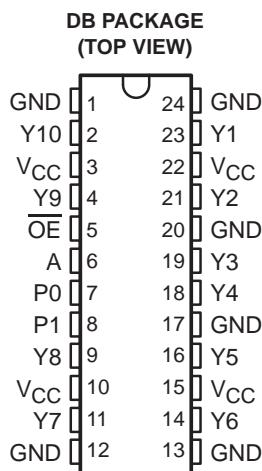


Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:


[Texas Instruments](#)
[CDC2351MDBREP](#)

For any questions, you can email us directly:

sales@integrated-circuit.com

- **Controlled Baseline**
 - One Assembly/Test Site, One Fabrication Site
- **Extended Temperature Performance of -55°C to 125°C**
- **Enhanced Diminishing Manufacturing Sources (DMS) Support**
- **Enhanced Product-Change Notification**
- **Qualification Pedigree[†]**
- **Low Output Skew, Low Pulse Skew for Clock-Distribution and Clock-Generation Applications**
- **Operates at 3.3-V V_{CC}**
- **LVTTL-Compatible Inputs and Outputs**
- **Supports Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V V_{CC})**
- **Distributes One Clock Input to 10 Outputs**

[†] Component qualification in accordance with JEDEC and industry standards to ensure reliable operation over an extended temperature range. This includes, but is not limited to, Highly Accelerated Stress Test (HAST) or biased 85/85, temperature cycle, autoclave or unbiased HAST, electromigration, bond intermetallic life, and mold compound life. Such qualification testing should not be viewed as justifying use of this component beyond specified performance and environmental limits.

description

The CDC2351 is a high-performance clock-driver circuit that distributes one input (A) to 10 outputs (Y) with minimum skew for clock distribution. The output-enable (\overline{OE}) input disables the outputs to a high-impedance state. Each output has an internal series damping resistor to improve signal integrity at the load. The CDC2351 operates at nominal 3.3-V V_{CC} .

The propagation delays are adjusted at the factory using the P0 and P1 pins. The factory adjustments ensure that the part-to-part skew is minimized and is kept within a specified window. Pins P0 and P1 are not intended for customer use and should be connected to GND.

The CDC2351M is characterized for operation over the full military temperature range of -55°C to 125°C .

ORDERING INFORMATION

TA	PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING
-55°C to 125°C	SSOP – DB	Tape and Reel	CDC2351MDBREP	CK2351MEP

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

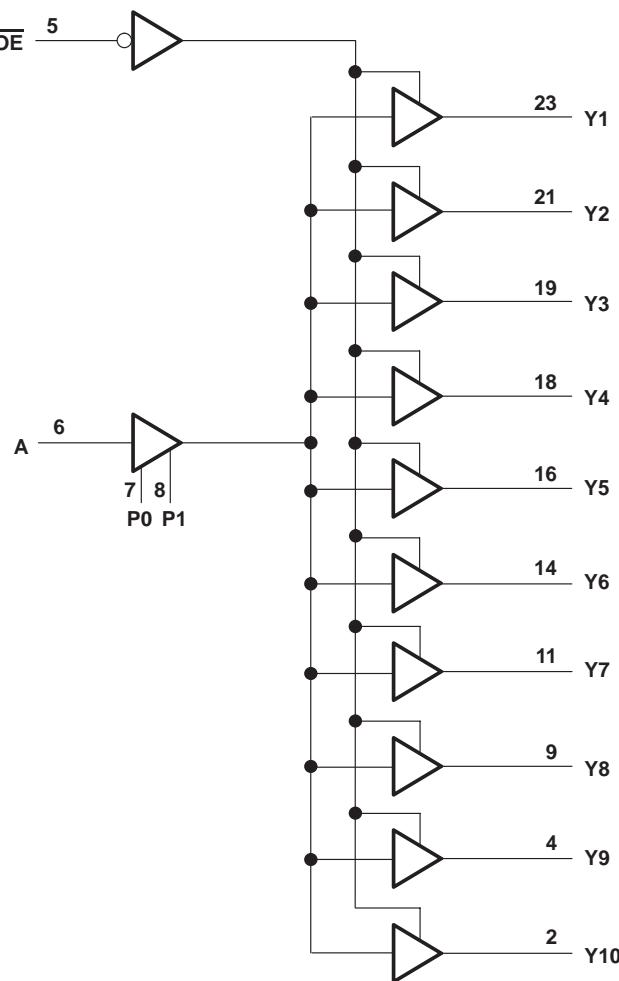
EPIC-IITM is a trademark of Texas Instruments.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2004, Texas Instruments Incorporated

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

CDC2351-EP


**1-LINE TO 10-LINE CLOCK DRIVER
WITH 3-STATE OUTPUTS**

SGLS248A – JUNE 2004 – REVISED AUGUST 2004

FUNCTION TABLE

INPUTS		OUTPUTS
A	\overline{OE}	In
L	H	Z
H	H	Z
L	L	L
H	L	H

logic diagram (positive logic)

CDC2351-EP
1-LINE TO 10-LINE CLOCK DRIVER
WITH 3-STATE OUTPUTS
 SGLS248A – JUNE 2004 – REVISED AUGUST 2004

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V_{CC}	–0.5 V to 4.6 V
Input voltage range, V_I (see Note 1)	–0.5 V to 7 V
Voltage range applied to any output in the high state or power-off state, V_O (see Note 1)	–0.5 V to 3.6 V
Current into any output in the low state, I_O	24 mA
Input clamp current, I_{IK} ($V_I < 0$)	–18 mA
Output clamp current, I_{OK} ($V_I < 0$)	–50 mA
Maximum power dissipation at $T_A = 55^\circ\text{C}$ (in still air) (see Note 2): DB package	0.65 W
Storage temperature range, T_{stg}	–65°C to 150°C

† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
 2. The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils.
 For more information, see the *Package Thermal Considerations* application note in the 1994 ABT Advanced BiCMOS Technology Data Book, literature number SCBD002.

recommended operating conditions (see Note 3)

		MIN	MAX	UNIT	
V_{CC}	Supply voltage	3	3.6	V	
V_{IH}	High-level input voltage	2		V	
V_{IL}	Low-level input voltage		0.8	V	
V_I	Input voltage	0	5.5	V	
I_{OH}	High-level output current		–12	mA	
I_{OL}	Low-level output current		12	mA	
f_{clock}	Input clock frequency		100	MHz	
T_A	Operating free-air temperature	CDC2351M	–55	125	°C

NOTE 3: Unused pins (input or I/O) must be held high or low.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V_{IK}	$V_{CC} = 3\text{ V}$, $I_I = -18\text{ mA}$			–1.2	V
V_{OH}	$V_{CC} = 3\text{ V}$, $I_{OH} = -12\text{ mA}$	2			V
V_{OL}	$V_{CC} = 3\text{ V}$, $I_{OL} = 12\text{ mA}$			0.8	V
I_I	$V_{CC} = 3.6\text{ V}$, $V_I = V_{CC}$ or GND			±1	µA
I_O †	$V_{CC} = 3.6\text{ V}$, $V_O = 2.5\text{ V}$	–7	–70		mA
I_{OZ}	$V_{CC} = 3.6\text{ V}$, $V_{CC} = 3\text{ V}$ or 0			±10	µA
I_{CC}	$V_{CC} = 3.6\text{ V}$, $I_O = 0$, $V_I = V_{CC}$ or GND	Outputs high	0.3		mA
		Outputs low	15		
		Outputs disabled	0.3		
C_I	$V_I = V_{CC}$ or GND, $V_{CC} = 3.3\text{ V}$	$f = 10\text{ MHz}$	4		pF
C_O	$V_O = V_{CC}$ or GND, $V_{CC} = 3.3\text{ V}$	$f = 10\text{ MHz}$	6		pF

† Not more than one output should be tested at a time and the duration of the test should not exceed one second.

CDC2351-EP

1-LINE TO 10-LINE CLOCK DRIVER WITH 3-STATE OUTPUTS

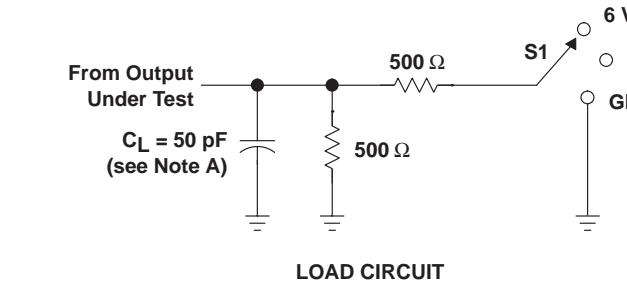
SGLS248A – JUNE 2004 – REVISED AUGUST 2004

switching characteristics, $C_L = 50 \text{ pF}$ (see Figure 1 and Figure 2)

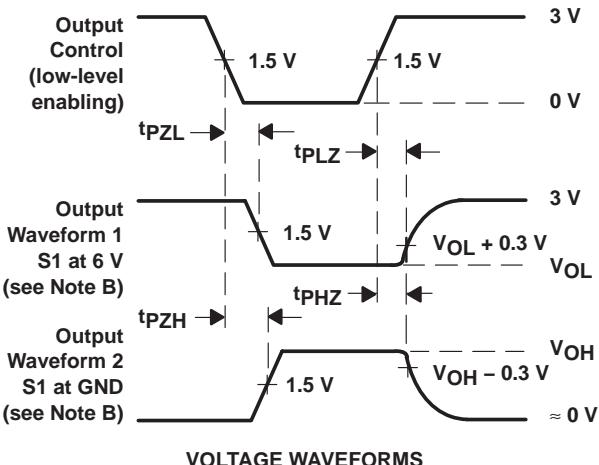
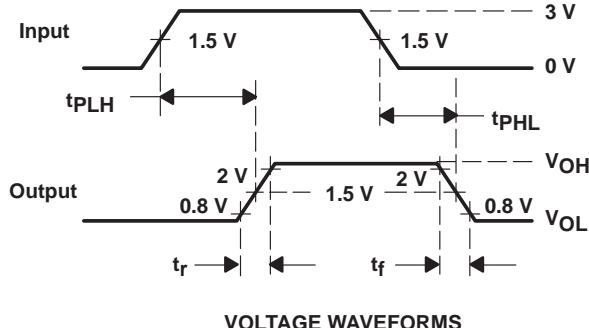
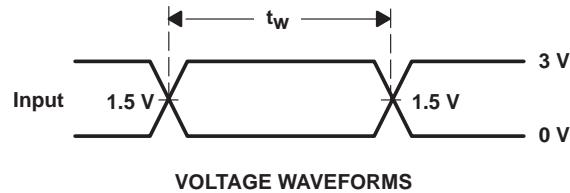
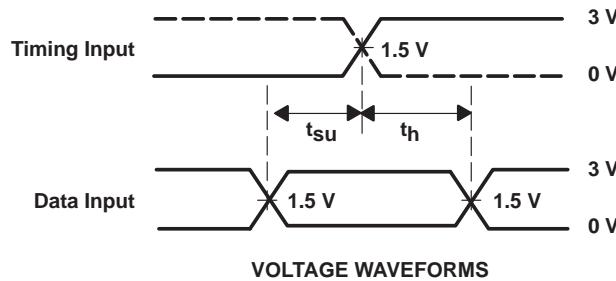
PARAMETER	FROM (INPUT)	TO (OUTPUT)	$V_{CC} = 3.3 \text{ V},$ $T_A = 25^\circ\text{C}$			UNIT	
			MIN	TYP	MAX		
t_{PLH}	A	Y	3.8	4.3	4.8	1.1	11
t_{PHL}			3.6	4.1	4.6	1	9.7
t_{PZH}	\overline{OE}	Y	2.4	4.9	6	1	12
t_{PZL}			2.4	4.3	6	1	11.1
t_{PHZ}	\overline{OE}	Y	2.2	4.4	6.3	1	11.1
t_{PLZ}			2.2	4.6	6.3	1	11.5
$t_{sk(o)}$	A	Y	0.3	0.5		2.5	ns
$t_{sk(p)}$	A	Y	0.2	0.8		3	ns
$t_{sk(pr)}$	A	Y		1			ns
t_r	A	Y				2.5	ns
t_f	A	Y				2.5	ns

switching characteristics temperature and V_{CC} coefficients over recommended operating free-air temperature and V_{CC} range (see Note 4)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN	MAX	UNIT
$\approx t_{PLH}(T)$	Average temperature coefficient of low-to-high propagation delay	A	Y	85 [†]	ps/10°C
$\approx t_{PHL}(T)$	Average temperature coefficient of high-to-low propagation delay	A	Y	50 [†]	ps/10°C
$\approx t_{PLH}(V_{CC})$	Average V_{CC} coefficient of low-to-high propagation delay	A	Y	-145 [‡]	ps/ 100 mV
$\approx t_{PHL}(V_{CC})$	Average V_{CC} coefficient of high-to-low propagation delay	A	Y	-100 [‡]	ps/ 100 mV


[†] $\approx t_{PLH}(T)$ and $\approx t_{PHL}(T)$ are virtually independent of V_{CC} .

[‡] $\approx t_{PLH}(V_{CC})$ and $\approx t_{PHL}(V_{CC})$ are virtually independent of temperature.





NOTE 4: This data was extracted from characterization material and has not been tested at the factory.

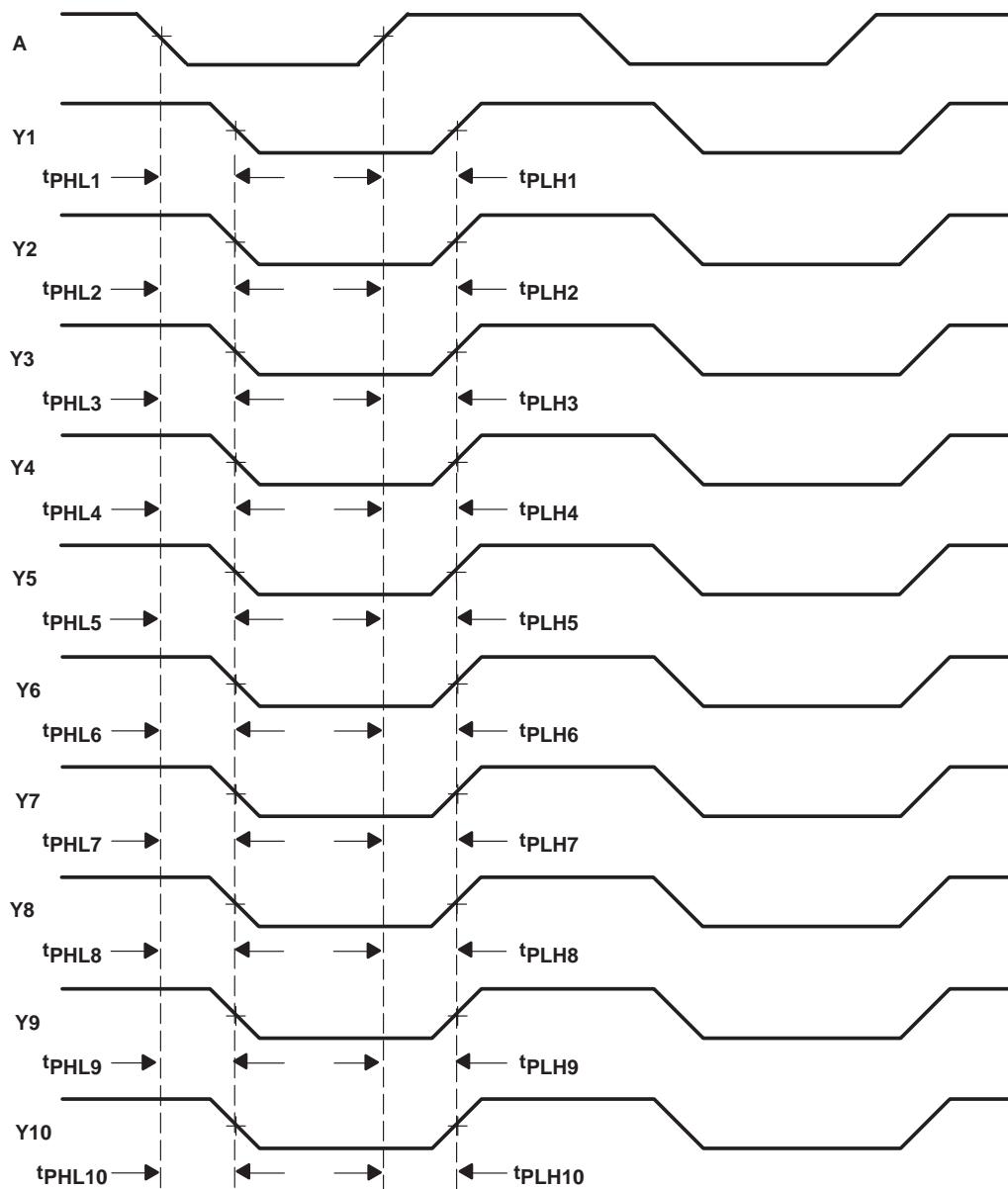
CDC2351-EP
1-LINE TO 10-LINE CLOCK DRIVER
WITH 3-STATE OUTPUTS
SGLS248A – JUNE 2004 – REVISED AUGUST 2004

PARAMETER MEASUREMENT INFORMATION

TEST	S1
t_{PLH}/t_{PHL}	Open
t_{PLZ}/t_{PZL}	6 V
t_{PHZ}/t_{PZH}	GND

NOTES:

- C_L includes probe and jig capacitance.
- Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- All input pulses are supplied by generators having the following characteristics: PRR $\leq 10 \text{ MHz}$, $Z_O = 50 \Omega$, $t_r \leq 2.5 \text{ ns}$, $t_f \leq 2.5 \text{ ns}$.
- The outputs are measured one at a time with one transition per measurement.


Figure 1. Load Circuit and Voltage Waveforms

CDC2351-EP

1-LINE TO 10-LINE CLOCK DRIVER WITH 3-STATE OUTPUTS

SGLS248A – JUNE 2004 – REVISED AUGUST 2004

PARAMETER MEASUREMENT INFORMATION

NOTES:

- A. Output skew, $t_{sk(o)}$, is calculated as the greater of:
 - The difference between the fastest and slowest of t_{PLHn} ($n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10$)
 - The difference between the fastest and slowest of t_{PHLn} ($n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10$)
- B. Pulse skew, $t_{sk(p)}$, is calculated as the greater of $|t_{PLHn} - t_{PHLn}|$ ($n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10$).
- C. Process skew, $t_{sk(pr)}$, is calculated as the greater of:
 - The difference between the fastest and slowest of t_{PLHn} ($n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10$) across multiple devices under identical operating conditions.
 - The difference between the fastest and slowest of t_{PHLn} ($n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10$) across multiple devices under identical operating conditions.

Figure 2. Waveforms for Calculation of $t_{sk(o)}$, $t_{sk(p)}$, $t_{sk(pr)}$

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
CDC2351MDBREP	ACTIVE	SSOP	DB	24	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-55 to 125	CK2351MEP	Samples
V62/04757-01XE	ACTIVE	SSOP	DB	24	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-55 to 125	CK2351MEP	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check <http://www.ti.com/productcontent> for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

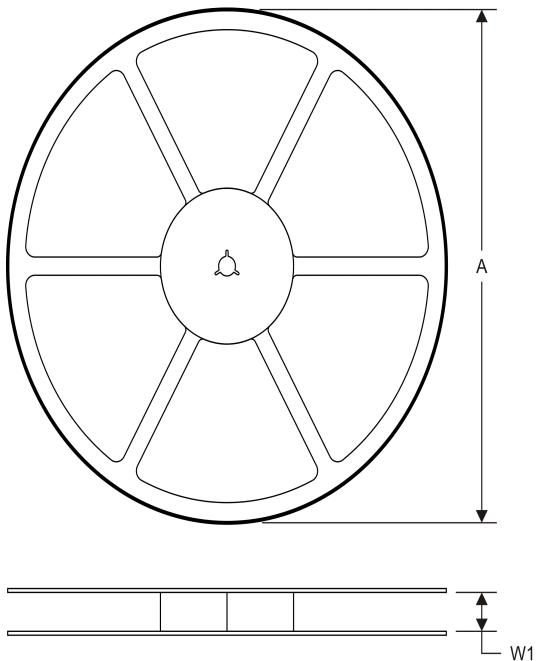
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

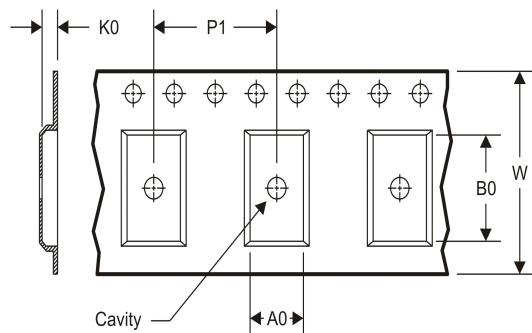
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF CDC2351-EP :

- Catalog: [CDC2351](#)


NOTE: Qualified Version Definitions:

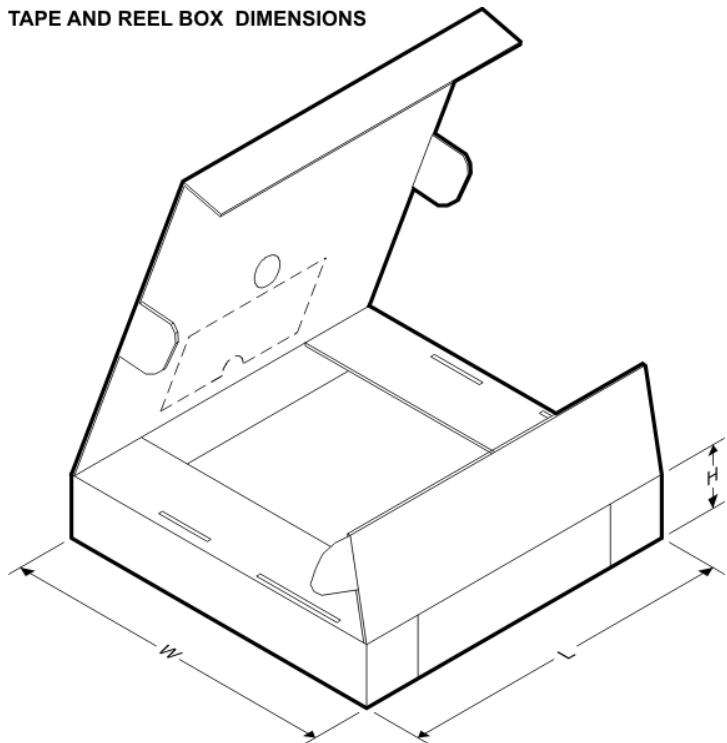
- Catalog - TI's standard catalog product


PACKAGE MATERIALS INFORMATION

TAPE AND REEL INFORMATION

REEL DIMENSIONS

TAPE DIMENSIONS



A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CDC2351MDBREP	SSOP	DB	24	2000	330.0	16.4	8.2	8.8	2.5	12.0	16.0	Q1

TAPE AND REEL BOX DIMENSIONS

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CDC2351MDBREP	SSOP	DB	24	2000	367.0	367.0	38.0

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have **not** been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products	Applications		
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com	TI E2E Community	
OMAP Applications Processors	www.ti.com/omap	e2e.ti.com	
Wireless Connectivity	www.ti.com/wirelessconnectivity		