Excellent Integrated System Limited Stocking Distributor Click to view price, real time Inventory, Delivery & Lifecycle Information: Micron Technology M29W320DB70N6E For any questions, you can email us directly: sales@integrated-circuit.com 32 Mbit (4Mbx8 or 2Mbx16, Non-uniform Parameter Blocks, Boot Block), 3V Supply Flash memory ### **Feature summary** - Supply Voltage - V_{CC} = 2.7V to 3.6V for Program, Erase and Read - V_{PP} =12V for Fast Program (optional) - Access time: 70, 80, and 90 ns - Programming time - 10µs per Byte/Word typical - 67 memory blocks - 1 Boot Block (Top or Bottom Location) - 2 Parameter and 64 Main Blocks - Program/Erase controller - Embedded Byte/Word Program algorithms - Erase Suspend and Resume modes - Read and Program another Block during Erase Suspend - Unlock Bypass Program command - Faster Production/Batch Programming - V_{PP}/WP pin for Fast Program and Write Protect - Temporary Block Unprotection mode - Common Flash Interface - 64 bit Security code - Low power consumption - Standby and Automatic Standby - 100,000 Program/Erase cycles per block - Electronic Signature - Manufacturer Code: 0020h - Top Device Code M29W320DT: 22CAh - Bottom Device Code M29W320DB: 22CBh - RoHS packages available - Automotive Grade Parts Available #### **Contents** ### M29W320DT, M29W320DB # **Contents** | 1 | Sumi | mary description | |---|-------|--| | 2 | Signa | al descriptions | | | 2.1 | Address Inputs (A0-A20) | | | 2.2 | Data Inputs/Outputs (DQ0-DQ7) | | | 2.3 | Data Inputs/Outputs (DQ8-DQ14) | | | 2.4 | Data Input/Output or Address Input (DQ15A-1) | | | 2.5 | Chip Enable (E) | | | 2.6 | Output Enable (G) | | | 2.7 | Write Enable (W) | | | 2.8 | V _{PP/} Write Protect (V _{PP/} WP) | | | 2.9 | Reset/Block Temporary Unprotect (RP) | | | 2.10 | Ready/Busy Output (RB)14 | | | 2.11 | Byte/Word Organization Select (BYTE) | | | 2.12 | V _{CC} Supply Voltage | | | 2.13 | V _{SS} Ground | | 3 | Bus | operations | | | 3.1 | Bus Read 15 | | | 3.2 | Bus Write | | | 3.3 | Output Disable | | | 3.4 | Standby | | | 3.5 | Automatic Standby | | | 3.6 | Special bus operations | | | | 3.6.1 Electronic Signature | | | | 3.6.2 Block Protect and Chip Unprotect | | 4 | Com | mand Interface | | | 4.1 | Read/Reset command | | | 4.2 | Auto Select command | | | 4.3 | Read CFI Query command | | | 4.4 | Program command | | | | | | M29W320D | T, M29 | W320DB | Contents | |----------|--------|---|----------| | | 4.5 | Unlock Bypass command | 18 | | | 4.6 | Unlock Bypass Program command | | | | 4.7 | Unlock Bypass Reset command | | | | 4.8 | Chip Erase command | | | | 4.9 | Block Erase command | 20 | | | 4.10 | Erase Suspend command | 20 | | | 4.11 | Erase Resume command | 21 | | | 4.12 | Block Protect and Chip Unprotect commands | 21 | | 5 | Statu | ıs Register | 25 | | | 5.1 | Data Polling Bit (DQ7) | 25 | | | 5.2 | Toggle Bit (DQ6) | 25 | | | 5.3 | Error Bit (DQ5) | 26 | | | 5.4 | Erase Timer Bit (DQ3) | 26 | | | 5.5 | Alternative Toggle Bit (DQ2) | 26 | | 6 | Maxi | mum rating | 29 | | 7 | DC a | nd AC parameters | 30 | | 8 | Pack | age mechanical | 37 | | 9 | Part | numbering | 39 | | Appendix | A B | Block Addresses | 40 | | Appendix | в С | Common Flash Interface (CFI) | 44 | | Appendix | C B | Block Protection | 48 | | | C.1 | Programmer Technique | 48 | | | C.2 | In-System Technique | 48 | | 10 | Revis | sion history | 54 | #### List of tables ### M29W320DT, M29W320DB # List of tables | Table 1. | Signal Names | 7 | |-----------|--|----| | Table 2. | Bus Operations, BYTE = V _{IL} | 16 | | Table 3. | Bus Operations, BYTE = V _{IH} | 16 | | Table 4. | Commands, 16-bit mode, BYTE = V _{IH} | 22 | | Table 5. | Commands, 8-bit mode, BYTE = V _{II} | | | Table 6. | Program, Erase Times and Program, Erase Endurance Cycles | | | Table 7. | Status Register Bits | | | Table 8. | Absolute Maximum Ratings | | | Table 9. | Operating and AC Measurement Conditions | | | Table 10. | Device Capacitance | | | Table 11. | DC Characteristics | | | Table 12. | Read AC Characteristics | 33 | | Table 13. | Write AC Characteristics, Write Enable Controlled | 34 | | Table 14. | Write AC Characteristics, Chip Enable Controlled | 35 | | Table 15. | Reset/Block Temporary Unprotect AC Characteristics | | | Table 16. | TSOP48 Lead Plastic Thin Small Outline, 12x20 mm, Package Mechanical Data | 37 | | Table 17. | TFBGA48 6x8mm - 6x8 Ball Array, 0.8mm Pitch, Package Mechanical Data | 38 | | Table 18. | Ordering Information Scheme | 39 | | Table 19. | Top Boot Block Addresses, M29W320DT | 40 | | Table 20. | Bottom Boot Block Addresses, M29W320DB | 42 | | Table 21. | Query Structure Overview | 44 | | Table 22. | CFI Query Identification String | 44 | | Table 23. | CFI Query System Interface Information | 45 | | Table 24. | Device Geometry Definition | 45 | | Table 25. | Primary Algorithm-Specific Extended Query Table | 46 | | Table 26. | Security Code Area | | | Table 27. | Programmer Technique Bus Operations, BYTE = V _{IH} or V _{IL} | 49 | | Table 28. | Document revision history | | List of figures # **List of figures** | Figure 1. | Logic Diagram | / | |------------|--|------| | Figure 2. | TSOP Connections | | | Figure 3. | TFBGA48 Connections (Top view through package) | 9 | | Figure 4. | Block Addresses (x8) | | | Figure 5. | Block Addresses (x16) | . 11 | | Figure 6. | Data Polling Flowchart | . 27 | | Figure 7. | Data Toggle Flowchart | . 28 | | Figure 8. | AC Measurement I/O Waveform | . 30 | | Figure 9. | Read Mode AC Waveforms | . 33 | | Figure 10. | Write AC Waveforms, Write Enable Controlled | . 34 | | Figure 11. | Write AC Waveforms, Chip Enable Controlled | . 35 | | Figure 12. | Reset/Block Temporary Unprotect AC Waveforms | . 36 | | Figure 13. | Accelerated Program Timing Waveforms | . 36 | | Figure 14. | TSOP48 Lead Plastic Thin Small Outline, 12x20 Mm, Top View Package Outline | . 37 | | Figure 15. | TFBGA48 6x8mm - 6x8 Ball Array, 0.8mm Pitch, Bottom View Package Outline | . 38 | | Figure 16. | Programmer Equipment Block Protect Flowchart | . 50 | | Figure 17. | Programmer Equipment Chip Unprotect Flowchart | . 51 | | Figure 18. | In-System Equipment Block Protect Flowchart | . 52 | | Figure 19. | In-System Equipment Chip Unprotect Flowchart | . 53 | #### **Summary description** M29W320DT, M29W320DB # 1 Summary description The M29W320D is a 32 Mbit (4Mb x8 or 2Mb x16) non-volatile memory that can be read, erased and reprogrammed. These operations can be performed using a single low voltage (2.7 to 3.6V) supply. On power-up the memory defaults to its Read mode where it can be read in the same way as a ROM or EPROM. The memory is divided into blocks that can be erased independently so it is possible to preserve valid data while old data is erased. Each block can be protected independently to prevent accidental Program or Erase commands from modifying the memory. Program and Erase commands are written to the Command Interface of the memory. An on-chip Program/Erase Controller simplifies the process of programming or erasing the memory by taking care of all of the special operations that are required to update the memory contents. The end of a program or erase operation can be detected and any error conditions identified. The command set required to control the memory is consistent with JEDEC standards. The blocks in the memory are asymmetrically arranged, see *Figure 4* and *Figure 5*, *Table 19* and *Table 20*. The first or last 64 Kbytes have been divided into four additional blocks. The 16 Kbyte Boot Block can be used for small initialization code to start the microprocessor, the two 8 Kbyte Parameter Blocks can be used for parameter storage and the remaining 32 Kbyte is a small Main Block where the application may be stored. Chip Enable, Output Enable and Write Enable signals control the bus operation of the memory. They allow simple connection to most microprocessors, often without additional logic. The memory is offered in TSOP48 (12 x 20mm), and TFBGA48 (6x8mm, 0.8mm pitch) packages. In order to meet environmental requirements, Numonyx offers the M29W320D in ECOPACK® packages. ECOPACK packages are Lead-free. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. The memory is supplied with all the bits erased (set to 1). ### **Summary description** Figure 1. Logic Diagram Table 1. Signal Names | Table II Cigilal Hall | | |-----------------------|------------------------------------| | A0-A20 | Address Inputs | | DQ0-DQ7 | Data Inputs/Outputs | | DQ8-DQ14 | Data Inputs/Outputs | | DQ15A-1 | Data Input/Output or Address Input | | Ē | Chip Enable | | G | Output Enable | | W | Write Enable | | RP | Reset/Block Temporary Unprotect | | RB | Ready/Busy Output | | BYTE | Byte/Word Organization Select | | V _{CC} | Supply Voltage | | V _{PP} /WP | V _{PP} /Write Protect | | V _{SS} | Ground | | NC | Not Connected Internally | | | | NUMONYX ### **Summary description** M29W320DT, M29W320DB **Summary description** Figure 3. TFBGA48 Connections (Top view through package) Numonyx 9/56 #### **Summary description** #### M29W320DT, M29W320DB Figure 4. Block Addresses (x8) ^{1.} Also see Appendix A: Block Addresses, Table 19 and Table 20 for a full listing of the Block Addresses. #### **Summary description** Figure 5. Block Addresses (x16) ^{1.} Also see Appendix A: Block Addresses, Table 19 and Table 20 for a full listing of the Block Addresses. Numonyx 11/56 Signal descriptions M29W320DT, M29W320DB # 2 Signal descriptions See Figure 1: Logic Diagram, and Table 1: Signal Names, for a brief overview of the signals
connected to this device. ## 2.1 Address Inputs (A0-A20) The Address Inputs select the cells in the memory array to access during Bus Read operations. During Bus Write operations they control the commands sent to the Command Interface of the internal state machine. # 2.2 Data Inputs/Outputs (DQ0-DQ7) The Data I/O outputs the data stored at the selected address during a Bus Read operation. During Bus Write operations they represent the commands sent to the Command Interface of the internal state machine. # 2.3 Data Inputs/Outputs (DQ8-DQ14) The Data I/O outputs the data stored at the selected address during a Bus Read operation when BYTE is High, V_{IH} . When BYTE is Low, V_{IL} , these pins are not used and are high impedance. During Bus Write operations the Command Register does not use these bits. When reading the Status Register these bits should be ignored. # 2.4 Data Input/Output or Address Input (DQ15A-1) When $\overline{\text{BYTE}}$ is High, V_{IH}, this pin behaves as a Data Input/Output pin (as DQ8-DQ14). When $\overline{\text{BYTE}}$ is Low, V_{IL}, this pin behaves as an address pin; DQ15A–1 Low will select the LSB of the Word on the other addresses, DQ15A–1 High will select the MSB. Throughout the text consider references to the Data Input/Output to include this pin when $\overline{\text{BYTE}}$ is High and references to the Address Inputs to include this pin when $\overline{\text{BYTE}}$ is Low except when stated explicitly otherwise. # 2.5 Chip Enable (\overline{E}) The Chip Enable, E, activates the memory, allowing Bus Read and Bus Write operations to be performed. When Chip Enable is High, V_{IH} , all other pins are ignored. # 2.6 Output Enable (G) The Output Enable, \overline{G} , controls the Bus Read operation of the memory. Signal descriptions # 2.7 Write Enable (\overline{W}) The Write Enable, \overline{W} , controls the Bus Write operation of the memory's Command Interface. # 2.8 V_{PP/}Write Protect (V_{PP}/WP) The V_{PP} /Write Protect pin provides two functions. The V_{PP} function allows the memory to use an external high voltage power supply to reduce the time required for Unlock Bypass Program operations. The Write Protect function provides a hardware method of protecting the 16 Kbyte Boot Block. The V_{PP} /Write Protect pin must not be left floating or unconnected. When V_{PP} /Write Protect is Low, V_{IL} , the memory protects the 16 Kbyte Boot Block; Program and Erase operations in this block are ignored while V_{PP} /Write Protect is Low. When V_{PP} /Write Protect is High, V_{IH} , the memory reverts to the previous protection status of the 16 Kbyte boot block. Program and Erase operations can now modify the data in the 16 Kbyte Boot Block unless the block is protected using Block Protection. When V_{PP} /Write Protect is raised to V_{PP} the memory automatically enters the Unlock Bypass mode. When V_{PP} /Write Protect returns to V_{IH} or V_{IL} normal operation resumes. During Unlock Bypass Program operations the memory draws I_{PP} from the pin to supply the programming circuits. See the description of the Unlock Bypass command in the Command Interface section. The transitions from V_{IH} to V_{PP} and from V_{PP} to V_{IH} must be slower than t_{VHVPP} , see *Figure 13*. Never raise V_{PP} /Write Protect to V_{PP} from any mode except Read mode, otherwise the memory may be left in an indeterminate state. A 0.1 μ F capacitor should be connected between the V_{PP}/Write Protect pin and the V_{SS} Ground pin to decouple the current surges from the power supply. The PCB track widths must be sufficient to carry the currents required during Unlock Bypass Program, I_{PP}. # 2.9 Reset/Block Temporary Unprotect (RP) The Reset/Block Temporary Unprotect pin can be used to apply a Hardware Reset to the memory or to temporarily unprotect all Blocks that have been protected. Note that if V_{PP}/\overline{WP} is at V_{IL} , then the 16 KByte outermost boot block will remain protect even if RP is at V_{ID} . A Hardware Reset is achieved by holding Reset/Block Temporary Unprotect Low, V_{IL} , for at least t_{PLPX} . After Reset/Block Temporary Unprotect goes High, V_{IH} , the memory will be ready for Bus Read and Bus Write operations after t_{PHEL} or t_{RHEL} , whichever occurs last. See the Ready/Busy Output section, *Table 15* and *Figure 12*, for more details. Holding \overline{RP} at V_{ID} will temporarily unprotect the protected Blocks in the memory. Program and Erase operations on all blocks will be possible. The transition from V_{IH} to V_{ID} must be slower than t_{PHPHH} . numonyx #### Signal descriptions M29W320DT, M29W320DB # 2.10 Ready/Busy Output (RB) The Ready/Busy pin is an open-drain output that can be used to identify when the device is performing a Program or Erase operation. During Program or Erase operations Ready/Busy is Low, V_{OL}. Ready/Busy is high-impedance during Read mode, Auto Select mode and Erase Suspend mode. Note that if V_{PP}/\overline{WP} is at V_{IL} , then the 16 KByte outermost boot block will remain protect even if RP is at V_{ID} . After a Hardware Reset, Bus Read and Bus Write operations cannot begin until Ready/Busy becomes high-impedance. See *Table 15* and *Figure 12*. The use of an open-drain output allows the Ready/Busy pins from several memories to be connected to a single pull-up resistor. A Low will then indicate that one, or more, of the memories is busy. # 2.11 Byte/Word Organization Select (BYTE) The Byte/Word Organization Select pin is used to switch between the x8 and x16 Bus modes of the memory. When Byte/Word Organization Select is Low, V_{IL} , the memory is in x8 mode, when it is High, V_{IH} , the memory is in x16 mode. ## 2.12 V_{CC} Supply Voltage V_{CC} provides the power supply for all operations (Read, Program and Erase). The Command Interface is disabled when the V_{CC} Supply Voltage is less than the Lockout Voltage, V_{LKO} . This prevents Bus Write operations from accidentally damaging the data during power up, power down and power surges. If the Program/Erase Controller is programming or erasing during this time then the operation aborts and the memory contents being altered will be invalid. A $0.1\mu F$ capacitor should be connected between the V_{CC} Supply Voltage pin and the V_{SS} Ground pin to decouple the current surges from the power supply. The PCB track widths must be sufficient to carry the currents required during Program and Erase operations, I_{CC3} . # 2.13 V_{SS} Ground V_{SS} is the reference for all voltage measurements. **Bus operations** # 3 Bus operations There are five standard bus operations that control the device. These are Bus Read, Bus Write, Output Disable, Standby and Automatic Standby. See *Table 2* and *Table 3*, Bus operations, for a summary. Typically glitches of less than 5ns on Chip Enable or Write Enable are ignored by the memory and do not affect bus operations. ### 3.1 Bus Read Bus Read operations read from the memory cells, or specific registers in the Command Interface. A valid Bus Read operation involves setting the desired address on the Address Inputs, applying a Low signal, V_{IL} , to Chip Enable and Output Enable and keeping Write Enable High, V_{IH} . The Data Inputs/Outputs will output the value, see *Figure 9: Read Mode AC Waveforms*, and *Table 12: Read AC Characteristics*, for details of when the output becomes valid. ### 3.2 Bus Write Bus Write operations write to the Command Interface. A valid Bus Write operation begins by setting the desired address on the Address Inputs. The Address Inputs are latched by the Command Interface on the falling edge of Chip Enable or Write Enable, whichever occurs last. The Data Inputs/Outputs are latched by the Command Interface on the rising edge of Chip Enable or Write Enable, whichever occurs first. Output Enable must remain High, V_{IH} , during the whole Bus Write operation. See *Figure 10* and *Figure 11*, Write AC waveforms, and *Table 13* and *Table 14*, Write AC Characteristics, for details of the timing requirements. # 3.3 Output Disable The Data Inputs/Outputs are in the high impedance state when Output Enable is High, VIH. # 3.4 Standby When Chip Enable is High, V_{IH} , the memory enters Standby mode and the Data Inputs/Outputs pins are placed in the high-impedance state. To reduce the Supply Current to the Standby Supply Current, I_{CC2} , Chip Enable should be held within $V_{CC} \pm 0.2V$. For the Standby current level see *Table 11: DC Characteristics*. During program or erase operations the memory will continue to use the Program/Erase Supply Current, I_{CC3} , for Program or Erase operations until the operation completes. # 3.5 Automatic Standby If CMOS levels ($V_{CC} \pm 0.2V$) are used to drive the bus and the bus is inactive for 300ns or more the memory enters Automatic Standby where the internal Supply Current is reduced to the Standby Supply Current, I_{CC2} . The Data Inputs/Outputs will still output data if a Bus Read operation is in progress. #### **Bus operations** M29W320DT, M29W320DB ### 3.6 Special bus operations Additional bus operations can be performed to read the Electronic Signature and also to apply and remove Block Protection. These bus operations are intended for use by programming equipment and are not usually used in applications. They require V_{ID} to be applied to some pins. ### 3.6.1 Electronic Signature The memory has two codes, the manufacturer code and the device code, that can be read to identify the memory. These codes can be read by applying the signals listed in *Table 2* and *Table 3*, Bus Operations. ### 3.6.2 Block Protect and Chip Unprotect Each block can be separately protected against accidental Program or Erase. The whole chip can be unprotected to allow the data inside the blocks to be changed. Block Protect and Chip Unprotect
operations are described in Appendix C: Block Protection. Table 2. Bus Operations, $\overline{\text{BYTE}} = V_{IL}^{(1)}$ | Operation | E G | | w | Address Inputs | Data Inputs/Outputs | | | |---------------------------|-----------------|-----------------|-----------------|--|---------------------|------------------------------------|--| | Operation | _ | G | DQ15A-1, A0-A20 | | DQ14-DQ8 | DQ7-DQ0 | | | Bus Read | V_{IL} | V_{IL} | V_{IH} | Cell Address | Hi-Z | Data Output | | | Bus Write | V _{IL} | V _{IH} | V _{IL} | Command Address | Hi-Z | Data Input | | | Output Disable | Х | V _{IH} | V _{IH} | Х | Hi-Z Hi-Z | | | | Standby | V _{IH} | Х | Х | Х | Hi-Z | Hi-Z | | | Read Manufacturer
Code | V _{IL} | V _{IL} | V _{IH} | $A0 = V_{IL}$, $A1 = V_{IL}$, $A9 = V_{ID}$,
Others V_{IL} or V_{IH} | Hi-Z | 20h | | | Read Device Code | V _{IL} | V _{IL} | V _{IH} | $A0 = V_{IH}$, $A1 = V_{IL}$,
$A9 = V_{ID}$, Others V_{IL} or V_{IH} | Hi-Z | CAh (M29W320DT)
CBh (M29W320DB) | | ^{1.} $X = V_{IL}$ or V_{IH} . Table 3. Bus Operations, $\overline{\text{BYTE}} = V_{\text{IH}}^{(1)}$ | | | | | П | | |---------------------------|-----------------|-----------------|-----------------|--|--| | Operation | Ē | G | w | Address Inputs
A0-A20 | Data Inputs/Outputs
DQ15A-1, DQ14-DQ0 | | Bus Read | V_{IL} | V_{IL} | V_{IH} | Cell Address | Data Output | | Bus Write | V _{IL} | V _{IH} | V _{IL} | Command Address | Data Input | | Output Disable | Х | V _{IH} | V _{IH} | Х | Hi-Z | | Standby | V _{IH} | Х | Х | Х | Hi-Z | | Read Manufacturer
Code | | | 0020h | | | | Read Device Code | V _{IL} | V _{IL} | V _{IH} | $A0 = V_{IH}, A1 = V_{IL}, A9 = V_{ID},$ Others V_{IL} or V_{IH} | 22CAh (M29W320DT)
22CBh (M29W320DB) | ^{1.} $X = V_{IL}$ or V_{IH} . **Command Interface** ### 4 Command Interface All Bus Write operations to the memory are interpreted by the Command Interface. Commands consist of one or more sequential Bus Write operations. Failure to observe a valid sequence of Bus Write operations will result in the memory returning to Read mode. The long command sequences are imposed to maximize data security. The address used for the commands changes depending on whether the memory is in 16-bit or 8-bit mode. See either *Table 4*, or *Table 5*, depending on the configuration that is being used, for a summary of the commands. ### 4.1 Read/Reset command The Read/Reset command returns the memory to its Read mode where it behaves like a ROM or EPROM, unless otherwise stated. It also resets the errors in the Status Register. Either one or three Bus Write operations can be used to issue the Read/Reset command. The Read/Reset Command can be issued, between Bus Write cycles before the start of a program or erase operation, to return the device to read mode. Once the program or erase operation has started the Read/Reset command is no longer accepted. The Read/Reset command will not abort an Erase operation when issued while in Erase Suspend. ### 4.2 Auto Select command The Auto Select command is used to read the Manufacturer Code, the Device Code and the Block Protection Status. Three consecutive Bus Write operations are required to issue the Auto Select command. Once the Auto Select command is issued the memory remains in Auto Select mode until a Read/Reset command is issued. Read CFI Query and Read/Reset commands are accepted in Auto Select mode, all other commands are ignored. From the Auto Select mode the Manufacturer Code can be read using a Bus Read operation with $A0 = V_{IL}$ and $A1 = V_{IL}$. The other address bits may be set to either V_{IL} or V_{IH} . The Manufacturer Code for Numonyx is 0020h. The Device Code can be read using a Bus Read operation with A0 = V_{IH} and A1 = V_{IL} . The other address bits may be set to either V_{IL} or V_{IH} . The Device Code for the M29W320DT is 22CAh and for the M29W320DB is 22CBh. The Block Protection Status of each block can be read using a Bus Read operation with A0 = V_{IL} , A1 = V_{IH} , and A12-A20 specifying the address of the block. The other address bits may be set to either V_{IL} or V_{IH} . If the addressed block is protected then 01h is output on Data Inputs/Outputs DQ0-DQ7, otherwise 00h is output. numonyx #### Command Interface M29W320DT, M29W320DB # 4.3 Read CFI Query command The Read CFI Query Command is used to read data from the Common Flash Interface (CFI) Memory Area. This command is valid when the device is in the Read Array mode, or when the device is in Autoselected mode. One Bus Write cycle is required to issue the Read CFI Query Command. Once the command is issued subsequent Bus Read operations read from the Common Flash Interface Memory Area. The Read/Reset command must be issued to return the device to the previous mode (the Read Array mode or Autoselected mode). A second Read/Reset command would be needed if the device is to be put in the Read Array mode from Autoselected mode. See Appendix B: Common Flash Interface (CFI), Table 21, Table 22, Table 23, Table 24, Table 25 and Table 26 for details on the information contained in the Common Flash Interface (CFI) memory area. ## 4.4 Program command The Program command can be used to program a value to one address in the memory array at a time. The command requires four Bus Write operations, the final write operation latches the address and data in the internal state machine and starts the Program/Erase Controller. If the address falls in a protected block then the Program command is ignored, the data remains unchanged. The Status Register is never read and no error condition is given. During the program operation the memory will ignore all commands. It is not possible to issue any command to abort or pause the operation. Typical program times are given in *Table 6*. Bus Read operations during the program operation will output the Status Register on the Data Inputs/Outputs. See the section on the Status Register for more details. After the program operation has completed the memory will return to the Read mode, unless an error has occurred. When an error occurs the memory will continue to output the Status Register. A Read/Reset command must be issued to reset the error condition and return to Read mode. Note that the Program command cannot change a bit set at '0' back to '1'. One of the Erase Commands must be used to set all the bits in a block or in the whole memory from '0' to '1'. # 4.5 Unlock Bypass command The Unlock Bypass command is used in conjunction with the Unlock Bypass Program command to program the memory. When the cycle time to the device is long (as with some EPROM programmers) considerable time saving can be made by using these commands. Three Bus Write operations are required to issue the Unlock Bypass command. Once the Unlock Bypass command has been issued the memory will only accept the Unlock Bypass Program command and the Unlock Bypass Reset command. The memory can be read as if in Read mode. The memory offers accelerated program operations through the V_{PP} /Write Protect pin. When the system asserts V_{PP} on the V_{PP} /Write Protect pin, the memory automatically enters the Unlock Bypass mode. The system may then write the two-cycle Unlock Bypass **Command Interface** program command sequence. The memory uses the higher voltage on the V_{PP}/Write Protect pin, to accelerate the Unlock Bypass Program operation. Never raise V_{PP} /Write Protect to V_{PP} from any mode except Read mode, otherwise the memory may be left in an indeterminate state. ### 4.6 Unlock Bypass Program command The Unlock Bypass Program command can be used to program one address in the memory array at a time. The command requires two Bus Write operations, the final write operation latches the address and data in the internal state machine and starts the Program/Erase Controller. The Program operation using the Unlock Bypass Program command behaves identically to the Program operation using the Program command. The operation cannot be aborted, the Status Register is read and protected blocks cannot be programmed. Errors must be reset using the Read/Reset command, which leaves the device in Unlock Bypass Mode. See the Program command for details on the behavior. ## 4.7 Unlock Bypass Reset command The Unlock Bypass Reset command can be used to return to Read/Reset mode from Unlock Bypass Mode. Two Bus Write operations are required to issue the Unlock Bypass Reset command. Read/Reset command does not exit from Unlock Bypass Mode. # 4.8 Chip Erase command The Chip Erase command can be used to erase the entire chip. Six Bus Write operations are required to issue the Chip Erase Command and start the Program/Erase Controller. If any blocks are protected then these are ignored and all the other blocks are erased. If all of the blocks are protected the Chip Erase operation appears to start but will terminate within about 100µs, leaving the data unchanged. No error condition is given when protected blocks are ignored. During the erase operation the memory will ignore all commands, including the Erase Suspend command. It is not possible to issue any command to abort the operation. Typical chip erase times are given in *Table 6*. All Bus Read operations during the Chip Erase operation will output the Status Register on the Data Inputs/Outputs. See the section on the Status Register for more details. After the Chip Erase operation has completed the memory will return to the Read Mode, unless an error has occurred. When an error occurs the memory will continue to output the Status Register. A Read/Reset command must be issued to reset the error condition and return to Read Mode. The Chip Erase Command sets all of the bits in unprotected blocks of the memory to
'1'. All previous data is lost. **Command Interface** M29W320DT, M29W320DB ### 4.9 Block Erase command The Block Erase command can be used to erase a list of one or more blocks. Six Bus Write operations are required to select the first block in the list. Each additional block in the list can be selected by repeating the sixth Bus Write operation using the address of the additional block. The Block Erase operation starts the Program/Erase Controller about 50µs after the last Bus Write operation. Once the Program/Erase Controller starts it is not possible to select any more blocks. Each additional block must therefore be selected within 50µs of the last block. The 50µs timer restarts when an additional block is selected. The Status Register can be read after the sixth Bus Write operation. See the Status Register section for details on how to identify if the Program/Erase Controller has started the Block Erase operation. If any selected blocks are protected then these are ignored and all the other selected blocks are erased. If all of the selected blocks are protected the Block Erase operation appears to start but will terminate within about 100µs, leaving the data unchanged. No error condition is given when protected blocks are ignored. During the Block Erase operation the memory will ignore all commands except the Erase Suspend command. Typical block erase times are given in *Table 6*. All Bus Read operations during the Block Erase operation will output the Status Register on the Data Inputs/Outputs. See the section on the Status Register for more details. After the Block Erase operation has completed the memory will return to the Read Mode, unless an error has occurred. When an error occurs the memory will continue to output the Status Register. A Read/Reset command must be issued to reset the error condition and return to Read mode. The Block Erase Command sets all of the bits in the unprotected selected blocks to '1'. All previous data in the selected blocks is lost. # 4.10 Erase Suspend command The Erase Suspend Command may be used to temporarily suspend a Block Erase operation and return the memory to Read mode. The command requires one Bus Write operation. The Program/Erase Controller will suspend within the Erase Suspend Latency Time (refer to *Table 6* for value) of the Erase Suspend Command being issued. Once the Program/Erase Controller has stopped the memory will be set to Read mode and the Erase will be suspended. If the Erase Suspend command is issued during the period when the memory is waiting for an additional block (before the Program/Erase Controller starts) then the Erase is suspended immediately and will start immediately when the Erase Resume Command is issued. It is not possible to select any further blocks to erase after the Erase Resume. During Erase Suspend it is possible to Read and Program cells in blocks that are not being erased; both Read and Program operations behave as normal on these blocks. If any attempt is made to program in a protected block or in the suspended block then the Program command is ignored and the data remains unchanged. The Status Register is not read and no error condition is given. Reading from blocks that are being erased will output the Status Register. It is also possible to issue the Auto Select, Read CFI Query and Unlock Bypass commands during an Erase Suspend. The Read/Reset command must be issued to return the device to Read Array mode before the Resume command will be accepted. **Command Interface** ### 4.11 Erase Resume command The Erase Resume command must be used to restart the Program/Erase Controller after an Erase Suspend. The device must be in Read Array mode before the Resume command will be accepted. An erase can be suspended and resumed more than once. # 4.12 Block Protect and Chip Unprotect commands Each block can be separately protected against accidental Program or Erase. The whole chip can be unprotected to allow the data inside the blocks to be changed. Block Protect and Chip Unprotect operations are described in Appendix C: Block Protection. N numonyx 21/56 #### **Command Interface** M29W320DT, M29W320DB Table 4. Commands, 16-bit mode, $\overline{\text{BYTE}} = V_{\text{IH}}^{(1)(2)}$ | | | | Bus Write Operations | | | | | | | | | | | |---|--------|------|----------------------|------|------|------|------|------|------|------|------|------|------| | Command | Length | 1st | | 2nd | | 3rd | | 4th | | 5th | | 6th | | | | | Addr | Data | | Read/Reset ⁽³⁾ | 1 | Χ | F0 | | | | | | | | | | | | Read/Reset | 3 | 555 | AA | 2AA | 55 | Х | F0 | | | | | | | | Auto Select ⁽⁴⁾ | 3 | 555 | AA | 2AA | 55 | 555 | 90 | | | | | | | | Program ⁽⁵⁾ | 4 | 555 | AA | 2AA | 55 | 555 | A0 | PA | PD | | | | | | Unlock Bypass ⁽⁶⁾ | 3 | 555 | AA | 2AA | 55 | 555 | 20 | | | | | | | | Unlock Bypass
Program ⁽⁵⁾ | 2 | Х | A0 | PA | PD | | | | | | | | | | Unlock Bypass
Reset ⁽⁷⁾ | 2 | Х | 90 | х | 00 | | | | | | | | | | Chip Erase ⁽⁵⁾ | 6 | 555 | AA | 2AA | 55 | 555 | 80 | 555 | AA | 2AA | 55 | 555 | 10 | | Block Erase ⁽⁵⁾ | 6+ | 555 | AA | 2AA | 55 | 555 | 80 | 555 | AA | 2AA | 55 | ВА | 30 | | Erase Suspend ⁽⁸⁾ | 1 | Х | В0 | | | | | | | | | | | | Erase Resume ⁽⁹⁾ | 1 | Х | 30 | | | | | | | | | | | | Read CFI Query ⁽¹⁰⁾ | 1 | 55 | 98 | | | | | | | | | | | - X Don't Care, PA Program Address, PD Program Data, BA Any address in the Block. All values in the table are in hexadecimal. - The Command Interface only uses A–1, A0-A10 and DQ0-DQ7 to verify the commands; A11-A20, DQ8-DQ14 and DQ15 are Don't Care. DQ15A–1 is A–1 when BYTE is V_{IL} or DQ15 when BYTE is V_{IH}. - After a Read/Reset command, read the memory as normal until another command is issued. Read/Reset command is ignored during algorithm execution. - 4. After an Auto Select command, read Manufacturer ID, Device ID or Block Protection Status. - After Program, Unlock Bypass Program, Chip Erase, Block Erase commands read the Status Register until the Program/Erase Controller completes and the memory returns to Read Mode. Add additional Blocks during Block Erase Command with additional Bus Write Operations until Timeout Bit is set. - 6. After the Unlock Bypass command issue Unlock Bypass Program or Unlock Bypass Reset commands. - 7. After the Unlock Bypass Reset command read the memory as normal until another command is issued. - 8. After the Erase Suspend command read non-erasing memory blocks as normal, issue Auto Select and Program commands on non-erasing blocks as normal. - After the Erase Resume command the suspended Erase operation resumes, read the Status Register until the Program/Erase Controller completes and the memory returns to Read Mode. - 10. CFI Query command is valid when device is ready to read array data or when device is in autoselected mode. **Command Interface** Table 5. Commands, 8-bit mode, $\overline{\text{BYTE}} = V_{\text{IL}}^{(1)(2)}$ | | | | Bus Write Operations | | | | | | | | | | | |---|--------|------|----------------------|------|------|------|------|------|------|------|------|------|------| | Command | Length | 1st | | 2nd | | 3rd | | 4th | | 5th | | 6th | | | | | Addr | Data | | Read/Reset ⁽³⁾ | 1 | Х | F0 | | | | | | | | | | | | Neau/Neset | 3 | AAA | AA | 555 | 55 | Х | F0 | | | | | | | | Auto Select ⁽⁴⁾ | 3 | AAA | AA | 555 | 55 | AAA | 90 | | | | | | | | Program ⁽⁵⁾ | 4 | AAA | AA | 555 | 55 | AAA | A0 | PA | PD | | | | | | Unlock Bypass ⁽⁶⁾ | 3 | AAA | AA | 555 | 55 | AAA | 20 | | | | | | | | Unlock Bypass
Program ⁽⁵⁾ | 2 | Х | A0 | PA | PD | | | | | | | | | | Unlock Bypass
Reset ⁽⁷⁾ | 2 | Х | 90 | Х | 00 | | | | | | | | | | Chip Erase ⁽⁵⁾ | 6 | AAA | AA | 555 | 55 | AAA | 80 | AAA | AA | 555 | 55 | AAA | 10 | | Block Erase ⁽⁵⁾ | 6+ | AAA | AA | 555 | 55 | AAA | 80 | AAA | AA | 555 | 55 | ВА | 30 | | Erase Suspend ⁽⁸⁾ | 1 | Χ | В0 | | | | | | | | | | | | Erase Resume ⁽⁹⁾ | 1 | Х | 30 | | | | | | | | | | | | Read CFI Query ⁽¹⁰⁾ | 1 | AA | 98 | | | | | | | | | | | - X Don't Care, PA Program Address, PD Program Data, BA Any address in the Block. All values in the table are in hexadecimal. - The Command Interface only uses A–1, A0-A10 and DQ0-DQ7 to verify the commands; A11-A20, DQ8-DQ14 and DQ15 are Don't Care. DQ15A–1 is A–1 when BYTE is V_{IL} or DQ15 when BYTE is V_{IH}. - After a Read/Reset command, read the memory as normal until another command is issued. Read/Reset command is ignored during algorithm execution. - 4. After an Auto Select command, read Manufacturer ID, Device ID or Block Protection Status. - After a Program, Unlock Bypass Program, Chip Erase, Block Erase command read the Status Register until the Program/Erase Controller completes and the memory returns to Read Mode. Add additional Blocks during Block Erase Command with additional Bus Write Operations until Timeout Bit is set. - 6. After the Unlock Bypass command issue Unlock Bypass Program or Unlock Bypass Reset commands. - 7. After the Unlock Bypass Reset command read the memory as normal until another command is issued. - 8. After the Erase Suspend command read non-erasing memory blocks as normal, issue Auto Select and Program commands on non-erasing blocks as normal. - After the Erase Resume command the suspended Erase operation resumes, read the Status Register until the Program/Erase Controller completes and the memory returns to Read Mode. - 10. The CFI Query command is valid when device is ready to read array data or when device is in autoselected mode. numonyx 23/56 #### **Command Interface** ### M29W320DT, M29W320DB Table 6. Program, Erase Times and Program, Erase Endurance Cycles | Parameter | Min | Typ ⁽¹⁾⁽²⁾ | Max ⁽²⁾ | Unit | |------------------------------------|---------|-----------------------|--------------------|--------| | Chip Erase | | 40 | 200 ⁽³⁾ | S | | Block Erase (64 KBytes) | | 0.8 | 6 ⁽⁴⁾ | S | | Erase Suspend Latency Time | | 15 | 25 ⁽⁴⁾ | μs | | Program (Byte or Word) | | 10 | 200
⁽³⁾ | μs | | Accelerated Program (Byte or Word) | | 8 | 150 ⁽³⁾ | μs | | Chip Program (Byte by Byte) | | 40 | 200 ⁽³⁾ | S | | Chip Program (Word by Word) | | 20 | 100 ⁽³⁾ | S | | Program/Erase Cycles (per Block) | 100,000 | | | cycles | | Data Retention | 20 | | | years | ^{1.} Typical values measured at room temperature and nominal voltages. ^{2.} Sampled, but not 100% tested. ^{3.} Maximum value measured at worst case conditions for both temperature and V_{CC} after 100,00 program/erase cycles. ^{4.} Maximum value measured at worst case conditions for both temperature and $V_{\mbox{\footnotesize{CC}}}$. Status Register # 5 Status Register Bus Read operations from any address always read the Status Register during Program and Erase operations. It is also read during Erase Suspend when an address within a block being erased is accessed. The bits in the Status Register are summarized in *Table 7: Status Register Bits*. ## 5.1 Data Polling Bit (DQ7) The Data Polling Bit can be used to identify whether the Program/Erase Controller has successfully completed its operation or if it has responded to an Erase Suspend. The Data Polling Bit is output on DQ7 when the Status Register is read. During Program operations the Data Polling Bit outputs the complement of the bit being programmed to DQ7. After successful completion of the Program operation the memory returns to Read mode and Bus Read operations from the address just programmed output DQ7, not its complement. During Erase operations the Data Polling Bit outputs '0', the complement of the erased state of DQ7. After successful completion of the Erase operation the memory returns to Read Mode. In Erase Suspend mode the Data Polling Bit will output a '1' during a Bus Read operation within a block being erased. The Data Polling Bit will change from a '0' to a '1' when the Program/Erase Controller has suspended the Erase operation. Figure 6: Data Polling Flowchart, gives an example of how to use the Data Polling Bit. A Valid Address is the address being programmed or an address within the block being erased. # 5.2 Toggle Bit (DQ6) The Toggle Bit can be used to identify whether the Program/Erase Controller has successfully completed its operation or if it has responded to an Erase Suspend. The Toggle Bit is output on DQ6 when the Status Register is read. During Program and Erase operations the Toggle Bit changes from '0' to '1' to '0', etc., with successive Bus Read operations at any address. After successful completion of the operation the memory returns to Read mode. During Erase Suspend mode the Toggle Bit will output when addressing a cell within a block being erased. The Toggle Bit will stop toggling when the Program/Erase Controller has suspended the Erase operation. If any attempt is made to erase a protected block, the operation is aborted, no error is signalled and DQ6 toggles for approximately 100 μ s. If any attempt is made to program a protected block or a suspended block, the operation is aborted, no error is signalled and DQ6 toggles for approximately 1 μ s. Figure 7: Data Toggle Flowchart, gives an example of how to use the Data Toggle Bit. numonyx 25/56 **Status Register** M29W320DT, M29W320DB ### 5.3 Error Bit (DQ5) The Error Bit can be used to identify errors detected by the Program/Erase Controller. The Error Bit is set to '1' when a Program, Block Erase or Chip Erase operation fails to write the correct data to the memory. If the Error Bit is set a Read/Reset command must be issued before other commands are issued. The Error bit is output on DQ5 when the Status Register is read. Note that the Program command cannot change a bit set to '0' back to '1' and attempting to do so will set DQ5 to '1'. A Bus Read operation to that address will show the bit is still '0'. One of the Erase commands must be used to set all the bits in a block or in the whole memory from '0' to '1'. ## 5.4 Erase Timer Bit (DQ3) The Erase Timer Bit can be used to identify the start of Program/Erase Controller operation during a Block Erase command. Once the Program/Erase Controller starts erasing the Erase Timer Bit is set to '1'. Before the Program/Erase Controller starts the Erase Timer Bit is set to '0' and additional blocks to be erased may be written to the Command Interface. The Erase Timer Bit is output on DQ3 when the Status Register is read. ## 5.5 Alternative Toggle Bit (DQ2) The Alternative Toggle Bit can be used to monitor the Program/Erase controller during Erase operations. The Alternative Toggle Bit is output on DQ2 when the Status Register is read. During Chip Erase and Block Erase operations the Toggle Bit changes from '0' to '1' to '0', etc., with successive Bus Read operations from addresses within the blocks being erased. A protected block is treated the same as a block not being erased. Once the operation completes the memory returns to Read mode. During Erase Suspend the Alternative Toggle Bit changes from '0' to '1' to '0', etc. with successive Bus Read operations from addresses within the blocks being erased. Bus Read operations to addresses within blocks not being erased will output the memory cell data as if in Read mode. After an Erase operation that causes the Error Bit to be set the Alternative Toggle Bit can be used to identify which block or blocks have caused the error. The Alternative Toggle Bit changes from '0' to '1' to '0', etc. with successive Bus Read Operations from addresses within blocks that have not erased correctly. The Alternative Toggle Bit does not change if the addressed block has erased correctly. **Status Register** Table 7. Status Register Bits⁽¹⁾ | Operation | Address | DQ7 | DQ6 | DQ5 | DQ3 | DQ2 | RB | |---------------------------------|----------------------|-----|-----------|------------|-------|-----------|----| | Program | Any Address | DQ7 | Toggle | 0 | _ | - | 0 | | Program During Erase
Suspend | Any Address | DQ7 | Toggle | 0 | _ | - | 0 | | Program Error | Any Address | DQ7 | Toggle | 1 | _ | - | 0 | | Chip Erase | Any Address | 0 | Toggle | 0 | 1 | Toggle | 0 | | Block Erase before | Erasing Block | 0 | Toggle | 0 | 0 | Toggle | 0 | | timeout | Non-Erasing Block | 0 | Toggle | 0 | 0 | No Toggle | 0 | | Block Erase | Erasing Block | 0 | Toggle | 0 | 1 | Toggle | 0 | | DIOCK ETase | Non-Erasing Block | 0 | Toggle | 0 | 1 | No Toggle | 0 | | Eroop Suppond | Erasing Block | 1 | No Toggle | 0 | _ | Toggle | 1 | | Erase Suspend | Non-Erasing Block | | Data | read as no | ormal | | 1 | | Erase Error | Good Block Address | 0 | Toggle | 1 | 1 | No Toggle | 0 | | Elase Elloi | Faulty Block Address | 0 | Toggle | 1 | 1 | Toggle | 0 | ^{1.} Unspecified data bits should be ignored. Figure 6. Data Polling Flowchart **Status Register** M29W320DT, M29W320DB Figure 7. Data Toggle Flowchart **Maximum rating** # 6 Maximum rating Stressing the device above the rating listed in the Absolute Maximum Ratings table may cause permanent damage to the device. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Refer also to the Numonyx SURE Program and other relevant quality documents. Table 8. Absolute Maximum Ratings | Symbol | Parameter | Min | Max | Unit | |-------------------|---|------|----------------------|------| | T _{BIAS} | Temperature Under Bias | -50 | 125 | °C | | T _{STG} | Storage Temperature | -65 | 150 | °C | | V _{IO} | Input or Output Voltage ⁽¹⁾⁽²⁾ | -0.6 | V _{CC} +0.6 | V | | V _{CC} | Supply Voltage | -0.6 | 4 | V | | V _{ID} | Identification Voltage | -0.6 | 13.5 | V | | V _{PP} | Program Voltage | -0.6 | 13.5 | V | - 1. Minimum voltage may undershoot to -2V during transition and for less than 20ns during transitions. - 2. Maximum voltage may overshoot to V_{CC} +2V during transition and for less than 20ns during transitions. DC and AC parameters M29W320DT, M29W320DB # 7 DC and AC parameters This section summarizes the operating measurement conditions, and the DC and AC characteristics of the device. The parameters in the DC and AC characteristics Tables that follow, are derived from tests performed under the Measurement Conditions summarized in *Table 9: Operating and AC Measurement Conditions*. Designers should check that the operating conditions in their circuit match the operating conditions when relying on the quoted parameters. Table 9. Operating and AC Measurement Conditions | | M29W320D | | | | | | | | | |--|----------------------|--------|----------------------|-----------------|----------------------|-----------------|----------------------|-----|------| | Parameter | 70 ⁽¹⁾ | | 7A | | 80 | | 90 | | Unit | | | Min | Max | Min | Max | Min | Max | Min | Max | | | V _{CC} Supply Voltage | 2.7 | 3.6 | 2.7 | 3.6 | 2.5 | 3.6 | 2.7 | 3.6 | V | | Ambient Operating
Temperature | -40 | 85/125 | -40 | 85 | -40 | 125 | -40 | 85 | °C | | Load Capacitance (C _L) | 30 | | 30 | | 30 | | 30 | | pF | | Input Rise and Fall Times | | 10 | | 10 | | 10 | | 10 | ns | | Input Pulse Voltages | 0 to V _{CC} | | V | | Input and Output Timing Ref.
Voltages | V _{CC} /2 | | V _C | _C /2 | V _C | _C /2 | V _{CC} /2 | | V | ^{1.} $85\ ^{\circ}\text{C}$ is for industrial part code; $125\ ^{\circ}\text{C}$ is for the Autograde part. Figure 8. AC Measurement I/O Waveform ### DC and AC parameters Table 10. Device Capacitance⁽¹⁾ | Symbol | Parameter | Test Condition | Min | Max | Unit | |------------------|--------------------|-----------------------|-----|-----|------| | C _{IN} | Input Capacitance | $V_{IN} = 0V$ | | 6 | pF | | C _{OUT} | Output Capacitance | V _{OUT} = 0V | | 12 | pF | ^{1.} Sampled only, not 100% tested. Numonyx 31/56 ### DC and AC parameters ### M29W320DT, M29W320DB Table 11. DC Characteristics | Symbol
 Parameter | Test Condition | | Min | Тур. | Max | Unit | |---------------------------------|---|---|--|----------------------|------|----------------------|------| | I _{LI} | Input Leakage Current | $0V \le V_{IN} \le V_{CC}$ | | | | ±1 | μΑ | | I _{LO} | Output Leakage Current | $0V \le V_{OUT} \le V_{CC}$ | | | | ±1 | μΑ | | I _{CC1} | Supply Current (Read) | $\overline{E} = V_{IL}, \overline{G} = V_{IH},$ $f = 6MHz$ | | | 5 | 10 | mA | | I _{CC2} | Supply Current (Standby) | $\overline{E} = V_{CC} \pm 0.2V,$ $\overline{RP} = V_{CC} \pm 0.2V$ | | | 35 | 100 | μА | | I _{CC3} ⁽¹⁾ | Supply Current | Program/Eras
e | $V_{PP}/\overline{WP} = V_{IL} \text{ or } V_{IH}$ | | | 20 | mA | | ICC3 | (Program/Erase) | Controller active | $V_{PP}/\overline{WP} = V_{PP}$ | | | 20 | mA | | V_{IL} | Input Low Voltage | | | -0.5 | | 0.8 | V | | V _{IH} | Input High Voltage | | | 0.7V _{CC} | | V _{CC} +0.3 | V | | V _{PP} | Voltage for V _{PP} /WP
Program Acceleration | V _{CC} = 3.0V ±10% | | 11.5 | | 12.5 | V | | I _{PP} | Current for V _{PP} /WP
Program Acceleration | V _{CC} = 3.0V ±10% | | | | 10 | mA | | V _{OL} | Output Low Voltage | I _{OL} = 1 | .8mA | | | 0.45 | V | | V _{OH} | Output High Voltage | I _{OH} = -100μA | | V _{CC} -0.4 | | | V | | V _{ID} | Identification Voltage | | | 11.5 | | 12.5 | V | | I _{ID} | Identification Current | A9 = V _{ID} | | | | 100 | μA | | V _{LKO} | Program/Erase Lockout
Supply Voltage | | | 1.8 | | 2.3 | V | ^{1.} Sampled only, not 100% tested. DC and AC parameters Figure 9. Read Mode AC Waveforms Table 12. Read AC Characteristics | 0 | A 14 | Parameter | Test Condition | | M | I Imit | | | |---|-------------------|---|---|-----|-------|--------|----|------| | Symbol | Alt | | | | 70/7A | 80 | 90 | Unit | | t _{AVAV} | t _{RC} | Address Valid to Next Address Valid | $\overline{\underline{E}} = V_{IL},$
$\overline{G} = V_{IL}$ | Min | 70 | 80 | 90 | ns | | t _{AVQV} | t _{ACC} | Address Valid to Output Valid | $\overline{\underline{E}} = V_{IL},$
$\overline{G} = V_{IL}$ | Max | 70 | 80 | 90 | ns | | t _{ELQX} ⁽¹⁾ | t _{LZ} | Chip Enable Low to Output Transition | $\overline{G} = V_{IL}$ | Min | 0 | 0 | 0 | ns | | t _{ELQV} | t _{CE} | Chip Enable Low to Output Valid | $\overline{G} = V_{IL}$ | Max | 70 | 80 | 90 | ns | | t _{GLQX} ⁽¹⁾ | t _{OLZ} | Output Enable Low to Output Transition | E = V _{IL} | Min | 0 | 0 | 0 | ns | | t _{GLQV} | t _{OE} | Output Enable Low to Output Valid | $\overline{E} = V_{IL}$ | Max | 30 | 30 | 35 | ns | | t _{EHQZ} ⁽¹⁾ | t _{HZ} | Chip Enable High to Output Hi-Z | $\overline{G} = V_{IL}$ | Max | 25 | 25 | 30 | ns | | t _{GHQZ} ⁽¹⁾ | t _{DF} | Output Enable High to Output Hi-Z | $\overline{E} = V_{IL}$ | Max | 25 | 25 | 30 | ns | | t _{EHQX}
t _{GHQX}
t _{AXQX} | t _{OH} | Chip Enable, Output Enable or
Address Transition to Output
Transition | | Min | 0 | 0 | 0 | ns | | t _{ELBL} | t _{ELFL} | Chip Enable to BYTE Low or High | | Max | 5 | 5 | 5 | ns | | t _{BLQZ} | t _{FLQZ} | BYTE Low to Output Hi-Z | | Max | 25 | 25 | 30 | ns | | t _{BHQV} | t _{FHQV} | BYTE High to Output Valid | | Max | 30 | 30 | 40 | ns | ^{1.} Sampled only, not 100% tested. 33/56 ### DC and AC parameters M29W320DT, M29W320DB Figure 10. Write AC Waveforms, Write Enable Controlled Table 13. Write AC Characteristics, Write Enable Controlled | Cumah al | Ali | Parameter | | | M29W320D | | | |-----------------------|-------------------|---|-----|----|----------|----|------| | Symbol | Alt | | | | 80 | 90 | Unit | | t _{AVAV} | t _{WC} | Address Valid to Next Address Valid | Min | 70 | 80 | 90 | ns | | t _{ELWL} | t _{CS} | Chip Enable Low to Write Enable Low | Min | 0 | 0 | 0 | ns | | t _{WLWH} | t _{WP} | Write Enable Low to Write Enable High | Min | 45 | 45 | 50 | ns | | t _{DVWH} | t _{DS} | Input Valid to Write Enable High | Min | 45 | 45 | 50 | ns | | t _{WHDX} | t _{DH} | Write Enable High to Input Transition | Min | 0 | 0 | 0 | ns | | t _{WHEH} | t _{CH} | Write Enable High to Chip Enable High | Min | 0 | 0 | 0 | ns | | t _{WHWL} | t _{WPH} | Write Enable High to Write Enable Low | Min | 30 | 30 | 30 | ns | | t _{AVWL} | t _{AS} | Address Valid to Write Enable Low | Min | 0 | 0 | 0 | ns | | t _{WLAX} | t _{AH} | Write Enable Low to Address Transition | Min | 45 | 45 | 50 | ns | | t _{GHWL} | | Output Enable High to Write Enable Low | Min | 0 | 0 | 0 | ns | | t _{WHGL} | t _{OEH} | Write Enable High to Output Enable Low | Min | 0 | 0 | 0 | ns | | t _{WHRL} (1) | t _{BUSY} | Program/Erase Valid to RB Low | Max | 30 | 30 | 35 | ns | | t _{VCHEL} | t _{VCS} | V _{CC} High to Chip Enable Low | Min | 50 | 50 | 50 | μs | ^{1.} Sampled only, not 100% tested. **N** numonyx DC and AC parameters Figure 11. Write AC Waveforms, Chip Enable Controlled Table 14. Write AC Characteristics, Chip Enable Controlled | Sumbal | A 14 | Parameter | | | M29W320D | | | | |----------------------------------|-------------------|--|-----|----|----------|----|------|--| | Symbol | Alt | Parameter | | | 80 | 90 | Unit | | | t _{AVAV} | t _{WC} | Address Valid to Next Address Valid | Min | 70 | 80 | 90 | ns | | | t _{WLEL} | t _{WS} | Write Enable Low to Chip Enable Low | Min | 0 | 0 | 0 | ns | | | t _{ELEH} | t _{CP} | Chip Enable Low to Chip Enable High | Min | 45 | 45 | 50 | ns | | | t _{DVEH} | t _{DS} | Input Valid to Chip Enable High | Min | 45 | 45 | 50 | ns | | | t _{EHDX} | t _{DH} | Chip Enable High to Input Transition | Min | 0 | 0 | 0 | ns | | | t _{EHWH} | t _{WH} | Chip Enable High to Write Enable High | Min | 0 | 0 | 0 | ns | | | t _{EHEL} | t _{CPH} | Chip Enable High to Chip Enable Low | Min | 30 | 30 | 30 | ns | | | t _{AVEL} | t _{AS} | Address Valid to Chip Enable Low | Min | 0 | 0 | 0 | ns | | | t _{ELAX} | t _{AH} | Chip Enable Low to Address Transition | Min | 45 | 45 | 50 | ns | | | t _{GHEL} | | Output Enable High Chip Enable Low | Min | 0 | 0 | 0 | ns | | | t _{EHGL} | t _{OEH} | Chip Enable High to Output Enable Low | Min | 0 | 0 | 0 | ns | | | t _{EHRL} ⁽¹⁾ | t _{BUSY} | Program/Erase Valid to RB Low | Max | 30 | 30 | 35 | ns | | | t _{VCHWL} | t _{VCS} | V _{CC} High to Write Enable Low | Min | 50 | 50 | 50 | μs | | ^{1.} Sampled only, not 100% tested. #### DC and AC parameters #### M29W320DT, M29W320DB Figure 12. Reset/Block Temporary Unprotect AC Waveforms Table 15. Reset/Block Temporary Unprotect AC Characteristics | Symbol | Alt | Parameter | | M | 29W320 | D | Unit | |--|--------------------|--|-----|-------|--------|-----|------| | Symbol | All | Farameter | | 70/7A | 80 | 90 | Onit | | t _{PHWL} ⁽¹⁾ t _{PHEL} t _{PHGL} ⁽¹⁾ | t _{RH} | RP High to Write Enable Low, Chip Enable Low, Output Enable Low | Min | 50 | 50 | 50 | ns | | t _{RHWL} ⁽¹⁾
t _{RHEL} ⁽¹⁾
t _{RHGL} ⁽¹⁾ | t _{RB} | RB High to Write Enable Low, Chip Enable Low,
Output Enable Low | Min | 0 | 0 | 0 | ns | | t _{PLPX} | t _{RP} | RP Pulse Width | Min | 500 | 500 | 500 | ns | | t _{PLYH} ⁽¹⁾ | t _{READY} | RP Low to Read Mode | Max | 25 | 25 | 25 | μs | | t _{PHPHH} ⁽¹⁾ | t _{VIDR} | RP Rise Time to V _{ID} | Min | 500 | 500 | 500 | ns | | t _{VHVPP} ⁽¹⁾ | | V _{PP} Rise and Fall Time | Min | 250 | 250 | 250 | ns | ^{1.} Sampled only, not 100% tested. Figure 13. Accelerated Program Timing Waveforms Package mechanical # 8 Package mechanical Figure 14. TSOP48 Lead Plastic Thin Small Outline, 12x20 Mm, Top View Package Outline 1. Drawing not to scale. Table 16. TSOP48 Lead Plastic Thin Small Outline, 12x20 mm, Package Mechanical Data | Comple of | | millimeters | | | inches | | |-----------|--------|-------------|--------|--------|--------|--------| | Symbol | Тур | Min | Max | Тур | Min | Max | | Α | | | 1.200 | | | 0.0472 | | A1 | 0.100 | 0.050 | 0.150 | 0.0039 | 0.0020 | 0.0059 | | A2 | 1.000 | 0.950 | 1.050 | 0.0394 | 0.0374 | 0.0413 | | В | 0.220 | 0.170 | 0.270 | 0.0087 | 0.0067 | 0.0106 | | С | | 0.100 | 0.210 | | 0.0039 | 0.0083 | | СР | | | 0.080 | | | 0.0031 | | D1 | 12.000 | 11.900 | 12.100 | 0.4724 | 0.4685 | 0.4764 | | E | 20.000 | 19.800 | 20.200 | 0.7874 | 0.7795 | 0.7953 | | E1 | 18.400 | 18.300 | 18.500 | 0.7244 | 0.7205 | 0.7283 | | е | 0.500 | - | - | 0.0197 | - | _ | | L | 0.600 | 0.500 | 0.700 | 0.0236 | 0.0197 | 0.0276 | | L1 | 0.800 | | | 0.0315 | | | | а | 3 | 0 | 5 | 3 | 0 | 5 | Numonyx 37/56 #### Package mechanical M29W320DT, M29W320DB Figure 15. TFBGA48 6x8mm - 6x8 Ball Array, 0.8mm Pitch, Bottom View Package Outline 1. Drawing not to scale. Table 17. TFBGA48 6x8mm - 6x8 Ball Array, 0.8mm Pitch, Package Mechanical Data | Comple of | | millimeters | | | inches | | |-----------|-------|-------------|-------|--------|--------|--------| | Symbol | Тур | Min | Max | Тур | Min | Max | | А | | | 1.200 | | | 0.0472 | | A1 | | 0.260 | | | 0.0102 | | | A2 | | | 0.900 | | | 0.0354 | | b | | 0.350 | 0.450 | | 0.0138 | 0.0177 | | D | 6.000 | 5.900 | 6.100 | 0.2362 | 0.2323 | 0.2402 | | D1 | 4.000 | _ | _ | 0.1575 | _ | - | | ddd | | | 0.100 | | | 0.0039 | | E | 8.000 | 7.900 | 8.100 | 0.3150 | 0.3110 | 0.3189 | | E1 | 5.600 | _ | - | 0.2205 | - | - | | е | 0.800 | _ | - | 0.0315 | - | - | | FD | 1.000 | _ | - | 0.0394 | - | - | | FE | 1.200 | _ | _ | 0.0472 | - | - | | SD | 0.400 | _ | _ | 0.0157 | - | - | | SE | 0.400 | - | - | 0.0157 | - | - | Part numbering ### 9 Part numbering Devices are shipped from the factory with the memory content bits erased to
'1'. For a list of available options (Speed, Package, etc...) or for further information on any aspect of this device, please contact the Numonyx Sales Office nearest to you. Numonyx F = RoHS Package, Tape & Reel Packing 39/56 **Block Addresses** M29W320DT, M29W320DB # Appendix A Block Addresses Table 19. Top Boot Block Addresses, M29W320DT | # | Size
(KByte/KWor
d) | Address Range
(x8) | Address Range
(x16) | |----|---------------------------|-----------------------|------------------------| | 66 | 16/8 | 3FC000h-3FFFFFh | 1FE000h-1FFFFFh | | 65 | 8/4 | 3FA000h-3FBFFFh | 1FD000h-1FDFFFh | | 64 | 8/4 | 3F8000h-3F9FFFh | 1FC000h-1FCFFFh | | 63 | 32/16 | 3F0000h-3F7FFFh | 1F8000h-1FBFFFh | | 62 | 64/32 | 3E0000h-3EFFFFh | 1F0000h-1F7FFFh | | 61 | 64/32 | 3D0000h-3DFFFFh | 1E8000h-1EFFFFh | | 60 | 64/32 | 3C0000h-3CFFFFh | 1E0000h-1E7FFFh | | 59 | 64/32 | 3B0000h-3BFFFFh | 1D8000h-1DFFFFh | | 58 | 64/32 | 3A0000h-3AFFFFh | 1D0000h-1D7FFFh | | 57 | 64/32 | 390000h-39FFFFh | 1C8000h-1CFFFFh | | 56 | 64/32 | 380000h-18FFFFh | 1C0000h-1C7FFFh | | 55 | 64/32 | 370000h-37FFFFh | 1B8000h-1BFFFFh | | 54 | 64/32 | 360000h-36FFFFh | 1B0000h-1B7FFFh | | 53 | 64/32 | 350000h-35FFFFh | 1A8000h-1AFFFFh | | 52 | 64/32 | 340000h-34FFFFh | 1A0000h-1A7FFFh | | 51 | 64/32 | 330000h-33FFFFh | 198000h-19FFFFh | | 50 | 64/32 | 320000h-32FFFFh | 190000h-197FFFh | | 49 | 64/32 | 310000h-31FFFFh | 188000h-18FFFFh | | 48 | 64/32 | 300000h-30FFFFh | 180000h-187FFFh | | 47 | 64/32 | 2F0000h-2FFFFFh | 178000h-17FFFFh | | 46 | 64/32 | 2E0000h-2EFFFFh | 170000h-177FFFh | | 45 | 64/32 | 2D0000h-2DFFFFh | 168000h-16FFFFh | | 44 | 64/32 | 2C0000h-2CFFFFh | 160000h-167FFFh | | 43 | 64/32 | 2B0000h-2BFFFFh | 158000h-15FFFFh | | 42 | 64/32 | 2A0000h-2AFFFFh | 150000h-157FFFh | | 41 | 64/32 | 290000h-29FFFh | 148000h-14FFFFh | | 40 | 64/32 | 280000h-28FFFFh | 140000h-147FFFh | | 39 | 64/32 | 270000h-27FFFh | 138000h-13FFFFh | | 38 | 64/32 | 260000h-26FFFFh | 130000h-137FFFh | | 37 | 64/32 | 250000h-25FFFFh | 128000h-12FFFFh | | 36 | 64/32 | 240000h-24FFFFh | 120000h-127FFFh | **Block Addresses** Table 19. Top Boot Block Addresses, M29W320DT (continued) | 35 64/32 230000h-23FFFFh 118000h-11FFFFh 34 64/32 220000h-22FFFFh 110000h-117FFFh 33 64/32 210000h-20FFFFh 108000h-10FFFFh 32 64/32 200000h-20FFFFh 100000h-10FFFFh 31 64/32 1F0000h-1FFFFFh 0F8000h-0FFFFh 30 64/32 1D0000h-10FFFFh 0E8000h-0EFFFFh 29 64/32 1D0000h-10FFFFh 0E8000h-0EFFFFh 28 64/32 1D0000h-10FFFFh 0E8000h-0EFFFFh 27 64/32 1B0000h-18FFFFh 0D8000h-0EFFFFh 26 64/32 1A0000h-18FFFFh 0D8000h-0DFFFFh 25 64/32 180000h-18FFFFh 0C8000h-0CFFFFh 24 64/32 180000h-18FFFFh 0C8000h-0CFFFFh 23 64/32 180000h-16FFFFh 0B8000h-0BFFFFh 24 64/32 150000h-16FFFFh 0B8000h-0BFFFFh 25 64/32 150000h-16FFFFh 0B8000h-0BFFFFh 26 64/32 140000h-14FFFFh 0A8000h-0BFFFFh <th></th> <th></th> <th></th> <th></th> | | | | | |--|----|-------|-----------------|-----------------| | 33 64/32 210000h-21FFFFh 108000h-10FFFFh 32 64/32 20000h-20FFFFh 100000h-107FFFh 31 64/32 1F0000h-1EFFFFh 0F8000h-0EFFFFh 30 64/32 1E0000h-1EFFFFh 0F0000h-0F7FFFh 29 64/32 1D0000h-1DFFFFh 0E8000h-0EFFFFh 28 64/32 1C0000h-1DFFFFh 0E0000h-0E7FFFh 27 64/32 1B0000h-1BFFFFh 0D000h-0DFFFFh 26 64/32 1A0000h-1AFFFFh 0D000h-0DFFFFh 25 64/32 190000h-19FFFFh 0C800h-0CFFFFh 24 64/32 180000h-18FFFFh 0C800h-0CFFFFh 23 64/32 180000h-18FFFFh 0B8000h-0BFFFFh 24 64/32 160000h-16FFFFh 0B8000h-0BFFFFh 25 64/32 150000h-13FFFFh 0B8000h-0BFFFFh 26 64/32 160000h-14FFFFh 0B8000h-0AFFFFh 21 64/32 150000h-13FFFFh 0B8000h-0AFFFFh 20 64/32 130000h-13FFFFh 0A8000h-0AFFFFh | 35 | 64/32 | 230000h-23FFFFh | 118000h-11FFFFh | | 32 64/32 20000h-20FFFFh 10000h-107FFFh 31 64/32 1F0000h-1FFFFh 0F8000h-0FBFFFh 30 64/32 1E0000h-1EFFFFh 0F0000h-0F7FFFh 29 64/32 1D0000h-1DFFFFh 0E8000h-0EFFFFh 28 64/32 1C0000h-1DFFFFh 0E0000h-0E7FFFh 27 64/32 180000h-1BFFFFh 0D8000h-0DFFFFh 26 64/32 140000h-1AFFFFh 0D0000h-0D7FFFh 25 64/32 190000h-18FFFFh 0C8000h-0CFFFFh 24 64/32 180000h-18FFFFh 0C8000h-0FFFFh 23 64/32 180000h-18FFFFh 0B8000h-0BFFFFh 24 64/32 160000h-18FFFFh 0B8000h-0BFFFFh 25 64/32 150000h-15FFFFh 0B8000h-0BFFFFh 26 64/32 150000h-14FFFFh 0B8000h-0AFFFFh 27 64/32 150000h-14FFFFh 0B8000h-0AFFFFh 28 64/32 150000h-14FFFFh 0A8000h-0AFFFFh 29 64/32 130000h-14FFFFh 098000h-09FFFFh | 34 | 64/32 | 220000h-22FFFFh | 110000h-117FFFh | | 31 64/32 1F0000h-1FFFFFh 0F8000h-0FBFFFh 30 64/32 1E0000h-1EFFFFh 0F0000h-0F7FFFh 29 64/32 1D0000h-1DFFFFh 0E8000h-0EFFFFh 28 64/32 1C0000h-1CFFFFh 0E0000h-0E7FFFh 27 64/32 1B0000h-1BFFFFh 0D8000h-0DFFFFh 26 64/32 1A0000h-18FFFFh 0C8000h-0FFFFh 25 64/32 190000h-19FFFFh 0C8000h-0FFFFh 24 64/32 180000h-18FFFFh 0C8000h-0FFFFh 23 64/32 170000h-17FFFFh 0B8000h-0FFFFh 24 64/32 160000h-16FFFFh 0B8000h-0BFFFFh 25 64/32 150000h-15FFFFh 0B8000h-0BFFFFh 26 64/32 150000h-15FFFFh 0B8000h-0AFFFFh 27 64/32 150000h-15FFFFh 0B8000h-0AFFFFh 28 64/32 140000h-14FFFFh 0A0000h-0AFFFFh 39 64/32 130000h-15FFFFh 0B8000h-0FFFFh 40 64/32 100000h-10FFFFh 0B8000h-0FFFFh | 33 | 64/32 | 210000h-21FFFFh | 108000h-10FFFFh | | 30 64/32 1E0000h-1EFFFFh 0F0000h-0F7FFFh 29 64/32 1D0000h-1DFFFFh 0E8000h-0EFFFFh 28 64/32 1C0000h-1CFFFFh 0E0000h-0E7FFFh 27 64/32 1B0000h-1BFFFFh 0D8000h-0DFFFFh 26 64/32 140000h-19FFFFh 0C8000h-0CFFFFh 25 64/32 190000h-19FFFFh 0C8000h-0CFFFFh 24 64/32 180000h-18FFFFh 0C9000h-0C7FFFh 23 64/32 170000h-17FFFFh 0B8000h-0BFFFFh 24 64/32 160000h-16FFFFh 0B0000h-0B7FFFh 25 64/32 160000h-16FFFFh 0B0000h-0B7FFFh 26 64/32 150000h-15FFFFh 0B0000h-0A7FFFh 27 64/32 140000h-14FFFFh 0A0000h-0A7FFFh 28 64/32 130000h-13FFFFh 0A0000h-0A7FFFh 39 64/32 130000h-15FFFFh 0A0000h-0FFFFh 40 64/32 110000h-11FFFFh 0B8000h-08FFFFh 40 64/32 100000h-0FFFFFh 0B8000h-08FFFFh <td>32</td> <td>64/32</td> <td>200000h-20FFFFh</td> <td>100000h-107FFFh</td> | 32 | 64/32 | 200000h-20FFFFh | 100000h-107FFFh | | 29 64/32 1D0000h-1DFFFFh 0E8000h-0EFFFFh 28 64/32 1C0000h-1CFFFFh 0E0000h-0E7FFFh 27 64/32 1B0000h-1BFFFFh 0D8000h-0DFFFFh 26 64/32 140000h-19FFFFh 0C8000h-0CFFFFh 25 64/32 190000h-19FFFFh 0C8000h-0CFFFFh 24 64/32 180000h-18FFFFh 0C0000h-0C7FFFh 23 64/32 170000h-17FFFFh 0B8000h-0BFFFFh 24 64/32 160000h-16FFFFh 0B8000h-0BFFFFh 25 64/32 160000h-16FFFFh 0B8000h-0BFFFFh 26 64/32 150000h-15FFFFh 0B8000h-0BFFFFh 27 64/32 150000h-15FFFFh 0A8000h-0AFFFFh 28 64/32 130000h-13FFFFh 098000h-09FFFFh 38 64/32 120000h-12FFFFh 098000h-09FFFFh 46 64/32 110000h-11FFFFh 088000h-08FFFFh 46 64/32 100000h-0FFFFh 078000h-07FFFFh 46 64/32 0F0000h-0FFFFFh 078000h-07FFFFh <td>31</td> <td>64/32</td> <td>1F0000h-1FFFFFh</td> <td>0F8000h-0FBFFFh</td> | 31 | 64/32 | 1F0000h-1FFFFFh | 0F8000h-0FBFFFh | | 28 64/32 1C0000h-1CFFFFh 0E0000h-0E7FFFh 27 64/32 1B0000h-1BFFFh 0D8000h-0DFFFFh 26 64/32 1A0000h-1AFFFFh 0D0000h-0D7FFFh 25 64/32 190000h-19FFFFh 0C8000h-0CFFFFh 24 64/32 180000h-18FFFFh 0C0000h-0C7FFFh 23 64/32 170000h-17FFFFh 0B8000h-0BFFFFh 24 64/32 160000h-16FFFFh 0B0000h-0BFFFFh 25 64/32 160000h-16FFFFh 0B0000h-0BFFFFh 26 64/32 150000h-15FFFFh 0A8000h-0AFFFFh 27 64/32 140000h-14FFFFh 0A8000h-0AFFFFh 28 64/32 130000h-13FFFFh 098000h-09FFFFh 36 64/32 110000h-11FFFFh 088000h-08FFFFh 36 64/32 110000h-11FFFFh 088000h-08FFFFh 36 64/32 100000h-10FFFFh 088000h-08FFFFh 36 64/32 0F0000h-0FFFFFh 078000h-07FFFFh 36 64/32 0F0000h-0FFFFFh 078000h-07FFFFh <td>30</td> <td>64/32</td> <td>1E0000h-1EFFFFh</td> <td>0F0000h-0F7FFFh</td> | 30 | 64/32 | 1E0000h-1EFFFFh | 0F0000h-0F7FFFh | | 27 64/32 1B0000h-1BFFFh OD8000h-0DFFFh 26 64/32 1A0000h-1AFFFh OD0000h-0D7FFFh 25 64/32 190000h-19FFFh OC8000h-0C7FFFh 24 64/32 180000h-18FFFFh OC0000h-0C7FFFh 23 64/32 170000h-17FFFh OB8000h-0BFFFFh 22 64/32 160000h-16FFFFh OB0000h-0B7FFFh 21 64/32 150000h-15FFFFh OA8000h-0AFFFFh 20 64/32 140000h-14FFFFh OA8000h-0AFFFFh 19 64/32 130000h-13FFFFh O98000h-09FFFFh 19 64/32 120000h-13FFFFh O98000h-09FFFFh 17 64/32 110000h-11FFFFh O88000h-09FFFFh 16 64/32 10000h-10FFFFh 088000h-08FFFFh 15 64/32 10000h-10FFFFh 078000h-07FFFFh 14 64/32 0F0000h-0FFFFFh 078000h-07FFFFh 13 64/32 0F0000h-0FFFFFh 068000h-06FFFFh 14 64/32 0F0000h-0FFFFFh 058000h-0FFFFh | 29 | 64/32 | 1D0000h-1DFFFFh | 0E8000h-0EFFFFh | | 26 64/32 1A0000h-1AFFFFh 0D0000h-0D7FFFh 25 64/32 190000h-19FFFFh 0C8000h-0CFFFFh 24 64/32 180000h-18FFFFh 0C0000h-0C7FFFh 23 64/32 170000h-17FFFFh 0B8000h-0BFFFFh 22 64/32 160000h-18FFFFh 0B0000h-0B7FFFh 21 64/32 150000h-15FFFFh 0A8000h-0AFFFFh 20 64/32 140000h-14FFFFh 0A0000h-0AFFFFh 19 64/32 130000h-13FFFFh 098000h-09FFFFh 18 64/32 120000h-12FFFFh 098000h-09FFFFh 17 64/32 110000h-11FFFFh 088000h-08FFFFh 16 64/32 100000h-10FFFFh 088000h-08FFFFh 15 64/32 0F0000h-0FFFFFh 078000h-07FFFFh 14 64/32 0E0000h-0FFFFFh 068000h-0FFFFFh 13 64/32 0D0000h-0FFFFFh 068000h-0FFFFFh 14 64/32 0B0000h-0FFFFFh 058000h-0FFFFFh 10 64/32
0B0000h-0FFFFFh 058000h-0FFFFFh </td <td>28</td> <td>64/32</td> <td>1C0000h-1CFFFFh</td> <td>0E0000h-0E7FFh</td> | 28 | 64/32 | 1C0000h-1CFFFFh | 0E0000h-0E7FFh | | 25 64/32 190000h-19FFFFh OC8000h-0CFFFFh 24 64/32 180000h-18FFFFh OC0000h-0C7FFFh 23 64/32 170000h-17FFFFh OB8000h-0BFFFFh 22 64/32 160000h-16FFFFh OB0000h-0BFFFFh 21 64/32 150000h-15FFFFh OA8000h-0AFFFFh 20 64/32 140000h-14FFFFh OA0000h-0AFFFFh 19 64/32 130000h-13FFFFh O98000h-09FFFFh 18 64/32 120000h-12FFFFh O99000h-09FFFFh 17 64/32 110000h-11FFFFh O88000h-08FFFFh 16 64/32 10000h-10FFFFh O88000h-08FFFFh 15 64/32 0F0000h-0FFFFFh O78000h-07FFFFh 14 64/32 0E0000h-0EFFFFh O78000h-07FFFFh 13 64/32 0D0000h-0EFFFFh O68000h-0FFFFh 14 64/32 0C0000h-0FFFFh O68000h-0FFFFh 15 64/32 0B0000h-0BFFFFh O58000h-0FFFFh 16 64/32 0B0000h-0BFFFFh O58000h-0FFFFh | 27 | 64/32 | 1B0000h-1BFFFFh | 0D8000h-0DFFFFh | | 24 64/32 180000h-18FFFh OC0000h-0C7FFFh 23 64/32 170000h-17FFFh OB8000h-0BFFFh 22 64/32 160000h-16FFFh OB0000h-0B7FFFh 21 64/32 150000h-15FFFh OA8000h-0AFFFFh 20 64/32 140000h-14FFFFh OA0000h-0A7FFFh 19 64/32 130000h-13FFFFh O98000h-09FFFFh 18 64/32 120000h-12FFFFh O99000h-09FFFFh 17 64/32 110000h-11FFFFh O88000h-08FFFFh 16 64/32 100000h-10FFFFh O88000h-08FFFFh 15 64/32 0F0000h-0FFFFFh O78000h-07FFFFh 14 64/32 0E0000h-0FFFFFh O78000h-0FFFFh 13 64/32 0C0000h-0FFFFFh O68000h-06FFFFh 14 64/32 0C0000h-0FFFFFh O68000h-06FFFFh 11 64/32 0B0000h-0FFFFFh O58000h-0FFFFh 10 64/32 0A0000h-0FFFFFh O58000h-0FFFFh 10 64/32 0A0000h-0FFFFFh O48000h-0FFFFh < | 26 | 64/32 | 1A0000h-1AFFFFh | 0D0000h-0D7FFFh | | 23 64/32 170000h-17FFFFh 0B8000h-0BFFFFh 22 64/32 160000h-16FFFFh 0B0000h-0B7FFFh 21 64/32 150000h-15FFFFh 0A8000h-0AFFFFh 20 64/32 140000h-14FFFFh 0A0000h-0A7FFFh 19 64/32 130000h-13FFFFh 098000h-09FFFFh 18 64/32 120000h-12FFFFh 099000h-09FFFFh 17 64/32 110000h-11FFFFh 088000h-08FFFFh 16 64/32 100000h-10FFFFh 088000h-08FFFFh 15 64/32 0F0000h-0FFFFFh 078000h-0FFFFh 14 64/32 0E0000h-0FFFFFh 078000h-0FFFFh 13 64/32 0C0000h-0FFFFFh 068000h-0FFFFh 14 64/32 0C0000h-0FFFFh 068000h-0FFFFh 15 64/32 0C0000h-0FFFFh 068000h-0FFFFh 16 64/32 0C0000h-0FFFFh 058000h-0FFFFh 17 64/32 0A0000h-0FFFFh 058000h-0FFFFh 18 64/32 0A0000h-0FFFFh 048000h-0FFFFh | 25 | 64/32 | 190000h-19FFFFh | 0C8000h-0CFFFFh | | 22 64/32 160000h-16FFFFh 0B0000h-0B7FFFh 21 64/32 150000h-15FFFFh 0A8000h-0AFFFFh 20 64/32 140000h-14FFFFh 0A0000h-0A7FFFh 19 64/32 130000h-13FFFFh 098000h-09FFFFh 18 64/32 120000h-12FFFFh 090000h-09FFFFh 17 64/32 110000h-11FFFFh 088000h-08FFFFh 16 64/32 100000h-0FFFFh 088000h-08FFFFh 15 64/32 0F0000h-0FFFFh 078000h-07FFFFh 14 64/32 0E0000h-0FFFFh 078000h-07FFFFh 13 64/32 0D0000h-0FFFFh 068000h-0FFFFh 14 64/32 0D0000h-0FFFFh 068000h-0FFFFh 15 64/32 0D0000h-0FFFFh 068000h-0FFFFh 16 64/32 0D0000h-0FFFFh 068000h-0FFFFh 17 64/32 0B0000h-0FFFFh 058000h-0FFFFh 18 64/32 0B0000h-0FFFFh 058000h-0FFFFh 19 64/32 080000h-0FFFFh 048000h-0FFFFh | 24 | 64/32 | 180000h-18FFFFh | 0C0000h-0C7FFFh | | 21 64/32 150000h-15FFFFh OA8000h-0AFFFFh 20 64/32 140000h-14FFFFh OA0000h-0A7FFFh 19 64/32 130000h-13FFFFh O98000h-09FFFFh 18 64/32 120000h-12FFFFh O90000h-09FFFFh 17 64/32 110000h-11FFFFh O88000h-08FFFFh 16 64/32 100000h-10FFFFh O80000h-08FFFFh 15 64/32 0F0000h-0FFFFh O78000h-07FFFFh 14 64/32 0E0000h-0EFFFFh O70000h-07FFFFh 13 64/32 0D0000h-0EFFFFh O68000h-06FFFFh 14 64/32 0D0000h-0FFFFh O68000h-06FFFFh 15 64/32 0B0000h-0FFFFh O58000h-0FFFFh 16 64/32 0B0000h-0FFFFh O58000h-0FFFFh 17 64/32 0A0000h-0FFFFh O58000h-0FFFFh 18 64/32 0A0000h-0FFFFh O48000h-0FFFFh 19 64/32 0A0000h-0FFFFh O38000h-0FFFFh 2 64/32 0F0000h-0FFFFh O38000h-0FFFFh | 23 | 64/32 | 170000h-17FFFFh | 0B8000h-0BFFFFh | | 20 64/32 140000h-14FFFFh 0A0000h-0A7FFFh 19 64/32 130000h-13FFFFh 098000h-09FFFFh 18 64/32 120000h-12FFFFh 090000h-09FFFFh 17 64/32 110000h-11FFFFh 088000h-08FFFFh 16 64/32 100000h-10FFFFh 08000h-08FFFFh 15 64/32 0F0000h-0FFFFh 078000h-07FFFFh 14 64/32 0E0000h-0EFFFFh 070000h-07FFFFh 13 64/32 0D0000h-0FFFFh 068000h-0FFFFh 12 64/32 0C0000h-0FFFFh 068000h-0FFFFh 11 64/32 0B0000h-0FFFFh 058000h-05FFFFh 10 64/32 0A0000h-0AFFFFh 058000h-05FFFFh 10 64/32 090000h-0FFFFh 048000h-04FFFFh 10 64/32 080000h-0FFFFh 048000h-04FFFFh 1 64/32 080000h-0FFFFh 038000h-03FFFFh 2 64/32 050000h-0FFFFh 028000h-02FFFFh 3 64/32 040000h-04FFFFh 028000h-02FFFFh | 22 | 64/32 | 160000h-16FFFFh | 0B0000h-0B7FFFh | | 19 64/32 130000h-13FFFFh 098000h-09FFFFh 18 64/32 120000h-12FFFFh 090000h-097FFFh 17 64/32 110000h-11FFFFh 088000h-08FFFFh 16 64/32 100000h-10FFFFh 080000h-087FFFh 15 64/32 0F0000h-0FFFFh 078000h-07FFFFh 14 64/32 0E0000h-0EFFFFh 070000h-07FFFFh 13 64/32 0D0000h-0DFFFFh 068000h-06FFFFh 12 64/32 0C0000h-0FFFFh 068000h-06FFFFh 11 64/32 0B0000h-0BFFFFh 058000h-05FFFFh 10 64/32 0A0000h-0AFFFFh 058000h-05FFFFh 9 64/32 090000h-09FFFFh 048000h-04FFFFh 9 64/32 080000h-08FFFFh 048000h-04FFFFh 7 64/32 070000h-07FFFFh 038000h-03FFFFh 6 64/32 060000h-06FFFFh 028000h-02FFFFh 5 64/32 050000h-05FFFFh 028000h-02FFFFh 4 64/32 040000h-04FFFFh 018000h-01FFFFh | 21 | 64/32 | 150000h-15FFFFh | 0A8000h-0AFFFFh | | 18 64/32 120000h-12FFFh 090000h-097FFFh 17 64/32 110000h-11FFFFh 088000h-08FFFFh 16 64/32 100000h-10FFFFh 080000h-087FFFh 15 64/32 0F0000h-0FFFFh 078000h-07FFFFh 14 64/32 0E0000h-0FFFFh 070000h-07FFFh 13 64/32 0D0000h-0DFFFFh 068000h-06FFFFh 12 64/32 0C0000h-0CFFFFh 060000h-067FFFh 11 64/32 0B0000h-0BFFFFh 058000h-05FFFFh 10 64/32 0A0000h-0AFFFFh 050000h-05FFFFh 9 64/32 090000h-09FFFFh 048000h-04FFFFh 8 64/32 080000h-08FFFFh 040000h-04FFFFh 7 64/32 070000h-07FFFFh 038000h-03FFFFh 6 64/32 050000h-05FFFFh 028000h-02FFFFh 5 64/32 050000h-05FFFFh 028000h-02FFFFh 4 64/32 040000h-03FFFFh 018000h-01FFFh 3 64/32 030000h-03FFFFh 018000h-01FFFh | 20 | 64/32 | 140000h-14FFFFh | 0A0000h-0A7FFFh | | 17 64/32 110000h-11FFFFh 088000h-08FFFFh 16 64/32 100000h-10FFFFh 080000h-087FFFh 15 64/32 0F0000h-0FFFFFh 078000h-07FFFFh 14 64/32 0E0000h-0EFFFFh 070000h-07FFFFh 13 64/32 0D0000h-0DFFFFh 068000h-06FFFFh 12 64/32 0C0000h-0EFFFFh 060000h-06FFFFh 11 64/32 0B0000h-0BFFFFh 058000h-05FFFFh 10 64/32 0A0000h-0AFFFFh 050000h-05FFFFh 9 64/32 090000h-09FFFFh 048000h-04FFFFh 8 64/32 080000h-08FFFFh 038000h-03FFFFh 7 64/32 070000h-07FFFFh 038000h-03FFFFh 6 64/32 050000h-05FFFFh 028000h-02FFFFh 5 64/32 050000h-05FFFFh 028000h-02FFFFh 4 64/32 040000h-04FFFFh 018000h-01FFFFh 2 64/32 030000h-02FFFFh 018000h-01FFFFh 3 64/32 020000h-02FFFFh 018000h-01FFFFh | 19 | 64/32 | 130000h-13FFFFh | 098000h-09FFFFh | | 16 64/32 100000h-10FFFFh 080000h-087FFFh 15 64/32 0F0000h-0FFFFh 078000h-07FFFFh 14 64/32 0E0000h-0EFFFFh 070000h-07FFFh 13 64/32 0D0000h-0DFFFFh 068000h-06FFFFh 12 64/32 0C0000h-0EFFFFh 060000h-06FFFFh 11 64/32 0B0000h-0BFFFFh 058000h-05FFFFh 10 64/32 0A0000h-0AFFFFh 050000h-057FFFh 9 64/32 090000h-09FFFFh 048000h-04FFFFh 8 64/32 080000h-08FFFFh 040000h-04FFFFh 7 64/32 070000h-07FFFFh 038000h-03FFFFh 6 64/32 060000h-06FFFFh 028000h-03FFFFh 5 64/32 050000h-05FFFFh 028000h-02FFFFh 4 64/32 040000h-04FFFFh 018000h-01FFFFh 2 64/32 030000h-03FFFFh 018000h-01FFFFh 1 64/32 020000h-02FFFFh 010000h-01FFFFh | 18 | 64/32 | 120000h-12FFFFh | 090000h-097FFFh | | 15 64/32 0F0000h-0FFFFh 078000h-07FFFh 14 64/32 0E0000h-0EFFFh 070000h-07FFFh 13 64/32 0D0000h-0DFFFh 068000h-06FFFh 12 64/32 0C0000h-0EFFFh 060000h-06FFFh 11 64/32 0B0000h-0BFFFh 058000h-05FFFh 10 64/32 0A0000h-0AFFFFh 050000h-05FFFh 9 64/32 090000h-09FFFh 048000h-04FFFh 8 64/32 080000h-08FFFh 040000h-04FFFh 7 64/32 070000h-07FFFh 038000h-03FFFh 6 64/32 060000h-06FFFFh 030000h-03FFFh 5 64/32 050000h-05FFFh 028000h-02FFFh 4 64/32 040000h-04FFFFh 020000h-02FFFFh 3 64/32 030000h-03FFFFh 018000h-01FFFFh 2 64/32 020000h-02FFFFh 010000h-01FFFFh 1 64/32 010000h-01FFFFh 008000h-00FFFFh | 17 | 64/32 | 110000h-11FFFFh | 088000h-08FFFFh | | 14 64/32 0E0000h-0EFFFh 070000h-077FFh 13 64/32 0D0000h-0DFFFh 068000h-06FFFh 12 64/32 0C0000h-0CFFFh 060000h-067FFFh 11 64/32 0B0000h-0BFFFh 058000h-05FFFh 10 64/32 0A0000h-0AFFFFh 050000h-057FFFh 9 64/32 090000h-09FFFh 048000h-04FFFh 8 64/32 080000h-08FFFh 040000h-047FFFh 7 64/32 070000h-07FFFh 038000h-03FFFh 6 64/32 060000h-06FFFFh 038000h-037FFFh 5 64/32 050000h-05FFFh 028000h-02FFFh 4 64/32 040000h-04FFFFh 028000h-02FFFh 3 64/32 030000h-03FFFFh 018000h-01FFFFh 2 64/32 020000h-02FFFFh 010000h-01FFFFh 1 64/32 010000h-01FFFFh 008000h-00FFFFh | 16 | 64/32 | 100000h-10FFFFh | 080000h-087FFFh | | 13 64/32 0D0000h-0DFFFh 068000h-06FFFh 12 64/32 0C0000h-0CFFFFh 060000h-067FFFh 11 64/32 0B0000h-0BFFFh 058000h-05FFFh 10 64/32 0A0000h-0AFFFFh 050000h-057FFFh 9 64/32 090000h-09FFFh 048000h-04FFFh 8 64/32 080000h-08FFFh 040000h-047FFFh 7 64/32 070000h-07FFFh 038000h-03FFFh 6 64/32 060000h-05FFFh 028000h-03FFFh 5 64/32 050000h-05FFFh 028000h-02FFFFh 4 64/32 040000h-04FFFFh 020000h-02FFFFh 3 64/32 030000h-03FFFFh 018000h-01FFFFh 2 64/32 020000h-02FFFFh 010000h-01FFFFh 1 64/32 010000h-01FFFFh 008000h-00FFFFh | 15 | 64/32 | 0F0000h-0FFFFFh | 078000h-07FFFFh | | 12 64/32 0C0000h-0CFFFh 060000h-067FFh 11 64/32 0B0000h-0BFFFh 058000h-05FFFh 10 64/32 0A0000h-0AFFFh 050000h-057FFFh 9 64/32 090000h-09FFFh 048000h-04FFFh 8 64/32 080000h-08FFFh 040000h-047FFh 7 64/32 070000h-07FFFh 038000h-03FFFh 6 64/32 060000h-06FFFh 030000h-037FFh 5 64/32 050000h-05FFFh 028000h-02FFFh 4 64/32 040000h-04FFFh 020000h-027FFFh 3 64/32 030000h-03FFFh 018000h-01FFFh 2 64/32 020000h-02FFFFh 010000h-017FFFh 1 64/32 010000h-01FFFFh 008000h-00FFFFh | 14 | 64/32 | 0E0000h-0EFFFFh | 070000h-077FFFh | | 11 64/32 0B0000h-0BFFFh 058000h-05FFFh 10 64/32 0A0000h-0AFFFh 050000h-057FFFh 9 64/32 090000h-09FFFh 048000h-04FFFh 8 64/32 080000h-08FFFh 040000h-047FFFh 7 64/32 070000h-07FFFh 038000h-03FFFh 6 64/32 060000h-06FFFh 030000h-037FFFh 5 64/32 050000h-05FFFh 028000h-02FFFh 4 64/32 040000h-04FFFh 020000h-027FFFh 3 64/32 030000h-03FFFFh 018000h-01FFFFh 2 64/32 020000h-02FFFFh 010000h-017FFFh 1 64/32 010000h-01FFFFh 008000h-00FFFFh | 13 | 64/32 | 0D0000h-0DFFFFh | 068000h-06FFFFh | | 10 64/32 0A0000h-0AFFFh 050000h-057FFh 9 64/32 090000h-09FFFh 048000h-04FFFh 8 64/32
080000h-08FFFh 040000h-047FFFh 7 64/32 070000h-07FFFh 038000h-03FFFh 6 64/32 060000h-06FFFh 030000h-037FFFh 5 64/32 050000h-05FFFh 028000h-02FFFh 4 64/32 040000h-04FFFh 020000h-027FFFh 3 64/32 030000h-03FFFh 018000h-01FFFFh 2 64/32 020000h-02FFFFh 010000h-017FFFh 1 64/32 010000h-01FFFFh 008000h-00FFFFh | 12 | 64/32 | 0C0000h-0CFFFFh | 060000h-067FFFh | | 9 64/32 090000h-09FFFh 048000h-04FFFh 8 64/32 080000h-08FFFh 040000h-047FFFh 7 64/32 070000h-07FFFh 038000h-03FFFh 6 64/32 060000h-06FFFh 030000h-037FFFh 5 64/32 050000h-05FFFh 028000h-02FFFh 4 64/32 040000h-04FFFh 020000h-027FFFh 3 64/32 030000h-03FFFh 018000h-01FFFFh 2 64/32 020000h-02FFFFh 010000h-017FFFh 1 64/32 010000h-01FFFFh 008000h-00FFFFh | 11 | 64/32 | 0B0000h-0BFFFFh | 058000h-05FFFFh | | 8 64/32 080000h-08FFFh 040000h-047FFh 7 64/32 070000h-07FFFh 038000h-03FFFh 6 64/32 060000h-06FFFh 030000h-037FFFh 5 64/32 050000h-05FFFh 028000h-02FFFh 4 64/32 040000h-04FFFh 020000h-027FFFh 3 64/32 030000h-03FFFh 018000h-01FFFFh 2 64/32 020000h-02FFFFh 010000h-017FFFh 1 64/32 010000h-01FFFFh 008000h-00FFFFh | 10 | 64/32 | 0A0000h-0AFFFFh | 050000h-057FFFh | | 7 64/32 070000h-07FFFh 038000h-03FFFh 6 64/32 060000h-06FFFh 030000h-037FFFh 5 64/32 050000h-05FFFh 028000h-02FFFh 4 64/32 040000h-04FFFh 020000h-027FFFh 3 64/32 030000h-03FFFh 018000h-01FFFh 2 64/32 020000h-02FFFFh 010000h-017FFFh 1 64/32 010000h-01FFFFh 008000h-00FFFFh | 9 | 64/32 | 090000h-09FFFFh | 048000h-04FFFFh | | 6 64/32 060000h-06FFFh 030000h-037FFFh 5 64/32 050000h-05FFFh 028000h-02FFFFh 4 64/32 040000h-04FFFh 020000h-027FFFh 3 64/32 030000h-03FFFh 018000h-01FFFFh 2 64/32 020000h-02FFFFh 010000h-017FFFh 1 64/32 010000h-01FFFFh 008000h-00FFFFh | 8 | 64/32 | 080000h-08FFFFh | 040000h-047FFFh | | 5 64/32 050000h-05FFFh 028000h-02FFFh 4 64/32 040000h-04FFFh 020000h-027FFFh 3 64/32 030000h-03FFFh 018000h-01FFFFh 2 64/32 020000h-02FFFh 010000h-017FFFh 1 64/32 010000h-01FFFFh 008000h-00FFFFh | 7 | 64/32 | 070000h-07FFFFh | 038000h-03FFFFh | | 4 64/32 040000h-04FFFFh 020000h-027FFFh 3 64/32 030000h-03FFFFh 018000h-01FFFFh 2 64/32 020000h-02FFFFh 010000h-017FFFh 1 64/32 010000h-01FFFFh 008000h-00FFFFh | 6 | 64/32 | 060000h-06FFFFh | 030000h-037FFFh | | 3 64/32 030000h-03FFFFh 018000h-01FFFFh 2 64/32 020000h-02FFFFh 010000h-017FFFh 1 64/32 010000h-01FFFFh 008000h-00FFFFh | 5 | 64/32 | 050000h-05FFFFh | 028000h-02FFFFh | | 2 64/32 020000h-02FFFFh 010000h-017FFFh 1 64/32 010000h-01FFFFh 008000h-00FFFFh | 4 | 64/32 | 040000h-04FFFFh | 020000h-027FFFh | | 1 64/32 010000h-01FFFh 008000h-00FFFFh | 3 | 64/32 | 030000h-03FFFFh | 018000h-01FFFFh | | | 2 | 64/32 | 020000h-02FFFFh | 010000h-017FFFh | | 0 64/32 000000h-00FFFh 000000h-007FFFh | 1 | 64/32 | 010000h-01FFFFh | 008000h-00FFFFh | | | 0 | 64/32 | 000000h-00FFFFh | 000000h-007FFFh | #### **Block Addresses** #### M29W320DT, M29W320DB Table 20. Bottom Boot Block Addresses, M29W320DB | # | Size
(KByte/KWord) | Address Range
(x8) | Address Range
(x16) | |----|-----------------------|-----------------------|------------------------| | 66 | 64/32 | 3F0000h-3FFFFFh | 1F8000h-1FFFFFh | | 65 | 64/32 | 3E0000h-3EFFFFh | 1F0000h-1F7FFFh | | 64 | 64/32 | 3D0000h-3DFFFFh | 1E8000h-1EFFFFh | | 63 | 64/32 | 3C0000h-3CFFFFh | 1E0000h-1E7FFFh | | 62 | 64/32 | 3B0000h-3BFFFFh | 1D8000h-1DFFFFh | | 61 | 64/32 | 3A0000h-3AFFFFh | 1D0000h-1D7FFFh | | 60 | 64/32 | 390000h-39FFFFh | 1C8000h-1CFFFFh | | 59 | 64/32 | 380000h-18FFFFh | 1C0000h-1C7FFFh | | 58 | 64/32 | 370000h-37FFFFh | 1B8000h-1BFFFFh | | 57 | 64/32 | 360000h-36FFFFh | 1B0000h-1B7FFFh | | 56 | 64/32 | 350000h-35FFFFh | 1A8000h-1AFFFFh | | 55 | 64/32 | 340000h-34FFFFh | 1A0000h-1A7FFFh | | 54 | 64/32 | 330000h-33FFFFh | 198000h-19FFFFh | | 53 | 64/32 | 320000h-32FFFFh | 190000h-197FFFh | | 52 | 64/32 | 310000h-31FFFFh | 188000h-18FFFFh | | 51 | 64/32 | 300000h-30FFFFh | 180000h-187FFFh | | 50 | 64/32 | 2F0000h-2FFFFFh | 178000h-17FFFFh | | 49 | 64/32 | 2E0000h-2EFFFFh | 170000h-177FFFh | | 48 | 64/32 | 2D0000h-2DFFFFh | 168000h-16FFFFh | | 47 | 64/32 | 2C0000h-2CFFFFh | 160000h-167FFFh | | 46 | 64/32 | 2B0000h-2BFFFFh | 158000h-15FFFFh | | 45 | 64/32 | 2A0000h-2AFFFFh | 150000h-157FFFh | | 44 | 64/32 | 290000h-29FFFFh | 148000h-14FFFFh | | 43 | 64/32 | 280000h-28FFFFh | 140000h-147FFFh | | 42 | 64/32 | 270000h-27FFFh | 138000h-13FFFFh | | 41 | 64/32 | 260000h-26FFFFh | 130000h-137FFFh | | 40 | 64/32 | 250000h-25FFFFh | 128000h-12FFFFh | | 39 | 64/32 | 240000h-24FFFFh | 120000h-127FFFh | | 38 | 64/32 | 230000h-23FFFFh | 118000h-11FFFFh | | 37 | 64/32 | 220000h-22FFFFh | 110000h-117FFFh | | 36 | 64/32 | 210000h-21FFFFh | 108000h-10FFFFh | | 35 | 64/32 | 200000h-20FFFFh | 100000h-107FFFh | | 34 | 64/32 | 1F0000h-1FFFFFh | 0F8000h-0FBFFFh | | 33 | 64/32 | 1E0000h-1EFFFFh | 0F0000h-0F7FFFh | **Block Addresses** Table 20. Bottom Boot Block Addresses, M29W320DB (continued) | 32 | 64/32 | 1D0000h-1DFFFFh | 0E8000h-0EFFFFh | |----|-------|-----------------|-----------------| | 31 | 64/32 | 1C0000h-1CFFFFh | 0E0000h-0E7FFFh | | 30 | 64/32 | 1B0000h-1BFFFFh | 0D8000h-0DFFFFh | | 29 | 64/32 | 1A0000h-1AFFFFh | 0D0000h-0D7FFFh | | 28 | 64/32 | 190000h-19FFFFh | 0C8000h-0CFFFFh | | 27 | 64/32 | 180000h-18FFFFh | 0C0000h-0C7FFFh | | 26 | 64/32 | 170000h-17FFFFh | 0B8000h-0BFFFFh | | 25 | 64/32 | 160000h-16FFFFh | 0B0000h-0B7FFFh | | 24 | 64/32 | 150000h-15FFFFh | 0A8000h-0AFFFFh | | 23 | 64/32 | 140000h-14FFFFh | 0A0000h-0A7FFFh | | 22 | 64/32 | 130000h-13FFFFh | 098000h-09FFFFh | | 21 | 64/32 | 120000h-12FFFFh | 090000h-097FFFh | | 20 | 64/32 | 110000h-11FFFFh | 088000h-08FFFFh | | 19 | 64/32 | 100000h-10FFFFh | 080000h-087FFFh | | 18 | 64/32 | 0F0000h-0FFFFFh | 078000h-07FFFFh | | 17 | 64/32 | 0E0000h-0EFFFFh | 070000h-077FFFh | | 16 | 64/32 | 0D0000h-0DFFFFh | 068000h-06FFFFh | | 15 | 64/32 | 0C0000h-0CFFFFh | 060000h-067FFFh | | 14 | 64/32 | 0B0000h-0BFFFFh | 058000h-05FFFFh | | 13 | 64/32 | 0A0000h-0AFFFFh | 050000h-057FFFh | | 12 | 64/32 | 090000h-09FFFFh | 048000h-04FFFFh | | 11 | 64/32 | 080000h-08FFFFh | 040000h-047FFFh | | 10 | 64/32 | 070000h-07FFFh | 038000h-03FFFFh | | 9 | 64/32 | 060000h-06FFFFh | 030000h-037FFFh | | 8 | 64/32 | 050000h-05FFFFh | 028000h-02FFFFh | | 7 | 64/32 | 040000h-04FFFFh | 020000h-027FFFh | | 6 | 64/32 | 030000h-03FFFFh | 018000h-01FFFFh | | 5 | 64/32 | 020000h-02FFFFh | 010000h-017FFFh | | 4 | 64/32 | 010000h-01FFFFh | 008000h-00FFFFh | | 3 | 32/16 | 008000h-00FFFFh | 004000h-007FFFh | | 2 | 8/4 | 006000h-007FFFh | 003000h-003FFFh | | 1 | 8/4 | 004000h-005FFFh | 002000h-002FFFh | | 0 | 16/8 | 000000h-003FFFh | 000000h-001FFFh | **Common Flash Interface (CFI)** M29W320DT, M29W320DB # Appendix B Common Flash Interface (CFI) The Common Flash Interface is a JEDEC approved, standardized data structure that can be read from the Flash memory device. It allows a system software to query the device to determine various electrical and timing parameters, density information and functions supported by the memory. The system can interface easily with the device, enabling the software to upgrade itself when necessary. When the CFI Query Command is issued the device enters CFI Query mode and the data structure is read from the memory. *Table 21*, *Table 22*, *Table 23*, *Table 24*, *Table 25* and *Table 26* show the addresses used to retrieve the data. The CFI data structure also contains a security area where a 64 bit unique security number is written (see *Table 26*, Security Code area). This area can be accessed only in Read mode by the final user. It is impossible to change the security number after it has been written by Numonyx. Issue a Read command to return to Read mode. Table 21. Query Structure Overview⁽¹⁾ | Add | ress | Sub-section Name | Description | |-----|------|---|---| | x16 | x8 | Sub-section Name | Description | | 10h | 20h | CFI Query Identification String | Command set ID and algorithm data offset | | 1Bh | 36h | System Interface Information | Device timing & voltage information | | 27h | 4Eh | Device Geometry Definition | Flash device layout | | 40h | 80h | Primary Algorithm-specific Extended Query table | Additional information specific to the Primary Algorithm (optional) | | 61h | C2h | Security Code Area | 64 bit unique device number | ^{1.} Query data are always presented on the lowest order data outputs. ### Table 22. CFI Query Identification String⁽¹⁾ | Add | Address | | Description | Value | |-----|---------|-------|---|----------------| | x16 | x8 | Data | Description | value | | 10h | 20h | 0051h | | "Q" | | 11h | 22h | 0052h | Query Unique ASCII String "QRY" | "R" | | 12h | 24h | 0059h | | "Y" | | 13h | 26h | 0002h | Primary Algorithm Command Set and Control Interface ID code 16 bit | AMD Compatible | | 14h | 28h | 0000h | ID code defining a specific algorithm | AMD Compatible | | 15h | 2Ah | 0040h | Address for Primary Algorithm extended Query table (see <i>Table 24</i>) | P = 40h | | 16h | 2Ch | 0000h | Address for Filliary Algorithm extended Query table (see Table 24) | F = 40H | | 17h | 2Eh | 0000h | Alternate Vendor Command Set and Control Interface ID Code | NA | | 18h | 30h | 0000h | second vendor - specified algorithm supported | INA | | 19h | 32h | 0000h | Addraga for Alternate Algerithm extended Query table | NA | | 1Ah | 34h | 0000h | Address for Alternate Algorithm extended Query table | INA | ^{1.} Query data are always presented on the lowest order data outputs (DQ7-DQ0) only. DQ8-DQ15 are '0'. **N** numonyx #### **Common Flash Interface (CFI)** Table 23. CFI Query System Interface Information | Address | | - Data | Decembries | Value | |---------|-----|--------|---|-------| | x16 | х8 | Data | Description | value | | 1Bh | 36h | 0027h | V _{CC} Logic
Supply Minimum Program/Erase voltage
bit 7 to 4BCD value in volts
bit 3 to 0BCD value in 100 mV | 2.7V | | 1Ch | 38h | 0036h | V _{CC} Logic Supply Maximum Program/Erase voltage
bit 7 to 4BCD value in volts
bit 3 to 0BCD value in 100 mV | 3.6V | | 1Dh | 3Ah | 00B5h | V _{PP} [Programming] Supply Minimum Program/Erase voltage bit 7 to 4HEX value in volts bit 3 to 0BCD value in 100 mV | 11.5V | | 1Eh | 3Ch | 00C5h | V _{PP} [Programming] Supply Maximum Program/Erase voltage bit 7 to 4HEX value in volts bit 3 to 0BCD value in 100 mV | 12.5V | | 1Fh | 3Eh | 0004h | Typical timeout per single byte/word program = 2 ⁿ μs | 16µs | | 20h | 40h | 0000h | Typical timeout for minimum size write buffer program = 2 ⁿ μs | NA | | 21h | 42h | 000Ah | Typical timeout per individual block erase = 2 ⁿ ms | 1s | | 22h | 44h | 0000h | Typical timeout for full chip erase = 2 ⁿ ms | NA | | 23h | 46h | 0005h | Maximum timeout for byte/word program = 2 ⁿ times typical | 512µs | | 24h | 48h | 0000h | Maximum timeout for write buffer program = 2 ⁿ times typical | NA | | 25h | 4Ah | 0004h | Maximum timeout per individual block erase = 2 ⁿ times typical | 16s | | 26h | 4Ch | 0000h | Maximum timeout for chip erase = 2 ⁿ times typical | NA | #### Table 24. Device Geometry Definition | IUDIC 24. | D0110 | c ocomica | y Definition | | |------------|------------|----------------|--|-------------------| | Address | | - Data | Description | Value | | x16 | x8 | Data | Description | value | | 27h | 4Eh | 0016h | Device Size = 2 ⁿ in number of bytes | 4 MByte | | 28h
29h | 50h
52h | 0002h
0000h | Flash Device Interface Code description | x8, x16
Async. | | 2Ah
2Bh | 54h
56h | 0000h
0000h | Maximum number of bytes in multi-byte program or page = 2 ⁿ | NA | | 2Ch | 58h | 0004h | Number of Erase Block Regions within the device. It specifies the number of regions within the device containing contiguous Erase Blocks of the same size. | 4 | | 2Dh
2Eh | 5Ah
5Ch | 0000h
0000h | Region 1 Information Number of identical size erase block = 0000h+1 | 1 | | 2Fh
30h | 5Eh
60h | 0040h
0000h | Region 1 Information Block size in Region 1 = 0040h * 256 byte | 16 Kbyte | Numonyx 45/56 #### **Common Flash Interface (CFI)** #### M29W320DT, M29W320DB Table 24. Device Geometry Definition (continued) | Add | Address | | Address | | Description | Value | |------------|------------|----------------|---|----------|-------------|-------| | x16 | x8 | Data | Description | value | | | | 31h
32h | 62h
64h | 0001h
0000h | Region 2 Information Number of identical size erase block = 0001h+1 | 2 | | | | 33h
34h | 66h
68h | 0020h
0000h | Region 2 Information Block size in Region 2 = 0020h * 256 byte | 8 Kbyte | | | | 35h
36h | 6Ah
6Ch | 0000h
0000h | Region 3 Information Number of identical size erase block = 0000h+1 | 1 | | | | 37h
38h | 6Eh
70h | 0080h
0000h | Region 3 Information Block size in Region 3 = 0080h * 256 byte | 32 Kbyte | | | | 39h
3Ah | 72h
74h | 003Eh
0000h | Region 4 Information Number of identical-size erase block = 003Eh+1 | 63 | | | | 3Bh
3Ch | 76h
78h | 0000h
0001h | Region 4 Information Block size in Region 4 = 0100h * 256 byte | 64 Kbyte | | | Table 25. Primary Algorithm-Specific Extended Query Table | Address | | Data | Post title | Value | | | |---------|-----|--|--|-------|--|--| | x16 | x8 | - Data | Description | | | | | 40h | 80h | 0050h | | | | | | 41h | 82h | 0052h | rimary Algorithm extended Query table unique ASCII string "PRI" | | | | | 42h | 84h | 0049h | | " " | | | | 43h | 86h | 0031h | Major version number, ASCII | "1" | | | | 44h | 88h | 0030h | Minor version number, ASCII | "0" | | | | 45h | 8Ah | 0000h | Address Sensitive Unlock (bits 1 to 0) 00 = required, 01= not required Silicon Revision Number (bits 7 to 2) | | | | | 46h | 8Ch | 0002h | Erase Suspend 00 = not supported, 01 = Read only, 02 = Read and Write | | | | | 47h | 8Eh | 0001h | Block Protection 00 = not supported, x = number of blocks in per group | | | | | 48h | 90h | 0001h Temporary Block Unprotect 00 = not supported, 01 = supported | | Yes | | | | 49h | 92h | 0004h | Block Protect /Unprotect
04 = M29W400B | | | | | 4Ah | 94h | 0000h | Simultaneous Operations, 00 = not supported | | | | | 4Bh | 96h | 0000h | Burst Mode, 00 = not supported, 01 = supported | | | | | 4Ch | 98h | 0000h | Page Mode, 00 = not supported, 01 = 4 page word, 02 = 8 page word | | | | Numonyx #### **Common Flash Interface (CFI)** Table 25. **Primary Algorithm-Specific Extended Query Table (continued)** | Address | | Data | Donasiusta u | | |---------|-----|-------|--|-------| | x16 | x8 | Data | Description | Value | | 4Dh | 9Ah | 00B5h | V _{PP} Supply Minimum Program/Erase voltage bit 7 to 4 HEX value in volts bit 3 to 0 BCD value in 100 mV | 11.5V | | 4Eh | 9Ch | 00C5h | V _{PP} Supply Minimum Program/Erase voltage 0C5h bit 7 to 4 HEX value in volts bit 3 to 0 BCD value in 100 mV | | | 4Fh | 9Eh | 000xh | Top/Bottom Boot Block Flag 02h = Bottom Boot device, 03h = Top Boot device | _ | #### Table 26. **Security Code Area** | Address | | Doto | Description | | | |---------|----------|------|------------------------------|--|--| | x16 | х8 | Data | Description | | | | 61h | C3h, C2h | XXXX | | | | | 62h | C5h, C4h | XXXX | C4 hit unique device quantum | | | | 63h | C7h, C6h | XXXX | 64 bit: unique device number | | | | 64h | C9h, C8h | XXXX | | | | 47/56 **Block Protection** M29W320DT, M29W320DB ### Appendix C Block Protection Block protection can be used to prevent any operation from modifying the data stored in the Flash. Each Block can be protected individually. Once protected, Program and Erase operations on the block fail to change the data. There are three techniques that can be used to control Block Protection, these are the Programmer technique, the In-System technique and Temporary Unprotection. Temporary Unprotection is controlled by the Reset/Block Temporary Unprotection pin, \overline{RP} ; this is described in the Signal Descriptions section. Unlike the Command Interface of the Program/Erase Controller, the techniques for protecting and unprotecting blocks change between different Flash memory suppliers. For example, the techniques for AMD parts will not work on Numonyx parts. Care should be taken when changing drivers for one part to work on another. ### C.1 Programmer Technique The Programmer technique uses high (V_{ID}) voltage levels on some of the bus pins. These cannot be achieved using a standard microprocessor bus, therefore the technique is recommended only for use in Programming Equipment. To protect a block follow the flowchart in *Figure 16: Programmer Equipment Block Protect Flowchart*. To unprotect the whole chip it is necessary to protect all of the blocks first, then all blocks can be unprotected at the same time. To unprotect the chip follow *Figure 17: Programmer Equipment Chip Unprotect Flowchart. Table 27: Programmer Technique Bus Operations, BYTE = VIHor VIL, gives a summary of each operation.* The timing on these flowcharts is critical. Care should be taken to ensure that, where a pause is specified, it is followed as closely as possible. Do not abort the procedure before reaching the end. Chip Unprotect can take several seconds and a user message should be provided to show that the operation is progressing. ### C.2 In-System Technique The In-System technique requires a high voltage level on the Reset/Blocks Temporary Unprotect pin, RP. This can be achieved without violating the maximum ratings of the components on the microprocessor bus, therefore this technique is suitable for use after the Flash has been fitted to the system. To protect a block follow the flowchart in *Figure 18: In-System Equipment Block Protect Flowchart*. To unprotect the whole chip it is necessary to protect all of the blocks first, then all the blocks can be unprotected at the same time. To unprotect the chip follow Figure *Figure 19: In-System Equipment Chip Unprotect Flowchart*. The timing on these flowcharts is critical. Care should be taken to ensure that, where a pause is specified, it is followed as closely as possible. Do not allow the microprocessor to service interrupts that will upset the timing and do not abort the procedure before reaching the end. Chip Unprotect can take several seconds and a user message should be provided to show that the operation is progressing. **Block Protection** Table 27. Programmer Technique Bus Operations, $\overline{\text{BYTE}} = V_{\text{IH}}$ or V_{IL} | Operation | Ē | ľ | w | Address Inputs
A0-A20 | Data Inputs/Outputs
DQ15A-1, DQ14-DQ0 | |------------------------------|-----------------|-----------------|-----------------------|---|--| | Block Protect | V _{IL} | V _{ID} | V _{IL} Pulse | $A9 = V_{ID}$, A12-A20 Block Address
Others = X | Х | | Chip Unprotect | V _{ID} | V _{ID} | V _{IL} Pulse | $A9 = V_{ID}, A12 = V_{IH}, A15 = V_{IH}$ $Others = X$ | х | | Block Protection
Verify | V _{IL} | V _{IL} | V _{IH} | $\label{eq:A0} \begin{split} \text{A0} = \text{V}_{\text{IL}}, & \text{A1} = \text{V}_{\text{IH}}, \text{A6} =
\text{V}_{\text{IL}}, \text{A9} = \text{V}_{\text{ID}}, \\ & \text{A12-A20 Block Address} \\ & \text{Others} = \text{X} \end{split}$ | Pass = XX01h
Retry = XX00h | | Block Unprotection
Verify | V _{IL} | V _{IL} | V _{IH} | $A0 = V_{IL}$, $A1 = V_{IH}$, $A6 = V_{IH}$,
$A9 = V_{ID}$, $A12$ - $A20$ Block Address
Others = X | Retry = XX01h
Pass = XX00h | Numonyx 49/56 #### **Block Protection** #### M29W320DT, M29W320DB Figure 16. Programmer Equipment Block Protect Flowchart **Block Protection** Figure 17. Programmer Equipment Chip Unprotect Flowchart #### **Block Protection** ### M29W320DT, M29W320DB Figure 18. In-System Equipment Block Protect Flowchart **Block Protection** Figure 19. In-System Equipment Chip Unprotect Flowchart **Revision history** M29W320DT, M29W320DB # 10 Revision history Table 28. Document revision history | Date | Revision | Changes | |-------------|----------|--| | March-2001 | -01 | First Issue (Brief Data) | | 08-Jun-2001 | -02 | Document expanded to full Product Preview | | 22-Jun-2001 | -03 | Minor text corrections to Read/Reset and Read CFI commands and Status Register Error and Toggle Bits. | | 27-Jul-2001 | -04 | Document type: from Product Preview to Preliminary Data TFBGA connections and Block Addresses (x16) diagrams clarification Write Protect and Block Unprotect clarification CFI Primary Algorithm table, Block Protection change | | 05-Oct-2001 | -05 | Added Block Protection Appendix "Write Protect/V _{PP} " pin renamed to "V _{PP} /Write Protect" to be consistent with abbreviation. Changes to the V _{PP} /WP pin description, <i>Figure 13</i> and <i>Table 15</i> . I _{PP} added to <i>Table 11</i> and I _{CC3} clarified. Modified description of V _{PP} /WP operation in Unlock Bypass Command section. Added V _{PP} /WP decoupling capacitor to Figure <i>Figure 1</i> . Clarified Read/Reset operation during Erase Suspend. | | 07-Feb-2002 | -06 | TFBGA package changed from 48 ball to 63 ball | | 05-Apr-2002 | -07 | Description of Ready/Busy signal clarified (and <i>Figure 12</i> modified) Clarified allowable commands during block erase Clarified the mode the device returns to in the CFI Read Query command section | | 19-Nov-2002 | 7.1 | Erase Suspend Latency Time (typical and maximum) added to Program, Erase Times and Program, Erase Endurance Cycles table. Typical values added for Icc1 and Icc2 in DC characteristics table. Logic Diagram and Data Toggle Flowchart corrected. Revision numbering modified: a minor revision will be indicated by incrementing the digit after the dot, and a major revision, by incrementing the digit before the dot (revision version 07 equals 7.0). Document promoted to full datasheet. | | 26-May-2003 | 7.2 | Data Retention added to <i>Table 6: Program, Erase Times and Program, Erase Endurance Cycles</i> , and Typical after 100k W/E Cycles column removed. TSOP48 package mechanical updated. Lead-free package options E and F added to <i>Table 18: Ordering Information Scheme</i> . | | 16-Aug-2005 | 8.0 | TFBGA48 package added throughout document. | **Revision history** Table 28. Document revision history (continued) | Date | Revision | Changes | | | |-------------|----------|---|--|--| | 13-Jun-2006 | 9 | Document title modified. TFBGA63 package removed. ECOPACK text added. RB signal updated in Figure 12: Reset/Block Temporary Unprotect AC Waveforms. t _{PLYH} updated in Table 15: Reset/Block Temporary Unprotect AC Characteristics. In Table 7: Status Register Bits, DQ7 changed to DQ7 for Program, Program during Erase Suspend and Program Error. | | | | 26-Mar-2008 | 10 | Applied Numonyx branding. | | | | 27-May-2009 | 11 | Added support for automotive grade as follows: - Added automotive grade bullet to cover page; - Added 7A column to Table 9.: Operating and AC Measurement Conditions and all AC Characteristics tables. Updated the order information table as follows: - Added 7A, and other details to speed class options - Added temperature range = 3 Automotive | | | | 22-Feb-2010 | 12 | Added 80 ns device information to the the following: - cover page - Ordering Information. - Table 9.: Operating and AC Measurement Conditions - Table 12.: Read AC Characteristics - Table 13.: Write AC Characteristics, Write Enable Controlled - Table 15.: Reset/Block Temporary Unprotect AC Characteristics In Table 9.: Operating and AC Measurement Conditions, changed the min voltage from 3.0 to 2.7 V for 70 ns device. | | | 55/56 ### Distributor of Micron Technology: Excellent Integrated System Limited Datasheet of M29W320DB70N6E - IC FLASH 32MBIT 70NS 48TSOP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com M29W320DT, M29W320DB #### Please Read Carefully: INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH NUMONYX™ PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN NUMONYX'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NUMONYX ASSUMES NO LIABILITY WHATSOEVER, AND NUMONYX DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF NUMONYX PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Numonyx products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications. Numonyx may make changes to specifications and product descriptions at any time, without notice. Numonyx, B.V. may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Numonyx reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. Contact your local Numonyx sales office or your distributor to obtain the latest specifications and before placing your product order. Copies of documents which have an order number and are referenced in this document, or other Numonyx literature may be obtained by visiting Numonyx's website at http://www.numonyx.com. Numonyx StrataFlash is a trademark or registered trademark of Numonyx or its subsidiaries in the United States and other countries. *Other names and brands may be claimed as the property of others. Copyright © 2010, Numonyx, B.V., All Rights Reserved.