Excellent Integrated System Limited Stocking Distributor Click to view price, real time Inventory, Delivery & Lifecycle Information: <u>Texas Instruments</u> <u>SN74AVC2T45DCTR</u> For any questions, you can email us directly: sales@integrated-circuit.com Datasheet of SN74AVC2T45DCTR - IC BUS TXRX TRI-ST 2BIT SM8 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com SN74AVC2T45 SCES531K - DECEMBER 2003 - REVISED APRIL 2015 # SN74AVC2T45 2-Bit, 2-Supply, Bus Transceiver With Configurable Level-Shifting and Translation and 3-State Outputs #### 1 Features - Available in the Texas Instruments NanoFree[™] Package - V_{CC} Isolation - 2-Rail Design - I/Os Are 4.6 V Tolerant - · Partial-Power-Down Mode Operation - Max Data Rates - 500 Mbps (1.8 V to 3.3 V) - 320 Mbps (<1.8 V to 3.3 V) - 320 Mbps (Level-Shifting to 2.5 V or 1.8 V) - 280 Mbps (Level-Shifting to 1.5 V) - 240 Mbps (Level-Shifting to 1.2 V) - Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II - ESD Protection Exceeds JESD 22 #### 2 Applications - Smartphones - Servers - Desktop PCs and Notebooks - · Other Portable Devices #### 3 Description This 2-bit noninverting bus transceiver uses two separate configurable power-supply rails. The A ports are designed to track $V_{\rm CCA}$ and accepts any supply voltage from 1.2 V to 3.6 V. The B ports are designed to track $V_{\rm CCB}$ and accepts any supply voltage from 1.2 V to 3.6 V. This allows for universal low-voltage bidirectional translation and level-shifting between any of the 1.2-V, 1.5-V, 1.8-V, 2.5-V, and 3.3-V voltage nodes. The SN74AVC2T45 is designed for asynchronous communication between two data buses. The logic levels of the direction-control (DIR pin) input activate either the B-port outputs or the A-port outputs. The device transmits data from the A bus to the B bus when the B-port outputs are activated and from the B bus to the A bus when the A-port outputs are activated. The input circuitry on both A and B ports always is active and must have a logic HIGH or LOW level applied to prevent excess leakage current on the internal CMOS structure. ## **Device Information**(1) | PART NUMBER | PACKAGE | BODY SIZE (NOM) | |-------------|-----------|-------------------| | | SSOP (8) | 2.95 mm × 2.80 mm | | SN74AVC2T45 | VSSOP (8) | 2.30 mm × 2.00 mm | | | DSBGA (8) | 1.89 mm × 0.89 mm | (1) For all available packages, see the orderable addendum at the end of the data sheet. #### **Logic Diagram (Positive Logic)** (1) Pin numbers are for the DCT and DCU packages only. Datasheet of SN74AVC2T45DCTR - IC BUS TXRX TRI-ST 2BIT SM8 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com #### SN74AVC2T45 SCES531K - DECEMBER 2003 - REVISED APRIL 2015 www.ti.com | Ta | L | ۱. | ~£ | 0- | - | nts | |-----|---|----|----|----|-----|-----| | 1 a | D | ıe | OT | La | nte | nts | | 1 | Features 1 | 8 | Detailed Description | 13 | |---|---|----|--------------------------------------|----| | 2 | Applications 1 | | 8.1 Overview | | | 3 | Description 1 | | 8.2 Functional Block Diagram | 13 | | 4 | Revision History2 | | 8.3 Feature Description | 14 | | 5 | Pin Configuration and Functions | | 8.4 Device Functional Modes | 14 | | 6 | Specifications4 | 9 | Application and Implementation | 15 | | • | 6.1 Absolute Maximum Ratings 4 | | 9.1 Application Information | 15 | | | 6.2 ESD Ratings | | 9.2 Typical Applications | 15 | | | 6.3 Recommended Operating Conditions | 10 | Power Supply Recommendations | 18 | | | 6.4 Thermal Information | 11 | Layout | | | | 6.5 Electrical Characteristics | | 11.1 Layout Guidelines | 18 | | | 6.6 Switching Characteristics: V _{CCA} = 1.2 V | | 11.2 Layout Example | 18 | | | 6.7 Switching Characteristics: V _{CCA} = 1.5 V ±0.1 V 7 | 12 | Device and Documentation Support | 19 | | | 6.8 Switching Characteristics: V _{CCA} = 1.8 V ±0.15 V 8 | | 12.1 Documentation Support | 19 | | | 6.9 Switching Characteristics: V _{CCA} = 2.5 V ±0.2 V 8 | | 12.2 Trademarks | 19 | | | 6.10 Switching Characteristics: V _{CCA} = 3.3 V ±0.3 V 9 | | 12.3 Electrostatic Discharge Caution | 19 | | | 6.11 Operating Characteristics9 | | 12.4 Glossary | 19 | | | 6.12 Typical Characteristics | 13 | Mechanical, Packaging, and Orderable | | | 7 | Parameter Measurement Information 12 | | Information | 19 | ## 4 Revision History #### Changes from Revision J (June 2007) to Revision K **Page** Added Pin Configuration and Functions section, ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section Product Folder Links: SN74AVC2T45 Submit Documentation Feedback Datasheet of SN74AVC2T45DCTR - IC BUS TXRX TRI-ST 2BIT SM8 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com www.ti.com SN74AVC2T45 SCES531K - DECEMBER 2003 - REVISED APRIL 2015 ## 5 Pin Configuration and Functions #### YZP Package 8-Pin DSBGA (Top View) #### **Pin Functions** | | PIN | | | |------|---------------------|----------------|---| | NAME | NO.
(SSOP/VSSOP) | NO.
(DSBGA) | DESCRIPTION | | VCCA | 1 | A1 | Supply Voltage A | | VCCB | 8 | A2 | Supply Voltage B | | GND | 4 | D1 | Ground | | A1 | 2 | B1 | Output or input depending on state of DIR. Output level depends on V _{CCA} . | | A2 | 3 | C1 | Output or input depending on state of DIR. Output level depends on V _{CCA} . | | B1 | 7 | B2 | Output or input depending on state of DIR. Output level depends on V _{CCB} . | | B2 | 6 | C2 | Output or input depending on state of DIR. Output level depends on V _{CCB} . | | DIR | 5 | D2 | Direction Pin, Connect to GND or to VCCA | Datasheet of SN74AVC2T45DCTR - IC BUS TXRX TRI-ST 2BIT SM8 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com #### SN74AVC2T45 SCES531K - DECEMBER 2003 - REVISED APRIL 2015 www.ti.com ## 6 Specifications #### 6.1 Absolute Maximum Ratings⁽¹⁾ over operating free-air temperature range (unless otherwise noted) | | 5 1 5 7 | | MIN | MAX | UNIT | | |------------------|---|--------------------|------|------------------------|------|--| | V_{CCA} | Supply voltage | | -0.5 | 4.6 | V | | | | | IO ports (A port) | -0.5 | 4.6 | | | | V_{I} | Input voltage (2) | IO ports (B port) | -0.5 | 4.6 | V | | | | | Control inputs | -0.5 | 4.6 | | | | | Voltage applied to any output in the high-impedance or power-off state ⁽²⁾ | A port | -0.5 | 4.6 | .,, | | | Vo | off state ⁽²⁾ | B port | -0.5 | 4.6 | V | | | | Valence and in the birth and a (2) (3) | A port | -0.5 | V _{CCA} + 0.5 | V | | | Vo | Voltage applied to any output in the high or low state (2) (3) | B port | -0.5 | V _{CCB} + 0.5 | V | | | I _{IK} | Input clamp current | V _I < 0 | | -50 | mA | | | I _{OK} | Output clamp current | V _O < 0 | | -50 | mA | | | Io | Continuous output current | • | | ±50 | mA | | | | Continuous current through VCCA, VCCB, or GND | | | ±100 | mA | | | T _{stg} | Storage temperature | | -65 | 150 | °C | | ⁽¹⁾ Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions*. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. #### 6.2 ESD Ratings | | | | VALUE | UNIT | |--------------------|-------------------------|---|-------|------| | | | Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1) | ±8000 | | | V _(ESD) | Electrostatic discharge | Charged-device model (CDM), per JEDEC specification JESD22-C101 (2) | ±1000 | V | | | | Machine Model (MM), Per JEDEC specification JESD22-A115-A | ±200 | | Product Folder Links: SN74AVC2T45 Submit Documentation Feedback Copyright © 2003–2015, Texas Instruments Incorporated ⁽²⁾ The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed. ³⁾ The output positive-voltage rating may be exceeded up to 4.6 V maximum if the output current ratings are observed. ⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. ⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. www.ti.com ## **Distributor of Texas Instruments: Excellent Integrated System Limited** Datasheet of SN74AVC2T45DCTR - IC BUS TXRX TRI-ST 2BIT SM8 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com SN74AVC2T45 SCES531K - DECEMBER 2003-REVISED APRIL 2015 ## 6.3 Recommended Operating Conditions (1)(2)(3) | | | | V _{CCI} ⁽⁴⁾ | V _{CCO} (5) | MIN | MAX | UNIT | |------------------|-----------------------------|--|---------------------------------|----------------------|--|--|------| | V _{CCA} | Supply voltage | | | | 1.2 | 3.6 | V | | V _{CCB} | Supply voltage | | | | 1.2 | 3.6 | V | | | High-level | (2) | 1.2 V to 1.95 V | | V _{CCI} ⁽⁴⁾ × 0.65 | | | | V_{IH} | input voltage | Data inputs ⁽²⁾ | 1.95 V to 2.7 V | | 1.6 | | V | | | | | 2.7 V to 3.6 V | | 2 | | | | | Low-level | - (2) | 1.2 V to 1.95 V | | | V _{CCI} ⁽⁴⁾ × 0.35 | | | V_{IL} | input voltage | Data inputs ⁽²⁾ | 1.95 V to 2.7 V | | | 0.7 | V | | | | | 2.7 V to 3.6 V | | | 0.8 | | | | | | 1.2 V to 1.95 V | | $V_{CCA} \times 0.65$ | | | | V_{IH} | High-level
input voltage | DIR (referenced to V _{CCA}) ⁽³⁾ | 1.95
V to 2.7 V | | 1.6 | | V | | | pat remage | (Leterenteed to TCCA) | 2.7 V to 3.6 V | | 2 | | | | | | DID | 1.2 V to 1.95 V | | | $V_{CCA} \times 0.35$ | | | V_{IL} | Low-level
input voltage | DIR (referenced to V _{CCA}) ⁽³⁾ | 1.95 V to 2.7 V | | | 0.7 | V | | | input voltage | (Leterenteed to TCCA) | 2.7 V to 3.6 V | | | 0.8 | | | V_{I} | Input voltage | | | | 0 | 3.6 | V | | Vo | Output voltage | Active state | | | 0 | V _{CCO} ⁽⁵⁾ | V | | •0 | Output voltage | 3-state | | | 0 | 3.6 | • | | | | | | 1.2 V | | -3 | | | | | | | 1.4 V to 1.6 V | | -6 | | | I _{OH} | High-level output | current | | 1.65 V to 1.95 V | | -8 | mA | | | | | | 2.3 V to 2.7 V | | -9 | | | | | | | 3 V to 3.6 V | | -12 | | | | | | | 1.2 V | | 3 | | | | | | | 1.4 V to 1.6 V | | 6 | | | I_{OL} | Low-level output of | current | | 1.65 V to 1.95 V | | 8 | mA | | | | | | 2.3 V to 2.7 V | | 9 | | | | | | | 3 V to 3.6 V | | 12 | | | Δt/Δv | Input transition ris | e or fall rate | | | | 5 | ns/V | | T_A | Operating free-air | temperature | | | -40 | 85 | °C | ⁽¹⁾ All unused data inputs of the device must be held at V_{CCI} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, SCBA004. (2) For V_{CCI} values not specified in the data sheet, V_{IH} min = V_{CCI} × 0.7 V, V_{IL} max = V_{CCI} × 0.3 V. (3) For V_{CCI} values not specified in the data sheet, V_{IH} min = V_{CCA} × 0.7 V, V_{IL} max = V_{CCA} × 0.3 V. (4) V_{CCI} is the voltage associated with the input port supply VCCA or VCCB. V_{CCO} is the voltage associated with the output port supply VCCA or VCCB. Datasheet of SN74AVC2T45DCTR - IC BUS TXRX TRI-ST 2BIT SM8 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com #### SN74AVC2T45 SCES531K - DECEMBER 2003-REVISED APRIL 2015 www.ti.com #### 6.4 Thermal Information | | | | SN74AVC2T45 | | | | | | |----------------------|--|------------|-------------|-------------|------|--|--|--| | | THERMAL METRIC ⁽¹⁾ | DCT (SSOP) | DCU (VSSOP) | YZP (DSBGA) | UNIT | | | | | | | 8 PINS | 8 PINS | 8 PINS | | | | | | $R_{\theta JA}$ | Junction-to-ambient thermal resistance | 194.4 | 199.3 | 105.8 | | | | | | $R_{\theta JC(top)}$ | Junction-to-case (top) thermal resistance | 124.7 | 76.2 | 1.6 | | | | | | $R_{\theta JB}$ | Junction-to-board thermal resistance | 106.8 | 80.6 | 10.8 | °C/W | | | | | Ψ_{JT} | Junction-to-top characterization parameter | 49.8 | 7.1 | 3.1 | | | | | | ψ_{JB} | Junction-to-board characterization parameter | 105.8 | 80.1 | 10.8 | | | | | ⁽¹⁾ For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953. #### 6.5 Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)(1) (2) | PARAMETER | | TEST COND | ITIONS | V | V | ٦ | Γ _A = 25°C | | -40°C to 85 | S°C | UNIT | | |--------------------|-------------------|---|-----------------------|------------------|------------------|-----|-----------------------|-------|--------------------------|------|------|--| | PAR | AWETER | TEST COND | IIIONS | V _{CCA} | V _{CCB} | MIN | TYP | MAX | MIN | MAX | UNII | | | | | $I_{OH} = -100 \mu A$ | | 1.2 V to 3.6 V | 1.2 V to 3.6 V | | | | V _{CCO} - 0.2 V | | | | | | | $I_{OH} = -3 \text{ mA}$ | | 1.2 V | 1.2 V | | 0.95 | | | | | | | v (| 3) | $I_{OH} = -6 \text{ mA}$ | ., ., | 1.4 V | 1.4 V | | | | 1.05 | | V | | | V _{OH} (| -, | $I_{OH} = -8 \text{ mA}$ | $V_I = V_{IH}$ | 1.65 V | 1.65 V | | | | 1.2 | | V | | | | | $I_{OH} = -9 \text{ mA}$ | | 2.3 V | 2.3 V | | | | 1.75 | | | | | | | $I_{OH} = -12 \text{ mA}$ | | 3 V | 3 V | | | | 2.3 | | | | | | | I _{OL} = 100 μA | | 1.2 V to 3.6 V | 1.2 V to 3.6 V | | | | | 0.2 | | | | | | $I_{OL} = 3 \text{ mA}$ | | 1.2 V | 1.2 V | | 0.25 | | | | | | | V _{OL} (| 3) | I _{OL} = 6 mA | \/ \/ | 1.4 V | 1.4 V | | | | | 0.35 | V | | | VOL . | -, | $I_{OL} = 8 \text{ mA}$ | $V_I = V_{IL}$ | 1.65 V | 1.65 V | | | | | 0.45 | V | | | | | I _{OL} = 9 mA | | 2.3 V | 2.3 V | | | | | 0.55 | | | | | | I _{OL} = 12 mA | | 3 V | 3 V | | | | | 0.7 | | | | I _I | DIR | V _I = V _{CCA} or GN | ID | 1.2 V to 3.6 V | 1.2 V to 3.6 V | | ±0.025 | ±0.25 | | ±1 | μΑ | | | | A port | \\\\ \ 0 t- 0 C\\ | | 0 V | 0 to 3.6 V | | ±0.1 | ±1 | | ±5 | Δ | | | I _{off} | B port | V_I or $V_O = 0$ to 3 | 3.6 V | 0 to 3.6 V | 0 V | | ±0.1 | ±1 | | ±5 | μΑ | | | l _{OZ} | B port | V _O = V _{CCO} or G | ND, | 0 V | 3.6 V | | ±0.5 | ±2.5 | | ±5 | ^ | | | (3)_ | A port | $V_I = V_{CCI}$ or GN | | 3.6 V | 0 V | | ±0.5 | ±2.5 | | ±5 | μA | | | | | | | 1.2 V to 3.6 V | 1.2 V to 3.6 V | | | | | 10 | | | | I _{CCA} | 3) | $V_I = V_{CCI}$ or GN | D, I _O = 0 | 0 V | 3.6 V | | | | | -2 | μΑ | | | | | | | 3.6 V | 0 V | | | | | 10 | | | | | | | | 1.2 V to 3.6 V | 1.2 V to 3.6 V | | | | | 10 | | | | I _{CCB} | 3) | V _I = V _{CCI} or GN | D, I _O = 0 | 0 V | 3.6 V | | | | | 10 | μΑ | | | | | | | 3.6 V | 0 V | | | | | -2 | | | | I _{CCA} - | Fl _{CCB} | V _I = V _{CCI} or GN | D, I _O = 0 | 1.2 V to 3.6 V | 1.2 V to 3.6 V | | | | | 20 | μΑ | | | Cı | Control inputs | V _I = 3.3 V or GND | | 3.3 V | 3.3 V | | 2.5 | | | | pF | | | C _{io} | A or B
port | V _O = 3.3 V or G | ND | 3.3 V | 3.3 V | | 6 | | | | pF | | V_{CCO} is the voltage associated with the output port supply VCCA or VCCB. V_{CCI} is the voltage associated with the input port supply VCCA or VCCB. V_{OH} : Output High Voltage; V_{OL} : Output Low Voltage; I_{OZ} : Hi-Z Output Current; I_{CCA} : Supply A Current; I_{CCB} : Supply B Current www.ti.com SN74AVC2T45 SCES531K - DECEMBER 2003 - REVISED APRIL 2015 Table 1. Typical Total Static Power Consumption (I_{CCA} + I_{CCB}) | V | | V _{CCA} | | | | | | | | | |------------------|------|------------------|-------|-------|-------|-------|------|--|--|--| | V _{CCB} | 0 V | 1.2 V | 1.5 V | 1.8 V | 2.5 V | 3.3 V | UNIT | | | | | 0 V | 0 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | | | | | 1.2 V | <0.5 | <1 | <1 | <1 | <1 | 1 | | | | | | 1.5 V | <0.5 | <1 | <1 | <1 | <1 | 1 | | | | | | 1.8 V | <0.5 | <1 | <1 | <1 | <1 | <1 | μΑ | | | | | 2.5 V | <0.5 | 1 | <1 | <1 | <1 | <1 | | | | | | 3.3 V | <0.5 | 1 | <1 | <1 | <1 | <1 | | | | | ## 6.6 Switching Characteristics: V_{CCA} = 1.2 V over recommended operating free-air temperature range, V_{CCA} = 1.2 V (see Figure 11) | DADAMETED | FROM | то | V _{CCB} = 1.2 V | V _{CCB} = 1.5 V | V _{CCB} = 1.8 V | $V_{CCB} = 2.5 V$ | V _{CCB} = 3.3 V | LINUT | | |--|---------|----------|--------------------------|--------------------------|--------------------------|-------------------|--------------------------|-------|--| | PARAMETER | (INPUT) | (OUTPUT) | TYP | TYP | TYP | TYP | TYP | UNIT | | | t _{PLH} ⁽¹⁾ | Δ. | Б | 3.1 | 2.6 | 2.4 | 2.2 | 2.2 | | | | t _{PHL} ⁽¹⁾ | Α | В | 3.1 | 2.6 | 2.4 | 2.2 | 2.2 | ns | | | t _{PLH} ⁽¹⁾ | В | Α | 3.4 | 3.1 | 3 | 2.9 | 2.9 | | | | t _{PHL} ⁽¹⁾ | Б | A | 3.4 | 3.1 | 3 | 2.9 | 2.9 | ns | | | t _{PHZ} ⁽¹⁾ | DIR | ^ | 5.2 | 5.2 | 5.1 | 5 | 4.8 | | | | t _{PLZ} ⁽¹⁾ | DIK | Α | 5.2 | 5.2 | 5.1 | 5 | 4.8 | ns | | | t _{PHZ} ⁽¹⁾ | DIR | В | 5 | 4 | 3.8 | 2.8 | 3.2 | | | | t _{PLZ} ⁽¹⁾ | DIK | В | 5 | 4 | 3.8 | 2.8 | 3.2 | ns | | | t _{PZH} ⁽¹⁾ ⁽²⁾ | DID | ^ | 8.4 | 7.1 | 6.8 | 5.7 | 6.1 | | | | t _{PZL} ⁽¹⁾ ⁽²⁾ | DIR | Α | 8.4 | 7.1 | 6.8 | 5.7 | 6.1 | ns | | | t _{PZH} ⁽¹⁾ ⁽²⁾ | DID | Б | 8.3 | 7.8 | 7.5 | 7.2 | 7 | | | | t _{PZL} ⁽¹⁾ ⁽²⁾ | DIR | В | 8.3 | 7.8 | 7.5 | 7.2 | 7 | ns | | t_{PLH} : Low-to-high Propagation Delay; t_{PHL} : High-to-Low Propagation Delay; t_{PHZ} : High-to-Hi-Z Propagation Delay; t_{PZH} : Hi-Z-to-High Propagation Delay; t_{PZL} : Hi-Z-to-Low Propagation Delay The enable time is a calculated value, derived using the formula shown in the *Enable Times* section. ## 6.7 Switching Characteristics: V_{CCA} = 1.5 V ±0.1 V over recommended operating free-air temperature range, $V_{CCA} = 1.5 \text{ V} \pm 0.1 \text{ V}$ (see Figure 11) | PARAMETER | FROM
(INPUT) | TO
(OUTPUT) | V _{CCB} = 1.2 V | V _{CCB} = 1.5 V
± 0.1 V | | V _{CCB} = 1.8 V
± 0.15 V | | V _{CCB} = 2.5 V
± 0.2 V | | V _{CCB} = 3.3 V
± 0.3 V | | UNIT | |--|-----------------|----------------|--------------------------|-------------------------------------|------|--------------------------------------|------|-------------------------------------|------|-------------------------------------|------|------| | | | (001701) | TYP | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX | | | t _{PLH} ⁽¹⁾ | Α | В | 2.8 | 0.7 | 5.4 | 0.5 | 4.6 | 0.4 | 3.7 | 0.3 | 3.5 | | | t _{PHL} ⁽¹⁾ | | В | 2.8 | 0.7 | 5.4 | 0.5 | 4.6 | 0.4 | 3.7 | 0.3 | 3.5 | ns | | t _{PLH} ⁽¹⁾ | В | А | 2.7 | 0.8 | 5.4 | 0.7 | 5.2 | 0.6 | 4.9 | 0.5 | 4.7 | | | t _{PHL} ⁽¹⁾ | | A | 2.7 | 0.8 | 5.4 | 0.7 | 5.2 | 0.6 | 4.9 | 0.5 | 4.7 | ns | | t _{PHZ} ⁽¹⁾ | DIR | Α | 3.9 | 1.3 | 8.5 | 1.3 | 7.8 | 1.1 | 7.7 | 1.4 | 7.6 | 20 | | t _{PLZ} ⁽¹⁾ | DIK | DIR A | 3.9 | 1.3 | 8.5 | 1.3 | 7.8 | 1.1 | 7.7 | 1.4 | 7.6 | ns | | t _{PHZ} ⁽¹⁾ | DIR | В | 4.7 | 1.1 | 7 | 1.4 | 6.9 | 1.2 | 6.9 | 1.7 | 7.1 | 5 | | t _{PLZ} ⁽¹⁾ | DIK | Ь | 4.7 | 1.1 | 7 | 1.4 | 6.9 | 1.2 | 6.9 | 1.7 | 7.1 | ns | | t _{PZH} ⁽¹⁾ ⁽²⁾ | DIB | Α | 7.4 | | 12.4 | | 12.1 | | 11.8 | | 11.8 | 20 | | t _{PZL} ⁽¹⁾ ⁽²⁾ | DIR | A | 7.4 | | 12.4 | | 12.1 | | 11.8 | | 11.8 | ns | | t _{PZH} (1) (2) | DID | В | 6.7 | | 13.9 | | 12.4 | | 11.4 | | 11.1 | 20 | | t _{PZL} ⁽¹⁾ ⁽²⁾ | DIR | В | 6.7 | | 13.9 | | 12.4 | | 11.4 | | 11.1 | ns | t_{PLH} : Low-to-high Propagation Delay; t_{PHL} : High-to-Low Propagation Delay; t_{PHZ} : High-to-Hi-Z Propagation Delay; t_{PZH} : Hi-Z-to-High Propagation Delay; t_{PZH} : Hi-Z-to-High Propagation Delay; t_{PZL} : Hi-Z-to-Low Propagation Delay The enable time is a calculated value, derived using the
formula shown in the *Enable Times* section. Datasheet of SN74AVC2T45DCTR - IC BUS TXRX TRI-ST 2BIT SM8 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com #### SN74AVC2T45 SCES531K - DECEMBER 2003 - REVISED APRIL 2015 www.ti.com ## 6.8 Switching Characteristics: V_{CCA} = 1.8 V ±0.15 V over recommended operating free-air temperature range, V_{CCA} = 1.8 V ± 0.15 V (see Figure 11) | PARAMETER | FROM
(INPUT) | TO
(OUTPUT) | V _{CCB} = 1.2 V | V _{CCB} = ± 0.1 | V _{CCB} = 1.5 V
± 0.1 V | | V _{CCB} = 1.8 V
± 0.15 V | | 2.5 V
2 V | V _{CCB} = 3.3 V
± 0.3 V | | UNIT | |--|-----------------|----------------|--------------------------|--------------------------|-------------------------------------|-----|--------------------------------------|-----|--------------|-------------------------------------|-----|------| | | (INPUT) | | TYP | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX | | | t _{PLH} ⁽¹⁾ | Α | В | 2.7 | 0.5 | 5.2 | 0.4 | 4.3 | 0.2 | 3.4 | 0.2 | 3.1 | | | t _{PHL} ⁽¹⁾ | A | В | 2.7 | 0.5 | 5.2 | 0.4 | 4.3 | 0.2 | 3.4 | 0.2 | 3.1 | ns | | t _{PLH} ⁽¹⁾ | В | Α | 2.4 | 0.7 | 4.7 | 0.5 | 4.4 | 0.5 | 4 | 0.4 | 3.8 | 20 | | t _{PHL} ⁽¹⁾ | В | A | 2.4 | 0.7 | 4.7 | 0.5 | 4.4 | 0.5 | 4 | 0.4 | 3.8 | ns | | t _{PHZ} ⁽¹⁾ | DIR | ^ | 3.7 | 1.3 | 8.1 | 0.7 | 6.9 | 1.4 | 5.3 | 1.1 | 5.2 | | | t _{PLZ} ⁽¹⁾ | DIK | Α | 3.7 | 1.3 | 8.1 | 0.7 | 6.9 | 1.4 | 5.3 | 1.1 | 5.2 | ns | | t _{PHZ} ⁽¹⁾ | DIR | В | 4.4 | 1.3 | 5.8 | 1.3 | 5.9 | 8.0 | 5.7 | 1.5 | 5.9 | | | t _{PLZ} ⁽¹⁾ | DIK | В | 4.4 | 1.3 | 5.8 | 1.3 | 5.9 | 0.8 | 5.7 | 1.5 | 5.9 | ns | | t _{PZH} ⁽¹⁾ ⁽²⁾ | DID | ^ | 6.8 | | 10.5 | | 10.3 | | 9.7 | | 9.7 | | | t _{PZL} ⁽¹⁾ ⁽²⁾ | DIR | Α | 6.8 | | 10.5 | | 10.3 | | 9.7 | | 9.7 | ns | | t _{PZH} ⁽¹⁾ ⁽²⁾ | DIR | В | 6.4 | | 13.3 | | 11.2 | | 8.7 | | 8.3 | | | t _{PZL} ⁽¹⁾ ⁽²⁾ | DIK | В | 6.4 | | 13.3 | | 11.2 | | 8.7 | | 8.3 | ns | t_{PLH} : Low-to-high Propagation Delay; t_{PHL} : High-to-Low Propagation Delay; t_{PHZ} : High-to-Hi-Z Propagation Delay; t_{PZH} : Hi-Z-to-High Propagation Delay; t_{PZL} : Hi-Z-to-Low Propagation Delay The enable time is a calculated value, derived using the formula shown in the *Enable Times* section. ## 6.9 Switching Characteristics: V_{CCA} = 2.5 V ±0.2 V over recommended operating free-air temperature range, $V_{CCA} = 2.5 \text{ V} \pm 0.2 \text{ V}$ (see Figure 11) | PARAMETER | FROM
(INPUT) | TO
(OUTPUT) | V _{CCB} = 1.2 V | | V _{CCB} = 1.5 V
± 0.1 V | | V _{CCB} = 1.8 V
± 0.15 V | | 2.5 V
2 V | V _{CCB} = 3.3 V
± 0.3 V | | UNIT | |--|-----------------|----------------|--------------------------|-----|-------------------------------------|-----|--------------------------------------|-----|--------------|-------------------------------------|-----|------| | | (INPUT) | | TYP | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX | | | t _{PLH} ⁽¹⁾ | ۸ | В | 2.6 | 0.4 | 4.9 | 0.2 | 4 | 0.2 | 3 | 0.2 | 2.6 | | | t _{PHL} ⁽¹⁾ | Α | В | 2.6 | 0.4 | 4.9 | 0.2 | 4 | 0.2 | 3 | 0.2 | 2.6 | ns | | t _{PLH} ⁽¹⁾ | В | Α | 2.1 | 0.6 | 3.8 | 0.5 | 3.4 | 0.4 | 3 | 0.3 | 2.8 | | | t _{PHL} ⁽¹⁾ | В | A | 2.1 | 0.6 | 3.8 | 0.5 | 3.4 | 0.4 | 3 | 0.3 | 2.8 | ns | | t _{PHZ} ⁽¹⁾ | DIR | ^ | 2.4 | 0.7 | 7.9 | 0.8 | 6.4 | 0.8 | 5 | 0.5 | 4.3 | 20 | | t _{PLZ} ⁽¹⁾ | DIK | Α | 2.4 | 0.7 | 7.9 | 0.8 | 6.4 | 0.8 | 5 | 0.5 | 4.3 | ns | | t _{PHZ} ⁽¹⁾ | DIR | В | 3.8 | 1 | 4.3 | 0.6 | 4.3 | 0.5 | 4.2 | 1.1 | 4.1 | | | t _{PLZ} ⁽¹⁾ | DIK | В | 3.8 | 1 | 4.3 | 0.6 | 4.3 | 0.5 | 4.2 | 1.1 | 4.1 | ns | | t _{PZH} ⁽¹⁾ ⁽²⁾ | DIR | Δ. | 5.9 | | 8.5 | | 7.7 | | 7.2 | | 6.9 | | | t _{PZL} ⁽¹⁾ ⁽²⁾ | DIK | Α | 5.9 | | 8.5 | | 7.7 | | 7.2 | | 6.9 | ns | | t _{PZH} ⁽¹⁾ ⁽²⁾ | DIB | В | 5 | | 12.8 | | 10.4 | | 8 | | 6.9 | | | t _{PZL} ⁽¹⁾ ⁽²⁾ | DIR | В | 5 | | 12.8 | | 10.4 | | 8 | | 6.9 | ns | t_{PLH} : Low-to-high Propagation Delay; t_{PHL} : High-to-Low Propagation Delay; t_{PHZ} : High-to-Hi-Z Propagation Delay; t_{PZH} : Hi-Z-to-High Propagation Delay; t_{PZL} : Hi-Z-to-Low Propagation Delay The enable time is a calculated value, derived using the formula shown in the *Enable Times* section. Product Folder Links: SN74AVC2T45 Submit Documentation Feedback Copyright © 2003–2015, Texas Instruments Incorporated Datasheet of SN74AVC2T45DCTR - IC BUS TXRX TRI-ST 2BIT SM8 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com SN74AVC2T45 SCES531K - DECEMBER 2003-REVISED APRIL 2015 #### www.ti.com ## 6.10 Switching Characteristics: V_{CCA} = 3.3 V ±0.3 V over recommended operating free-air temperature range, $V_{CCA} = 3.3 \text{ V} \pm 0.3 \text{ V}$ (see Figure 11) | PARAMETER | FROM
(INPUT) | TO
(OUTPUT) | V _{CCB} = 1.2 V | | V _{CCB} = 1.5 V
± 0.1 V | | V _{CCB} = 1.8 V
± 0.15 V | | 2.5 V
2 V | V _{CCB} = 3.3 V
± 0.3 V | | UNIT | |--|-----------------|----------------|--------------------------|-----|-------------------------------------|-----|--------------------------------------|-----|--------------|-------------------------------------|-----|------| | | (INPUT) | | TYP | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX | | | t _{PLH} ⁽¹⁾ | ^ | В | 2.5 | 0.3 | 4.7 | 0.2 | 3.8 | 0.2 | 2.8 | 0.2 | 2.4 | 20 | | t _{PHL} ⁽¹⁾ | Α | В | 2.5 | 0.3 | 4.7 | 0.2 | 3.8 | 0.2 | 2.8 | 0.2 | 2.4 | ns | | t _{PLH} ⁽¹⁾ | В | Α | 2.1 | 0.6 | 3.6 | 0.4 | 3.1 | 0.3 | 2.6 | 0.3 | 2.4 | 20 | | t _{PHL} ⁽¹⁾ | В | A | 2.1 | 0.6 | 3.6 | 0.4 | 3.1 | 0.3 | 2.6 | 0.3 | 2.4 | ns | | t _{PHZ} ⁽¹⁾ | DIR | ^ | 2.9 | 1.1 | 8 | 1 | 6.5 | 1.3 | 4.7 | 1.2 | 4 | ns | | t _{PLZ} ⁽¹⁾ | DIK | A | 2.9 | 1.1 | 8 | 1 | 6.5 | 1.3 | 4.7 | 1.2 | 4 | | | t _{PHZ} ⁽¹⁾ | DIR | В | 3.4 | 0.5 | 6.6 | 0.3 | 5.6 | 0.3 | 4.6 | 1.1 | 4.2 | 20 | | t _{PLZ} ⁽¹⁾ | DIK | В | 3.4 | 0.5 | 6.6 | 0.3 | 5.6 | 0.3 | 4.6 | 1.1 | 4.2 | ns | | t _{PZH} ⁽¹⁾ ⁽²⁾ | DID | ^ | 5.5 | | 10.2 | | 8.7 | | 7.2 | | 6.6 | 20 | | t _{PZL} ⁽¹⁾ ⁽²⁾ | DIR | A | 5.5 | | 10.2 | | 8.7 | | 7.2 | | 6.6 | ns | | t _{PZH} ⁽¹⁾ ⁽²⁾ | DID | В | 5.4 | | 12.7 | | 10.3 | | 7.5 | | 6.4 | | | t _{PZL} ⁽¹⁾ ⁽²⁾ | DIR | В | 5.4 | | 12.7 | | 10.3 | | 7.5 | | 6.4 | ns | t_{PLH}: Low-to-high Propagation Delay; t_{PHL}: High-to-Low Propagation Delay; t_{PHZ}: High-to-Hi-Z Propagation Delay; t_{PZH}: Hi-Z-to-High Propagation Delay; t_{PZL}: Hi-Z-to-Low Propagation Delay The enable time is a calculated value, derived using the formula shown in the section. #### 6.11 Operating Characteristics $T_{\Delta} = 25^{\circ}C$ | · A - 20 | ~ | | | | | | | | | |----------------------|--------------------------------|--|---|---|-----|---|---|------|--| | P | ARAMETER | TEST
CONDITIONS | V _{CCA} = V _{CCB} = 1.2 V | _{CCB} = 1.2 V V _{CCB} = 1.5 V | | V _{CCA} = V _{CCB} = 2.5 V | V _{CCA} = V _{CCB} = 3.3 V | UNIT | | | | | | TYP | TYP | TYP | TYP | TYP | | | | c (1) | A-port input,
B-port output | $C_L = 0$, | 3 | 3 | 3 | 3 | 4 | ~F | | | C _{pdA} (1) | B-port input,
A-port output | f = 10 MHz,
$t_r^{(2)} = t_f^{(2)} = 1 \text{ ns}$ | 12 | 13 | 13 | 14 | 15 | pF | | | o (1) | A-port input,
B-port output | $C_L = 0$, | 12 | 13 | 13 | 14 | 15 | -F | | | | B-port input,
A-port output | f = 10 MHz,
$t_r^{(2)} = t_f^{(2)} = 1 \text{ ns}$ | 3 | 3 | 3 | 3 | 4 | pF | | Power-dissipation capacitance per transceiver t_r: Rise time; t_f: Fall time Datasheet of SN74AVC2T45DCTR - IC BUS TXRX TRI-ST 2BIT SM8 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com #### SN74AVC2T45 SCES531K - DECEMBER 2003-REVISED APRIL 2015 www.ti.com #### 6.12 Typical Characteristics ## 6.12.1 Typical Propagation Delay (A to B) vs Load Capacitance, T_A = 25°C, V_{CCA} = 1.2 V ## 6.12.2 Typical Propagation Delay (A to B) vs Load Capacitance, $T_A = 25$ °C, $V_{CCA} = 1.5$ V ## 6.12.3 Typical Propagation Delay (A-to-B) vs Load Capacitance, T_A = 25°C, V_{CCA} = 1.8 V Submit Documentation Feedback Copyright © 2003–2015, Texas Instruments Incorporated SN74AVC2T45 SCES531K - DECEMBER 2003 - REVISED APRIL 2015 #### www.ti.com ## 6.12.4 Typical Propagation Delay (A to B) vs Load Capacitance, T_A = 25°C, V_{CCA} = 2.5 V ## 6.12.5 Typical Propagation Delay (A to B) vs Load Capacitance, T_A = 25°C, V_{CCA} = 3.3 V Datasheet of SN74AVC2T45DCTR - IC BUS TXRX TRI-ST 2BIT SM8 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com #### SN74AVC2T45 SCES531K - DECEMBER 2003-REVISED APRIL 2015 www.ti.com #### 7 Parameter Measurement Information NOTES: A. C_L includes probe and jig capacitance. - B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , $dv/dt \geq$ 1 V/ns. - D. The outputs are measured one at a time, with one transition per measurement. - E. t_{PLZ} and t_{PHZ} are the same as t_{dis}. - F. t_{PZL} and t_{PZH} are the same as t_{en} . - G. t_{PLH} and t_{PHL} are the same as t_{pd} . - H. V_{CCI} is the V_{CC} associated with the input port. - I. V_{CCO} is the V_{CC} associated with the output port. **VOLTAGE WAVEFORMS** PROPAGATION DELAY TIMES Figure 11. Load Circuit and Voltage Waveforms Submit Documentation Feedback Copyright © 2003–2015, Texas Instruments Incorporated **VOLTAGE WAVEFORMS** **ENABLE AND DISABLE TIMES** 12 www.ti.com SN74AVC2T45 SCES531K - DECEMBER 2003 - REVISED APRIL 2015 ### 8 Detailed Description #### 8.1 Overview This dual-bit
noninverting bus transceiver uses two separate configurable power-supply rails. The A port is designed to track V_{CCA} and accepts any supply voltage from 1.2 V to 3.6 V. The B port is designed to track V_{CCB} and accepts any supply voltage from 1.2 V to 3.6 V. This allows for universal low-voltage bidirectional translation and level-shifting between any of the 1.2 V, 1.5 V, 1.8 V, 2.5 V, and 3.3 V voltage nodes. The SN74AVC2T45 is designed for asynchronous communication between two data buses. The logic levels of the direction-control (DIR) input activate either the B-port outputs or the A-port outputs. The device transmits data from the A bus to the B bus when the B-port outputs are activated and from the B bus to the A bus when the A-port outputs are activated. The input circuitry on both A and B ports always is active and must have a logic HIGH or LOW level applied to prevent excess internal leakage of the CMOS. The SN74AVC2T45 is designed so that the DIR input is powered by supply voltage from VCCA. This device is fully specified for partial-power-down applications using off output current (I_{off}). The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. The V_{CC} isolation feature ensures that if either VCC input is at GND, both ports are put in a high-impedance state. This will prevent a false high or low logic being presented at the output. NanoFree package technology is a major breakthrough in IC packaging concepts, using the die as the package. #### 8.2 Functional Block Diagram Pin numbers are for the DCT and DCU packages only. Figure 12. Logic Diagram (Positive Logic) Datasheet of SN74AVC2T45DCTR - IC BUS TXRX TRI-ST 2BIT SM8 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com #### SN74AVC2T45 SCES531K - DECEMBER 2003 - REVISED APRIL 2015 www.ti.com #### 8.3 Feature Description #### 8.3.1 VCC Isolation The V_{CC} isolation feature ensures that if either V_{CCA} or V_{CCB} are at GND, both ports will be in a high-impedance state (I_{OZ} shown in *Electrical Characteristics*). This prevents false logic levels from being presented to either bus. #### 8.3.2 2-Rail Design Fully configurable 2-rail design allows each port to operate over the full 1.2 V to 3.6 V power-supply range. #### 8.3.3 IO Ports are 4.6 V Tolerant The IO ports are up to 4.6 V tolerant #### 8.3.4 Partial-Power-Down Mode This device is fully specified for partial-power-down applications using off output current (I_{off}). The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. #### 8.4 Device Functional Modes Table 2. Function Table⁽¹⁾ (Each Transceiver) | INPUT
DIR | OPERATION | |--------------|-----------------| | L | B data to A bus | | Н | A data to B bus | (1) Input circuits of the data IOs always are active. Product Folder Links: SN74AVC2T45 14 www.ti.com SN74AVC2T45 SCES531K - DECEMBER 2003 - REVISED APRIL 2015 ## 9 Application and Implementation #### **NOTE** Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. ## 9.1 Application Information The SN74AVC2T45 is used to shift IO voltage levels from one voltage domain to another. Bus A and bus B have independent power supplies, and a direction pin is used to control the direction of data flow. Unused data ports must not be floating; tie the unused port input and output to ground directly. #### 9.2 Typical Applications #### 9.2.1 Unidirectional Logic Level-Shifting Application Figure 13 is an example circuit of the SN74AVC2T45 used in a unidirectional logic level-shifting application. Figure 13. Unidirectional Logic Level-Shifting Application #### 9.2.1.1 Design Requirements | PIN | NAME | DESCRIPTION | |-----|------|--| | 1 | VCCA | SYSTEM-1 supply voltage (1.2 V to 3.6 V) | | 2 | A1 | Output level depends on V _{CCA} . | | 3 | A2 | Output level depends on V _{CCA} . | | 4 | GND | Device GND | | 5 | DIR | The GND (low-level) determines B-port to A-port direction. | | 6 | B2 | Input threshold value depends on V _{CCB} . | | 7 | B1 | Input threshold value depends on V _{CCB} . | | 8 | VCCB | SYSTEM-2 supply voltage (1.2 V to 3.6 V) | Datasheet of SN74AVC2T45DCTR - IC BUS TXRX TRI-ST 2BIT SM8 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com #### SN74AVC2T45 SCES531K - DECEMBER 2003-REVISED APRIL 2015 www.ti.com #### 9.2.1.2 Detailed Design Procedure This device uses drivers which are enabled depending on the state of the DIR pin. The designer must know the intended flow of data and take care not to violate any of the high or low logic levels. Unused data inputs must not be floating, as this can cause excessive internal leakage on the input CMOS structure. Make sure to tie any unused input and output ports directly to ground. #### 9.2.1.3 Application Curves Figure 14. 3.3 V to 1.8 V Level-Shifting With 1-MHz Square Wave #### 9.2.2 Bidirectional Logic Level-Shifting Application Figure 15 shows the SN74AVC2T45 used in a bidirectional logic level-shifting application. Figure 15. Bidirectional Logic Level-Shifting Application Product Folder Links: SN74AVC2T45 16 Datasheet of SN74AVC2T45DCTR - IC BUS TXRX TRI-ST 2BIT SM8 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com SN74AVC2T45 SCES531K - DECEMBER 2003 - REVISED APRIL 2015 www.ti.com #### 9.2.2.1 Design Requirements The SN74AVC2T45 does not have an output-enable (OE) pin, the system designer should take precautions to avoid bus contention between SYSTEM-1 and SYSTEM-2 when changing directions. #### 9.2.2.2 Detailed Design Procedure Following is a sequence that illustrates data transmission from SYSTEM-1 to SYSTEM-2 and then from SYSTEM-1. | STATE | DIR CTRL | IO-1 | IO-1 IO-2 DESCRIPTION | | | | | | | | |-------|----------|--------|-----------------------|--|--|--|--|--|--|--| | 1 | Н | Output | Input | SYSTEM-1 data to SYSTEM-2 | | | | | | | | 2 | Н | Hi-Z | Hi-Z | SYSTEM-2 is getting ready to send data to SYSTEM-1. IO-1 and IO-2 are disabled. The bus-line state depends on pullup or pulldown. (1) | | | | | | | | 3 | L | Hi-Z | Hi-Z | DIR bit is flipped. IO-1 and IO-2 still are disabled.
The bus-line state depends on pullup or pulldown. (1) | | | | | | | | 4 | L | Input | Output | SYSTEM-2 data to SYSTEM-1 | | | | | | | ⁽¹⁾ SYSTEM-1 and SYSTEM-2 must use the same conditions, i.e., both pullup or both pulldown. #### 9.2.2.2.1 Enable Times Calculate the enable times for the SN74AVC2T45 using the following formulas: - t_{PZH} (DIR to A) = t_{PLZ} (DIR to B) + t_{PLH} (B to A) - t_{PZL} (DIR to A) = t_{PHZ} (DIR to B) + t_{PHL} (B to A) - t_{PZH} (DIR to B) = t_{PLZ} (DIR to A) + t_{PLH} (A to B) - t_{PZL} (DIR to B) = t_{PHZ} (DIR to A) + t_{PHL} (A to B) In a bidirectional application, these enable times provide the maximum delay from the time the DIR bit is switched until an output is expected. For example, if the SN74AVC2T45 initially is transmitting from A to B, then the DIR bit is switched; the B port of the device must be disabled before presenting it with an input. After the B port has been disabled, an input signal applied to it appears on the corresponding A port after the specified propagation delay. Datasheet of SN74AVC2T45DCTR - IC BUS TXRX TRI-ST 2BIT SM8 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com #### SN74AVC2T45 SCES531K - DECEMBER 2003-REVISED APRIL 2015 www.ti.com #### 10 Power Supply Recommendations A proper power-up sequence always should be followed to avoid excessive current on the supply pin, bus contention, oscillations, or other anomalies. To guard against such power-up problems, take the following precautions: - 1. Connect ground before any supply voltage is applied. - 2. Power up V_{CCA}. - 3. V_{CCB} can be ramped up along with or after V_{CCA} . #### 11 Layout #### 11.1 Layout Guidelines To ensure reliability of the device, following common printed-circuit board layout guidelines is recommended. Bypass capacitors should be used on power supplies. Place the capacitors as close as possible to the VCCA, VCCB pin and GND pin. VIA to GND Plane Short trace lengths should be used to avoid excessive loading. **VCCB** ## 11.2 Layout Example Figure 16. Layout Example for YZP Package Product Folder Links: SN74AVC2T45 (A1) (A2) **VCCA** Submit Documentation Feedback Copyright © 2003–2015, Texas Instruments Incorporated Datasheet of SN74AVC2T45DCTR - IC BUS TXRX TRI-ST 2BIT SM8 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com SN74AVC2T45 www.ti.com SCES531K - DECEMBER 2003 - REVISED APRIL 2015 #### 12 Device and Documentation Support #### 12.1 Documentation Support #### 12.1.1 Related Documentation Implications of Slow or Floating CMOS Inputs, SCBA004 #### 12.2 Trademarks NanoFree is a trademark of Texas Instruments. All other trademarks are the property of their respective owners. #### 12.3 Electrostatic Discharge Caution These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. #### 12.4 Glossary SLYZ022 — TI Glossary. This glossary lists and explains terms, acronyms, and definitions. ## 13 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the
designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Datasheet of SN74AVC2T45DCTR - IC BUS TXRX TRI-ST 2BIT SM8 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com PACKAGE OPTION ADDENDUM 17-Aug-2015 #### **PACKAGING INFORMATION** | Orderable Device | Status | Package Type | | Pins | | Eco Plan | Lead/Ball Finish | MSL Peak Temp | Op Temp (°C) | Device Marking | Samples | |-------------------|--------|--------------|---------|------|------|----------------------------|-------------------|--------------------|--------------|-------------------|---------| | | (1) | | Drawing | | Qty | (2) | (6) | (3) | | (4/5) | | | SN74AVC2T45DCTR | ACTIVE | SM8 | DCT | 8 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 85 | DT2
Z | Samples | | SN74AVC2T45DCTRE4 | ACTIVE | SM8 | DCT | 8 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 85 | DT2
Z | Samples | | SN74AVC2T45DCTT | ACTIVE | SM8 | DCT | 8 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 85 | DT2
Z | Samples | | SN74AVC2T45DCTTG4 | ACTIVE | SM8 | DCT | 8 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 85 | DT2
Z | Samples | | SN74AVC2T45DCUR | ACTIVE | VSSOP | DCU | 8 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU CU SN | Level-1-260C-UNLIM | -40 to 85 | (DT2R ~ T2)
DZ | Samples | | SN74AVC2T45DCURE4 | ACTIVE | VSSOP | DCU | 8 | | TBD | Call TI | Call TI | -40 to 85 | | Samples | | SN74AVC2T45DCURG4 | ACTIVE | VSSOP | DCU | 8 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 85 | DT2R | Samples | | SN74AVC2T45DCUT | ACTIVE | VSSOP | DCU | 8 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 85 | DT2R | Samples | | SN74AVC2T45DCUTE4 | ACTIVE | VSSOP | DCU | 8 | | TBD | Call TI | Call TI | -40 to 85 | | Samples | | SN74AVC2T45DCUTG4 | ACTIVE | VSSOP | DCU | 8 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 85 | DT2R | Samples | | SN74AVC2T45YZPR | ACTIVE | DSBGA | YZP | 8 | 3000 | Green (RoHS
& no Sb/Br) | SNAGCU | Level-1-260C-UNLIM | -40 to 85 | (TD7 ~ TDN) | Samples | ⁽¹⁾ The marketing status values are defined as follows: The flatfeting status values are defined as follows. ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. $\label{eq:obsolete} \textbf{OBSOLETE:} \ \ \textbf{TI} \ \ \text{has discontinued the production of the device}.$ Pb-Free (RoHS): Tl's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, Tl Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. ⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. **TBD:** The Pb-Free/Green conversion plan has not been defined. ## **Distributor of Texas Instruments: Excellent Integrated System Limited**Datasheet of SN74AVC2T45DCTR - IC BUS TXRX TRI-ST 2BIT SM8 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com PACKAGE OPTION ADDENDUM 17-Aug-2015 Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) - (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. - (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. - (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. - (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information that way not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. #### OTHER QUALIFIED VERSIONS OF SN74AVC2T45: Automotive: SN74AVC2T45-Q1 NOTE: Qualified Version Definitions: Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects Datasheet of SN74AVC2T45DCTR - IC BUS TXRX TRI-ST 2BIT SM8 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com ## PACKAGE MATERIALS INFORMATION www.ti.com 22-Jan-2016 #### TAPE AND REEL INFORMATION - K0 Dimension designed to accommodate the component thickness - W Overall width of the carrier tape - P1 Pitch between successive cavity centers #### **QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE** #### *All dimensions are nominal | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |-------------------|-----------------|--------------------|---|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | SN74AVC2T45DCTR | SM8 | DCT | 8 | 3000 | 180.0 | 13.0 | 3.35 | 4.5 | 1.55 | 4.0 | 12.0 | Q3 | | SN74AVC2T45DCTT | SM8 | DCT | 8 | 250 | 180.0 | 13.0 | 3.35 | 4.5 | 1.55 | 4.0 | 12.0 | Q3 | | SN74AVC2T45DCUR | VSSOP | DCU | 8 | 3000 | 180.0 | 8.4 | 2.25 | 3.35 | 1.05 | 4.0 | 8.0 | Q3 | | SN74AVC2T45DCUR | VSSOP | DCU | 8 | 3000 | 180.0 | 9.0 | 2.05 | 3.3 | 1.0 | 4.0 | 8.0 | Q3 | | SN74AVC2T45DCURG4 | VSSOP | DCU | 8 | 3000 | 180.0 | 8.4 | 2.25 | 3.35 | 1.05 | 4.0 | 8.0 | Q3 | | SN74AVC2T45DCUTG4 | VSSOP | DCU | 8 | 250 | 180.0 | 8.4 | 2.25 | 3.35 | 1.05 | 4.0 | 8.0 | Q3 | | SN74AVC2T45YZPR | DSBGA | YZP | 8 | 3000 | 178.0 | 9.2 | 1.02 | 2.02 | 0.63 | 4.0 | 8.0 | Q1 | Datasheet of SN74AVC2T45DCTR - IC BUS TXRX TRI-ST 2BIT SM8 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com ## **PACKAGE MATERIALS INFORMATION** www.ti.com 22-Jan-2016 #### *All dimensions are nominal | 7 til dillicisions are nominal | | | | | | | | |--------------------------------|--------------|-----------------|------|------|-------------|------------|-------------| | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | | SN74AVC2T45DCTR | SM8 | DCT | 8 | 3000 | 182.0 | 182.0 | 20.0 | | SN74AVC2T45DCTT | SM8 | DCT | 8 | 250 | 182.0 | 182.0 | 20.0 | | SN74AVC2T45DCUR | VSSOP | DCU | 8 | 3000 | 202.0 | 201.0 | 28.0 | | SN74AVC2T45DCUR | VSSOP | DCU | 8 | 3000 | 182.0 | 182.0 | 20.0 | | SN74AVC2T45DCURG4 | VSSOP | DCU | 8 | 3000 | 202.0 | 201.0 | 28.0 | | SN74AVC2T45DCUTG4 | VSSOP | DCU | 8 | 250 | 202.0 | 201.0 | 28.0 | | SN74AVC2T45YZPR | DSBGA | YZP | 8 | 3000 | 220.0 | 220.0 | 35.0 | Datasheet of SN74AVC2T45DCTR - IC BUS TXRX TRI-ST 2BIT SM8 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com ## **MECHANICAL DATA** MPDS049B - MAY 1999 - REVISED OCTOBER 2002 #### DCT (R-PDSO-G8) #### PLASTIC SMALL-OUTLINE PACKAGE NOTES: A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion - D. Falls within JEDEC MO-187 variation DA. ## LAND PATTERN DATA ## DCT (R-PDSO-G8) #### PLASTIC SMALL OUTLINE NOTES: A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525. - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. ## **MECHANICAL DATA** ## DCU (R-PDSO-G8) PLASTIC SMALL-OUTLINE PACKAGE (DIE DOWN) NOTES: - A.
All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side. - D. Falls within JEDEC MO-187 variation CA. ### **LAND PATTERN DATA** DCU (S-PDSO-G8) PLASTIC SMALL OUTLINE PACKAGE (DIE DOWN) NOTES: A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations. - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. ## **MECHANICAL DATA** YZP (R-XBGA-N8) DIE-SIZE BALL GRID ARRAY NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994. - B. This drawing is subject to change without notice. - C. NanoFree™ package configuration. NanoFree is a trademark of Texas Instruments. #### Distributor of Texas Instruments: Excellent Integrated System Limited Datasheet of SN74AVC2T45DCTR - IC BUS TXRX TRI-ST 2BIT SM8 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com #### IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. #### **Applications** **Products** Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications Computers and Peripherals **Data Converters** dataconverter.ti.com www.ti.com/computers **DLP® Products** Consumer Electronics www.ti.com/consumer-apps www.dlp.com DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Security www.ti.com/security Logic Power Mgmt Space, Avionics and Defense www.ti.com/space-avionics-defense power.ti.com Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com **OMAP Applications Processors TI E2E Community** www.ti.com/omap e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity > Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated