

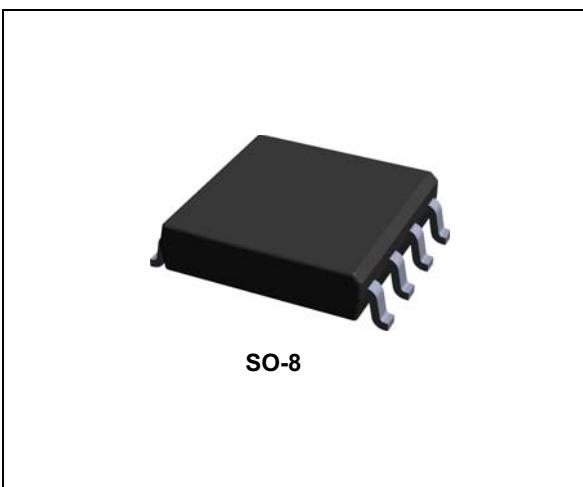
## **Excellent Integrated System Limited**

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

[STMicroelectronics](#)  
[LCP1521SRL](#)

For any questions, you can email us directly:


[sales@integrated-circuit.com](mailto:sales@integrated-circuit.com)



## LCP1521S

### Programmable transient voltage suppressor for SLIC protection

Datasheet - production data

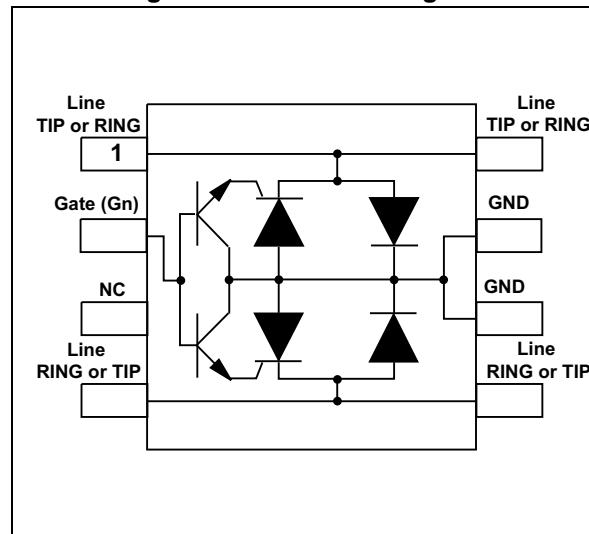


## Features

- Programmable transient suppressor
- Wide negative firing voltage range:  $V_{Gn} = -175$  V max.
- Low dynamic switching voltages:  $V_{FP}$  and  $V_{DGL}$
- Low gate triggering current:  $I_{GT} = 5$  mA max.
- Peak pulse current:  $I_{PP} = 40$  A (5/310  $\mu$ s)
- Holding current:  $I_H = 150$  mA min.

## Benefits

- Trisil™ is not subject to ageing and provides a fail safe mode in short circuit for a better level of protection.
- Trisils are used to ensure equipment meets various standards such as UL60950, IEC 60950 / CSA C22.2, UL1459, TIA-968-A (formerly FCC part 68)
- Trisils have UL94 V0 approved resin (Trisils are UL497B approved [file: E136224]).


## Description

These devices have been especially designed to protect new high voltage, as well as classical SLICs, against transient overvoltages.

Positive overvoltages are clamped by 2 diodes. Negative surges are suppressed by 2 thyristors, their breakdown voltage being referenced to  $-V_{BAT}$  through the gate.

These components present a very low gate triggering current ( $I_{GT}$ ) in order to reduce the current consumption on printed circuit board during the firing phase.

**Figure 1. Functional diagram**



TM: Trisil is a trademark of STMicroelectronics

## Characteristics

LCP1521S

# 1 Characteristics

**Table 1. Standards compliance**

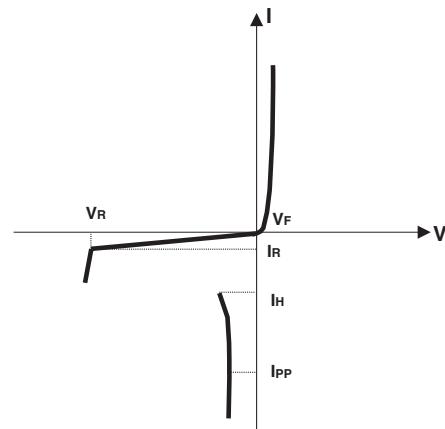
| Standard                             | Peak surge voltage (V) | Voltage waveform       | Required peak current (A)                  | Current waveform       | Minimum serial resistor to meet standard (Ω) |
|--------------------------------------|------------------------|------------------------|--------------------------------------------|------------------------|----------------------------------------------|
| GR-1089 Core First level             | 2500<br>1000           | 2/10 µs<br>10/1000 µs  | 500<br>100                                 | 2/10 µs<br>10/1000 µs  | 12<br>24                                     |
| GR-1089 Core Second level            | 5000                   | 2/10 µs                | 500                                        | 2/10 µs                | 24                                           |
| GR-1089 Core Intra-building          | 1500                   | 2/10 µs                | 100                                        | 2/10 µs                | 0                                            |
| ITU-T-K20/K21                        | 6000<br>1500           | 10/700 µs              | 150<br>37.5                                | 5/310 µs               | 110<br>0                                     |
| ITU-T-K20 (IEC 61000-4-2)            | 8000<br>15000          | 1/60 ns                | ESD contact discharge<br>ESD air discharge |                        | 0<br>0                                       |
| IEC 61000-4-5                        | 4000<br>4000           | 10/700 µs<br>1.2/50 µs | 100<br>100                                 | 5/310 µs<br>8/20 µs    | 60<br>0                                      |
| TIA-968-A,<br>lightning surge type A | 1500<br>800            | 10/160 µs<br>10/560 µs | 200<br>100                                 | 10/160 µs<br>10/560 µs | 22.5<br>15                                   |
| TIA-968-A,<br>lightning surge type B | 1000                   | 9/720 µs               | 25                                         | 5/320 µs               | 0                                            |

**Table 2. Thermal resistances**

| Symbol        | Parameter           | Value | Unit |
|---------------|---------------------|-------|------|
| $R_{th(j-a)}$ | Junction to ambient | 120   | °C/W |

## LCP1521S

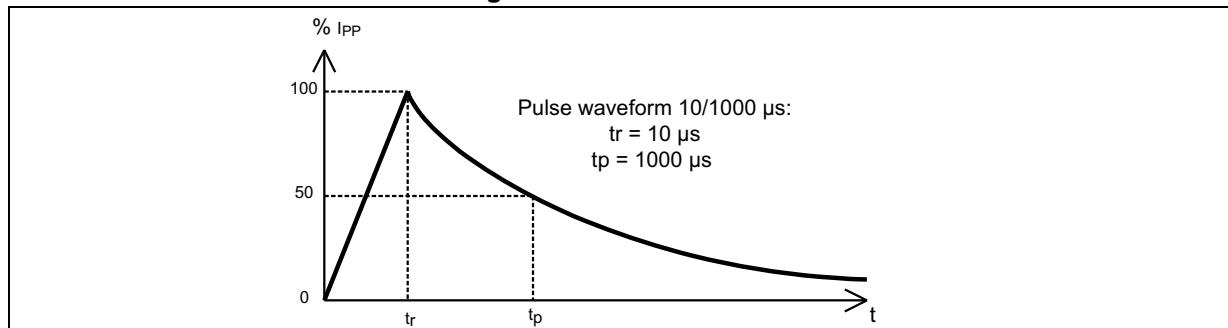
## Characteristics


**Table 3. Absolute ratings ( $T_{amb} = 25^{\circ}C$ )**

| Symbol             | Parameter                                                                    | Value                                   | Unit        |             |
|--------------------|------------------------------------------------------------------------------|-----------------------------------------|-------------|-------------|
| $I_{PP}$           | Peak pulse current <sup>(1)</sup>                                            | 10/1000 $\mu$ s                         | A           |             |
|                    |                                                                              | 8/20 $\mu$ s                            |             |             |
|                    |                                                                              | 10/560 $\mu$ s                          |             |             |
|                    |                                                                              | 5/310 $\mu$ s                           |             |             |
|                    |                                                                              | 10/160 $\mu$ s                          |             |             |
|                    |                                                                              | 1/20 $\mu$ s                            |             |             |
|                    |                                                                              | 2/10 $\mu$ s                            |             |             |
| $I_{TSM}$          | Non repetitive surge peak on-state current (50 Hz sinusoidal) <sup>(1)</sup> | $t = 20$ ms                             | A           |             |
|                    |                                                                              | $t = 200$ ms                            |             |             |
|                    |                                                                              | $t = 1$ s                               |             |             |
| $V_{Gn}$           | Negative battery voltage range                                               | $-40^{\circ}C < T_{amb} < +85^{\circ}C$ | -175        | V           |
| $T_{stg}$<br>$T_j$ | Storage temperature range<br>Operating junction temperature range            | $-55$ to $+150$<br>$-55$ to $+150$      |             | $^{\circ}C$ |
| $T_L$              | Maximum lead temperature for soldering during 10 s.                          | 260                                     | $^{\circ}C$ |             |

1. The rated current values may be applied either to the RING to GND or to the Tip to GND terminal pairs. Additionally, both terminal pairs may have their rated current values applied simultaneously (in this case the GND terminal current will be twice the rated current value of an individual terminal pair).

**Figure 2. Electrical characteristics (definitions)**


| Symbol    | Parameter                             |
|-----------|---------------------------------------|
| $I_{GT}$  | Gate triggering current               |
| $V_{FP}$  | Peak forward voltage LINE / GND       |
| $V_{GT}$  | Gate triggering voltage               |
| $V_F$     | Forward drop voltage LINE / GND       |
| $I_{RG}$  | Reverse leakage current GATE / LINE   |
| $I_H$     | Holding current                       |
| $V_{RG}$  | Reverse voltage GATE / LINE           |
| $V_{DGL}$ | Dynamic switching voltage GATE / LINE |
| $I_{PP}$  | Peak pulse current                    |
| $I_R$     | Breakdown current                     |
| $V_F$     | Forward drop voltage LINE / GND       |
| $C$       | Capacitance LINE / GND                |



## Characteristics

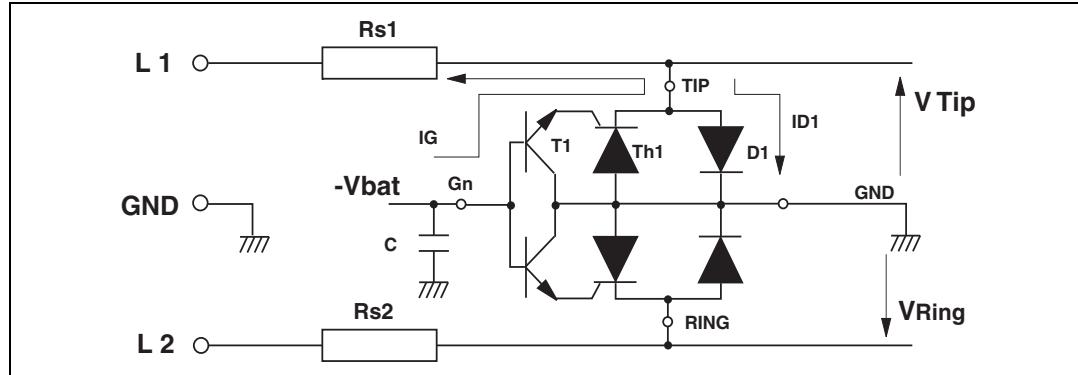
## LCP1521S

**Figure 3. Pulse waveform**



**Table 4. Parameters (T<sub>amb</sub> = 25 °C unless otherwise specified)**

| Symbol                          | Test conditions                                                                                                             |                                                          |                            |                                                                         |                                                                            | Min | Typ | Max           | Unit |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------|-----|-----|---------------|------|
| I <sub>GT</sub>                 | V <sub>LINE</sub> = -48 V                                                                                                   |                                                          |                            |                                                                         |                                                                            | 0.1 |     | 5             | mA   |
| I <sub>H</sub>                  | V <sub>Gn</sub> = -48 V                                                                                                     |                                                          |                            |                                                                         |                                                                            | 150 |     |               | mA   |
| V <sub>GT</sub> <sup>(1)</sup>  | at I <sub>GT</sub>                                                                                                          |                                                          |                            |                                                                         |                                                                            |     |     | 2.5           | V    |
| I <sub>RG</sub>                 | V <sub>RG</sub> = -175 V                                                                                                    |                                                          |                            | T <sub>j</sub> = 25 °C                                                  |                                                                            |     |     | 5             | μA   |
|                                 | V <sub>RG</sub> = -175 V                                                                                                    |                                                          |                            | T <sub>j</sub> = 85 °C                                                  |                                                                            |     |     | 50            |      |
| V <sub>DGL</sub> <sup>(1)</sup> | V <sub>Gn</sub> = -48 V <sup>(1)</sup>                                                                                      | 10/700 μs<br>1.2/50 μs<br>2/10 μs                        | 1.5 kV<br>1.5 kV<br>2.5 kV | R <sub>S</sub> = 10 Ω<br>R <sub>S</sub> = 10 Ω<br>R <sub>S</sub> = 62 Ω | I <sub>PP</sub> = 30 A<br>I <sub>PP</sub> = 30 A<br>I <sub>PP</sub> = 38 A |     |     | 7<br>10<br>25 | V    |
| V <sub>F</sub>                  | I <sub>F</sub> = 5 A                                                                                                        |                                                          |                            |                                                                         | t = 500 μs                                                                 |     |     | 3             | V    |
| V <sub>FP</sub>                 | 10/700 μs<br>1.2/50 μs<br>2/10 μs                                                                                           | 1.5 kV<br>1.5 kV<br>2.5 kV                               |                            |                                                                         | R <sub>S</sub> = 10 Ω<br>R <sub>S</sub> = 10 Ω<br>R <sub>S</sub> = 62 Ω    |     |     | 5<br>9<br>30  | V    |
| I <sub>R</sub>                  | V <sub>Gn</sub> / LINE = -1 V<br>V <sub>Gn</sub> / LINE = -1 V                                                              | V <sub>LINE</sub> = -175 V<br>V <sub>LINE</sub> = -175 V |                            |                                                                         | T <sub>j</sub> = 25 °C<br>T <sub>j</sub> = 85 °C                           |     |     | 5<br>50       | μA   |
| C                               | V <sub>LINE</sub> = -50 V, V <sub>RMS</sub> = 1 V, F = 1 MHz<br>V <sub>LINE</sub> = -2 V, V <sub>RMS</sub> = 1 V, F = 1 MHz |                                                          |                            |                                                                         |                                                                            |     |     | 15<br>35      | pF   |

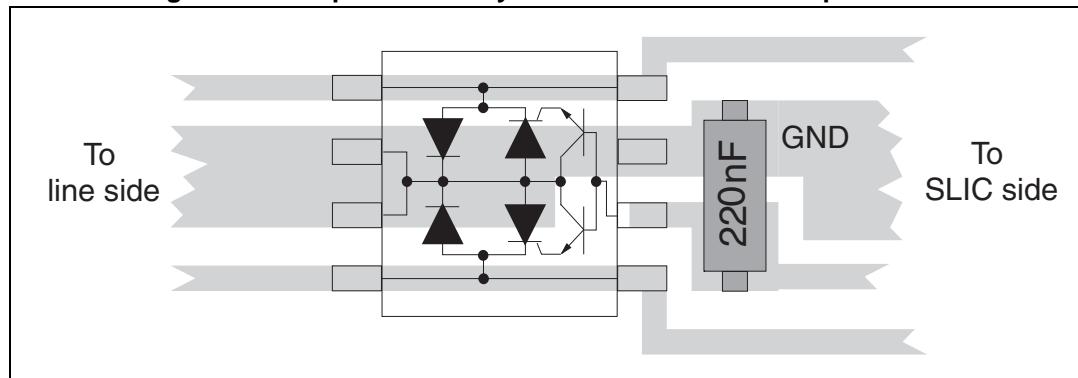

1. The oscillations with a time duration lower than 50 ns are not taken into account.

**Table 5. Recommended gate capacitance**

| Symbol         | Component                   | Min. | Typ. | Max. | Unit |
|----------------|-----------------------------|------|------|------|------|
| C <sub>G</sub> | Gate decoupling capacitance | 100  | 220  |      | nF   |

## 2 Technical information

**Figure 4. LCP concept behavior**




*Figure 4* shows the classical protection circuit using the LCP crowbar concept. This topology has been developed to protect the new high voltage SLICs. It allows to program the negative firing threshold while the positive clamping value is fixed at GND.

When a negative surge occurs on one wire (L1 for example) a current  $IG$  flows through the base of the transistor T1 and then injects a current in the gate of the thyristor Th1. Th1 fires and all the surge current flows through the ground. After the surge when the current flowing through Th1 becomes less negative than the holding current  $IH$ , then Th1 switches off.

When a positive surge occurs on one wire (L1 for example) the diode D1 conducts and the surge current flows through the ground.

**Figure 5. Example of PCB layout based on LCP1521S protection**



*Figure 5* shows the classical PCB layout used to optimize line protection.

The capacitor C is used to speed up the crowbar structure firing during the fast surge edges.

This allows minimization of the dynamic breakdown voltage at the SLIC Tip and Ring inputs during fast strikes. Note that this capacitor is generally present around the SLIC - Vbat pin.

So to be efficient it has to be as close as possible from the LCP Gate pin and from the reference ground track (or plan) (see *Figure 5*). The optimized value for C is 220 nF.

## Technical information

## LCP1521S

The series resistors  $R_s1$  and  $R_s2$  designed in *Figure 4* represent the fuse resistors or the PTC which are mandatory to withstand the power contact or the power induction tests imposed by the various country standards. Taking into account this fact the actual lightning surge current flowing through the LCP is equal to:

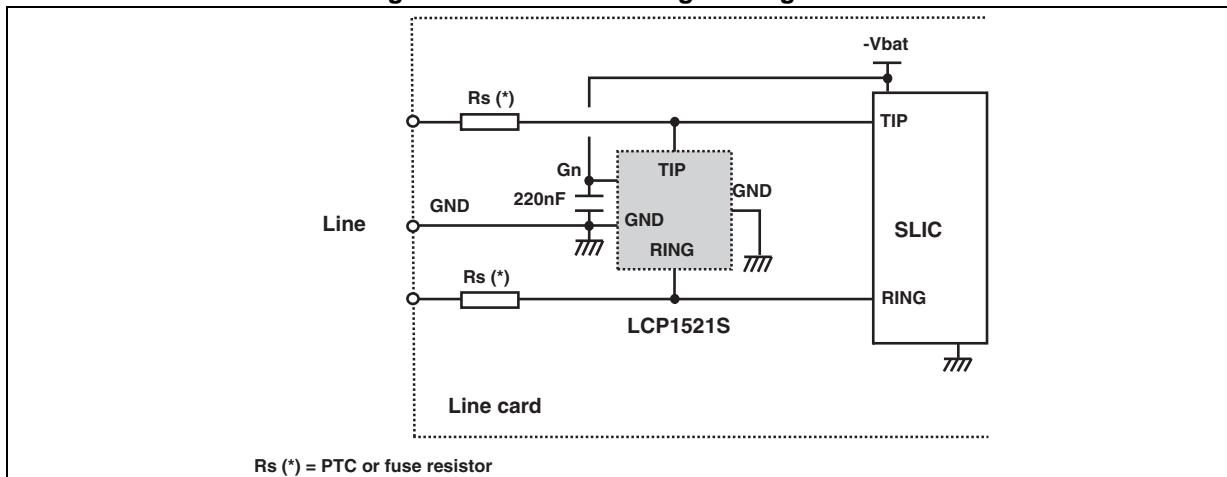
$$I_{\text{surge}} = V_{\text{surge}} / (R_g + R_s)$$

With:

$V_{\text{surge}}$  = peak surge voltage imposed by the standard.

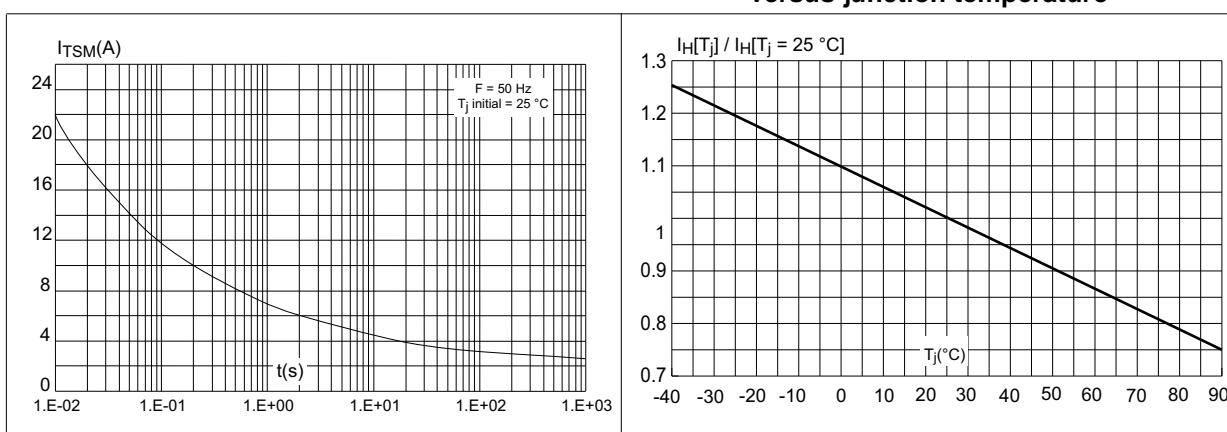
$R_g$  = series resistor of the surge generator

$R_s$  = series resistor of the line card (e.g. PTC)


e.g. For a line card with  $30 \Omega$  of series resistors which has to be qualified under GR1089 core 1000V 10/1000  $\mu$ s surge, the actual current through the LCP is equal to:

$$I_{\text{surge}} = 1000 / (10 + 30) = 25 \text{ A}$$

The LCP is particularly optimized for the new telecom applications such as the fiber in the loop, the WLL, the remote central office. In this case, the operating voltages are smaller than in the classical system. This makes the high voltage SLICs particularly suitable.


The schematics of *Figure 6* give the most frequent topology used for these applications.

**Figure 6. Protection of high voltage SLIC**



**Figure 7. Surge peak current versus duration**

**Figure 8. Relative variation of holding current versus junction temperature**



**LCP1521S****Package information****3 Package information**

- Epoxy meets UL94, V0

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: [www.st.com](http://www.st.com). ECOPACK® is an ST trademark.

## Package information

LCP1521S

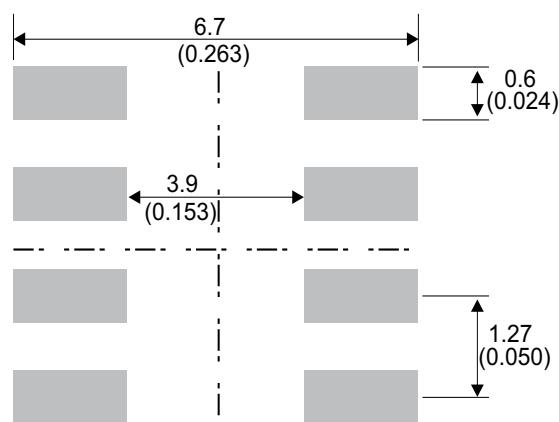

### 3.1 SO-8 package information

Figure 9. SO-8 package outline

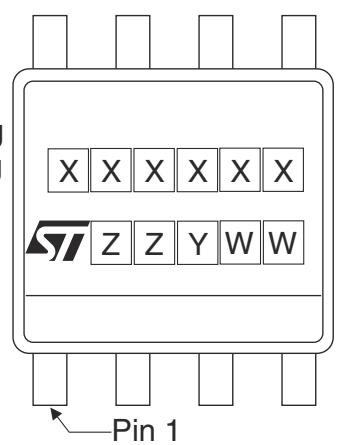



Table 6. SO-8 package mechanical data

| Ref.      | Dimensions  |      |      |        |       |       |
|-----------|-------------|------|------|--------|-------|-------|
|           | Millimeters |      |      | Inches |       |       |
|           | Min.        | Typ. | Max. | Min.   | Typ.  | Max.  |
| A         |             |      | 1.75 |        |       | 0.069 |
| A1        | 0.1         |      | 0.25 | 0.004  |       | 0.010 |
| A2        | 1.25        |      |      | 0.049  |       |       |
| b         | 0.28        |      | 0.48 | 0.011  |       | 0.019 |
| c         | 0.17        |      | 0.23 | 0.007  |       | 0.009 |
| D         | 4.80        | 4.90 | 5.00 | 0.189  | 0.193 | 0.197 |
| E         | 5.80        | 6.00 | 6.20 | 0.228  | 0.236 | 0.244 |
| E1        | 3.80        | 3.90 | 4.00 | 0.150  | 0.154 | 0.157 |
| e         |             | 1.27 |      |        | 0.050 |       |
| h         | 0.25        |      | 0.50 | 0.010  |       | 0.020 |
| L         | 0.40        |      | 1.27 | 0.016  |       | 0.050 |
| L1        |             | 1.04 |      |        | 0.041 |       |
| $k^\circ$ | 0           |      | 8    | 0      |       | 8     |
| ccc       |             |      | 0.10 |        |       | 0.004 |

**LCP1521S****Package information****Figure 10. Footprint recommendations in mm (inches)****Figure 11. Marking**

XXXXXX: Marking  
ZZ: Manufacturing location  
Y: Year  
WW: Week



**Ordering information****LCP1521S****4 Ordering information****Table 7. Ordering information**

| Order code | Marking | Package | Weight | Base qty | Delivery mode |
|------------|---------|---------|--------|----------|---------------|
| LCP1521SRL | CP152S  | SO-8    | 0.08 g | 2500     | Tape and reel |

**5 Revision history****Table 8. Document revision history**

| Date        | Revision | Changes                                                                                                                              |
|-------------|----------|--------------------------------------------------------------------------------------------------------------------------------------|
| 20-Nov-2009 | 1        | First issue.                                                                                                                         |
| 23-Feb-2012 | 2        | Standardized nomenclature for Gn.                                                                                                    |
| 15-Nov-2013 | 3        | Updated <i>Figure 9</i> .                                                                                                            |
| 10-Apr-2015 | 4        | Updated <i>Figure 1</i> , <i>Figure 10</i> and package view. Added <i>Figure 11</i> .<br>Updated <i>Table 3</i> and <i>Table 7</i> . |
| 02-Jul-2015 | 5        | Updated package information.                                                                                                         |
| 08-Jul-2015 | 6        | Updated <i>Figure 9</i> .                                                                                                            |

**LCP1521S****IMPORTANT NOTICE – PLEASE READ CAREFULLY**

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics – All rights reserved