

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

[EPCOS \(TDK\)](#)
[B39171B3804U210](#)

For any questions, you can email us directly:

sales@integrated-circuit.com

SAW Components

Data Sheet B3804

Data Sheet

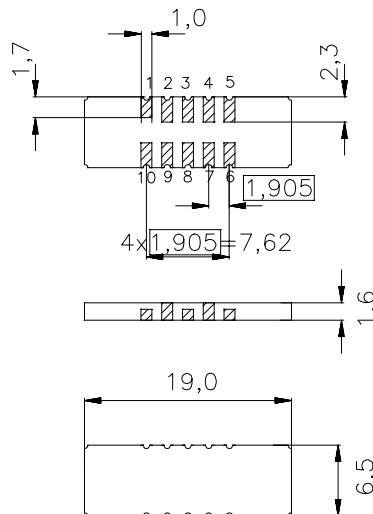
SAW Components

B3804

Low-Loss Filter

170,2 MHz

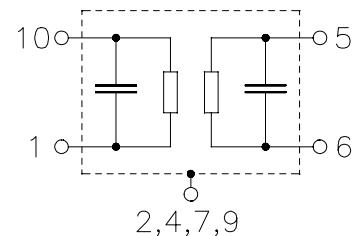
Data Sheet


Features

- Low-loss IF filter for GSM base station
- Temperature stable
- Ceramic SMD package

Terminals

- Gold plated


Ceramic package **DCC18**

Dimensions in mm, approx. weight 0,8 g

Pin configuration

10	Input or balanced input
1	Input ground or balanced input
5	Output or balanced output
6	Output ground or balanced output
3, 8	Ground
2, 4, 7, 9	Case ground

Type	Ordering code	Marking and Package according to	Packing according to
B3804	B39171-B3804-U210	C61157-A7-A54	F61074-V8081-Z000

Electrostatic Sensitive Device (ESD)

Maximum ratings

Operable temperature range	T	-40 / +85	°C	
Storage temperature range	T_{stg}	-40 / +85	°C	
DC voltage	V_{DC}	0	V	
Source power	P_s	10	dBm	

SAW Components	B3804
Low-Loss Filter	170,2 MHz

Data Sheet

Characteristics

Operating temperature range: $T = -10 \dots 85^\circ\text{C}$

Terminating source impedance: $Z_S = 50 \Omega$ unbalanced or 200Ω balanced
and matching network

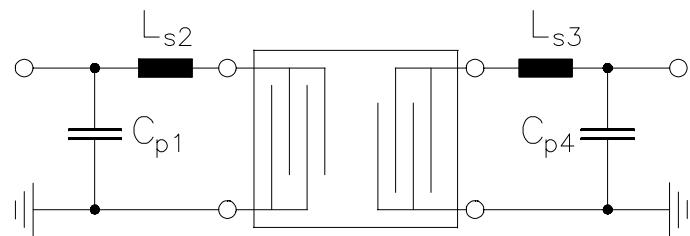
Terminating load impedance: $Z_L = 50 \Omega$ unbalanced or 200Ω balanced
and matching network

		min.	typ.	max.	
Nominal frequency	f_N	—	170,2	—	MHz
Minimum insertion attenuation	α_{\min}	—	6,5	7,5	dB
Amplitude ripple (p-p)	$\Delta\alpha$	—	0,35	0,7	dB
	$f_N \pm 135 \text{ kHz}$				
Group delay ripple (p-p)	$\Delta\tau$	—	0,35	0,7	μs
	$f_N \pm 135 \text{ kHz}$				
Relative attenuation (relative to α_{\min})	α_{rel}				
$f_N \pm 0,35 \text{ MHz} \dots$	$f_N \pm 0,6 \text{ MHz}$	7	11	—	dB
$f_N \pm 0,6 \text{ MHz} \dots$	$f_N \pm 0,8 \text{ MHz}$	24	30	—	dB
$f_N \pm 0,8 \text{ MHz} \dots$	$f_N \pm 1,6 \text{ MHz}$	40	45	—	dB
$f_N \pm 1,6 \text{ MHz} \dots$	$f_N \pm 20,0 \text{ MHz}$	43	50	—	dB
$f_N \pm 20,0 \text{ MHz} \dots$	$f_N \pm 35,0 \text{ MHz}$	50	55	—	dB
$f_N \pm 35,0 \text{ MHz} \dots$	$f_N \pm 75,0 \text{ MHz}$	45	60	—	dB
$f_N + 23,5 \text{ MHz} \dots$	$f_N + 23,7 \text{ MHz}$	55	60	—	dB
$f_N + 75,0 \text{ MHz} \dots$	$f_N + 2,0 \text{ GHz}$	40	60	—	dB
VSWR (Input and output)	$f_N \pm 135 \text{ kHz}$	—	1,5	2,0	
Temperature coefficient of frequency ¹⁾	TC_f	—	-0,036	—	ppm/K ²
Turnover temperature	T_0	—	45	—	°C

¹⁾ Temperature dependance of f_c : $f_c(T_A) = f_c(T_0)(1 + TC_f(T_A - T_0)^2)$

SAW Components

B3804


Low-Loss Filter

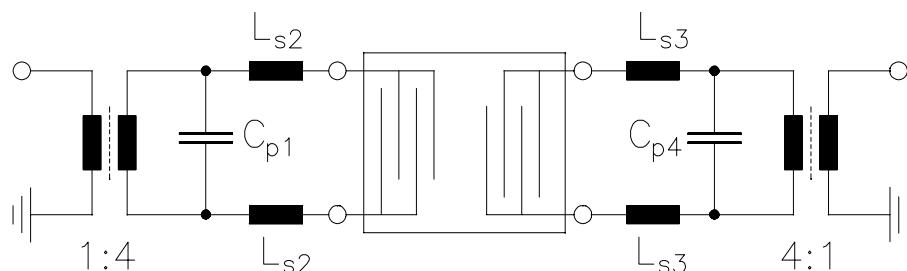
170,2 MHz

Data Sheet

Matching network to 50 Ω unbalanced

(Element values depend upon PCB layout)

$C_{p1} = 36,3 \text{ pF}$

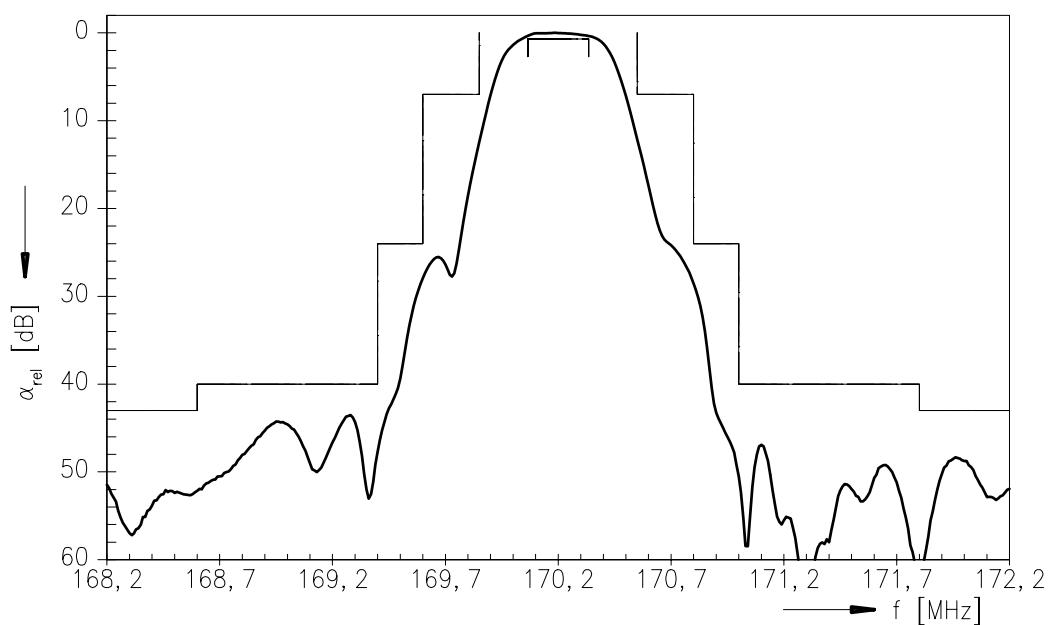
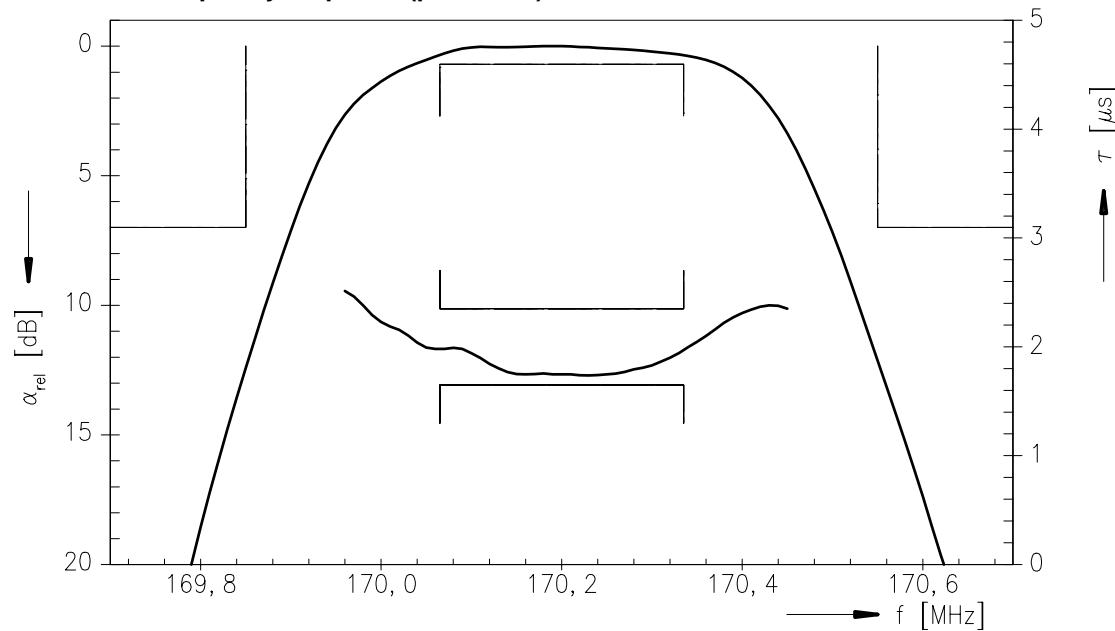

$L_{s2} = 39,0 \text{ nH}$

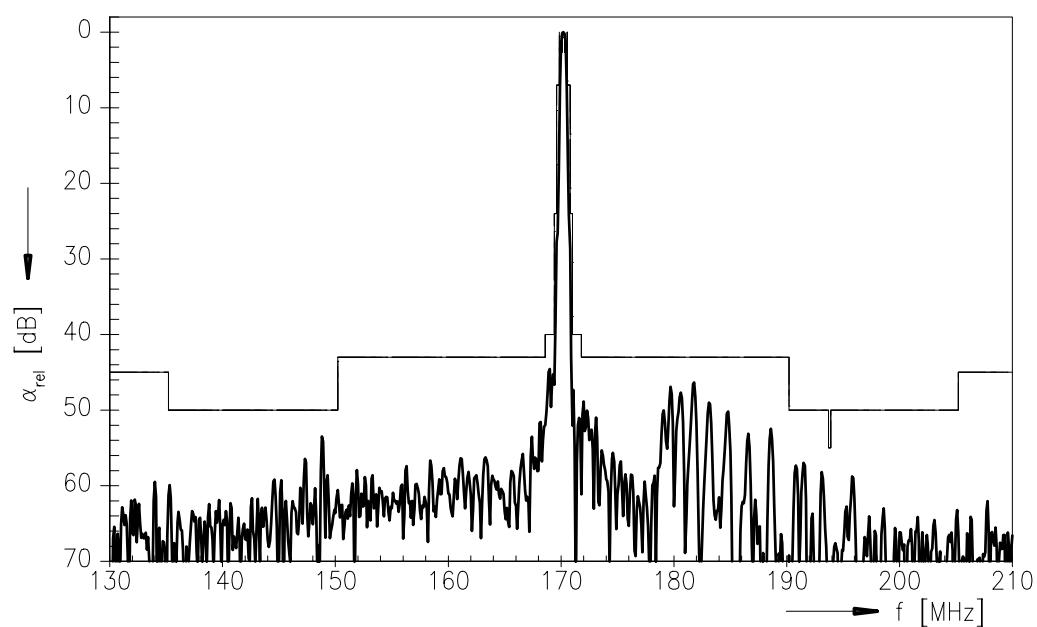
$L_{s3} = 39,0 \text{ nH}$

$C_{p4} = 36,3 \text{ pF}$

Matching network to 200 Ω balanced

(Element values depend upon PCB layout)


$C_{p1} = 17,7 \text{ pF}$

$L_{s2} = 27,0 \text{ nH}$

$L_{s3} = 27,0 \text{ nH}$

$C_{p4} = 17,7 \text{ pF}$

SAW Components**B3804****Low-Loss Filter****170,2 MHz****Data Sheet****Normalized frequency response****Normalized frequency response (passband)**

SAW Components**B3804****Low-Loss Filter****170,2 MHz****Data Sheet****Transfer function**

SAW Components	B3804
Low-Loss Filter	170,2 MHz
Data Sheet	

Published by EPCOS AG**Surface Acoustic Wave Components Division, SAW MC IS****P.O. Box 80 17 09, D-81617 München**

© EPCOS AG 1999. All Rights Reserved.

As far as patents or other rights of third parties are concerned, liability is only assumed for components per se, not for applications, processes and circuits implemented within components or assemblies.

The information describes the type of component and shall not be considered as assured characteristics.

Terms of delivery and rights to change design reserved.

For questions on technology, prices and delivery please contact the sales offices of EPCOS AG or the international representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our sales offices.