Integrated System Limited Datasheet of MC100EL14DW - IC CLK BUFFER 2:5 1GHZ 20SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

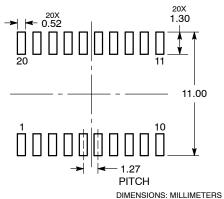
MC100EL14




Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note <u>AND8020/D</u> – Termination of ECL Logic Devices)

Resource Reference of Application Notes

AN1405/D	-	ECL Clock Distribution Techniques
AN1406/D	-	Designing with PECL (ECL at +5.0 V)
AN1503/D	-	ECLinPS [™] I/O SPiCE Modeling Kit
AN1504/D	-	Metastability and the ECLinPS Family
AN1568/D	-	Interfacing Between LVDS and ECL
AN1672/D	-	The ECL Translator Guide
AND8001/D	-	Odd Number Counters Design
AND8002/D	-	Marking and Date Codes
AND8020/D	-	Termination of ECL Logic Devices
AND8066/D	-	Interfacing with ECLinPS
AND8090/D	-	AC Characteristics of ECL Devices


PACKAGE DIMENSIONS

- NOTES:
 DIMENSIONS ARE IN MILLIMETERS.
 INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.
 DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION.
- 4. 5.
- PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS							
DIM	MIN	MAX						
Α	2.35	2.65						
A1	0.10	0.25						
b	0.35	0.49						
C	0.23	0.32						
D	12.65	12.95						
Е	7.40	7.60						
е	1.27	BSC						
Η	10.05	10.55						
h	0.25	0.75						
L	0.50	0.90						
θ	0 °	7 °						

RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor for unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out d, directly or indirectly, any claim of personal injury or death associated with such unintended or

PUBLICATION ORDERING INFORMATION

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada

Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA

LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor

Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

MC100EL14/D